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This article considers optimal foldover plans for nonregular designs. By using the indicator function, we
de� ne words with fractional lengths. The extended word-length pattern is then used to select among non-
regular foldover designs. Some general properties of foldover designs are obtained using the indicator
function. We prove that the full-foldover plan that reverses the signs of all factors is optimal for all 12-run
and 20-run orthogonal designs. The optimal foldover plans for all 16-run (regular and nonregular) or-
thogonal designs are constructed and tabulated for practical use. Optimal foldover plans for higher-order
orthogonal designs can be constructed in a similar manner.
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1. INTRODUCTION

Foldover is a classic technique used to create a follow-up
experiment. The design is obtained by reversing the signs of
one or more factors (columns) in an initial design. We call a
set of factors whose signs are reversed in the foldover design
a foldover plan. Conventional wisdom is to reverse the signs
of all factors (called a full-foldover plan). The foldover plan
that reverses the sign of only one factor was discussed by Box,
Hunter, and Hunter (1978) as a way to dealias the most impor-
tant factor with other factors. Montgomery and Runger (1996)
considered reversing the signs of one or two factors. Li and Mee
(2002) and Li and Lin (2003) studied optimal foldoverplans for
regular orthogonal designs with respect to the minimum aber-
ration criterion of the combined designs. Ye and Li (2003) gave
some theoretical results on the blocking effect on the foldover
of regular two-level designs. In this article we consider optimal
foldover plans for nonregular two-level orthogonal designs.

A nonregular design is one whose columns do not form an
elementary Abelian group. In nonregular orthogonal designs,
factorial effects may be partially aliased, that is, neither orthog-
onal nor fully aliased. Compared with regular designs, nonreg-
ular designs have more complicated aliasing structure, but they
can provide more � exibility in run sizes and entertain more dis-
tinct models.

Several authors have discussed foldover plans for nonregu-
lar designs. Foldover of Plackett–Burman designs was brie� y
mentioned by Box and Wilson (1951), Box and Hunter (1961)
and Box et al. (1978). Recently, Diamond (1995) studied the
projection properties of the foldover of the 12-run Plackett–
Burman design. Miller and Sitter (2001) discussed applications
of this foldover design and proposed a data analysis strategy
for such designs. In this article we investigate foldover plans

for general nonregular designs in terms of the generalized res-
olution and minimum aberration criteria proposed by Deng and
Tang (1999). A mathematical tool that we use here is the in-
dicator function, which is essential in describing properties of
foldover designs, as shown in later sections. We extend the pre-
vious work to de� ning fractional word lengths and extended
word length patterns.

Consider an experiment of 8 2-level factors in 16 runs, con-
structed by choosing the columns 1, 2, 4, 7, 8, 10, 12, and 15 of
the third Hadamard matrix of Hall (1961). This design has 12
partially aliased 3-factor effects and 25 aliased 4-factor effects
(1 fully aliased and 24 partially aliased). If a foldover design is
used to break as many aliased effects as possible, then the key
question arises: Should we use a full-foldover plan? Revers-
ing the signs of all 8 columns would eliminate all 12 partially
aliased 3-factor effects, but leave the 25 aliased 4-factor effects
intact in the combined 32-run design. As we show in Section 4,
a better foldover plan is to reverse the signs of only the sec-
ond, third, and fourth columns. Doing so will produce only 12
aliased 4-factor effects in the combined designs, all of which
are only partially aliased.

The remainder of the article is organized as follows. Sec-
tion 2 discusses the indicator function and generalized min-
imum aberration criterion. Section 3 discusses some general
properties of foldoverdesigns are studied. Section 4 gives a cat-
alog of optimal foldover plans for 16-run orthogonal designs. It
is proved that the optimal foldover plan for 12-run and 20-run
orthogonal designs is the full-foldover plan. Finally, Section 5
gives concluding remarks.
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2. INDICATOR FUNCTIONS AND FRACTIONAL
LENGTH WORDS

Deng and Tang (1999) � rst generalized resolution and mini-
mum aberration criteria to compare nonregular designs. To fa-
cilitate our investigation on foldover designs, we present these
criteria through a different approach. Our approach is based on
indicator functions, which relate a factorial design to a polyno-
mial whose coef� cients reveal aliasing structure of the design.
In this section we start with a brief introduction on indicator
functions, then extend the notion of “words” to accommodate
fractional length words and extended word length pattern, con-
cepts that play key roles in the discussion of foldover designs.

Consider a fractional factorial design with k factors. Denote
its design space D as a collection of 2k points f.d1; : : : ; dk/;

di D §1; i D 1; : : : ;kg. Then any k-factor design A can be seen
as a collection of points in D. The indicator function of A is
a function de� ned on D such that F.x/ D rx for x 2 A and 0
otherwise, where rx is the number of replicates of point x in
design A. De� ne XI.x/ D

Q
i2I xi on D for I 2 P , where P is

the collection of all subsets of f1; : : : ; kg. Then the indicator
function of A has a polynomial form F.x/ D

P
I2P bIXI.x/,

where the coef� cients fbI I 2 Pg are uniquely determined by

bI D 1=2k
X

x2A
XI.x/: (1)

In particular, b; D n=2k . (For more details, see Fontana et al.
2000; Ye 2003.)

For a regular 2k¡p design, the polynomial form of its indi-
cator function can be easily obtained by its generators. For ex-
ample, the indicator function of a 25¡2 design A with genera-
tors 1 D x1x2x4 and 1 D x1x3x5 is F.x1;x2;x3;x4;x5/ D 1

4 .1 C
x1x2x4/.1 C x1x3x5/ D 1

4 C 1
4 x1x2x4 C 1

4x1x3x5 C 1
4 x2x3x4x5.

Furthermore, it can be observed that terms with nonzero co-
ef� cients (except the constant) in the polynomial are exactly
de� ning words of the de� ning contrast subgroup. This is true
for all regular designs.

For nonregular factorial designs, their indicator functions are
more complicated because of their complicated aliasing struc-
ture. Consider a 12 £ 5 projection of the 12-run Plackett–
Burman design listed in Table 1, denoted by APB throughout
this article. Using (1), one can easily compute all coef� cients
fbI; I 2 Pg and obtain the polynomial form of its indicator
function, FAPB .x1;x2; : : : ; x5/ D 1

25 .12 C 4x1x2x3 ¡ 4x1x2x4 C
4x1x2x5 C 4x1x3x4 ¡ 4x1x3x5 C 4x1x4x5 C 4x2x3x4 ¡ 4x2x3x5 C
4x2x4x5 ¡ 4x3x4x5 ¡ 4x1x2x3x4 C 4x1x2x3x5 ¡ 4x1x2x4x5 C

Table 1. A Projection of a 12-Run Plackett–Burman Design

Run X1 X2 X3 X4 X5

1 1 1 1 1 1
2 ¡1 1 ¡1 1 1
3 ¡1 ¡1 1 ¡1 1
4 1 ¡1 ¡1 1 1
5 ¡1 1 ¡1 ¡1 ¡1
6 ¡1 ¡1 1 ¡1 1
7 ¡1 ¡1 ¡1 1 ¡1
8 1 ¡1 ¡1 ¡1 ¡1
9 1 1 ¡1 ¡1 1

10 1 1 1 ¡1 ¡1
11 ¡1 1 1 1 ¡1
12 1 ¡1 1 1 ¡1

4x1x3x4x5 C 4x2x3x4x5 C 8x1x2x3x4x5/. The relationship be-
tween the indicator function and de� ning words of a regular
design allows us to extend the notionof words to nonregularde-
signs. It is natural to call a term with nonzero coef� cient (except
the constant) in the indicator function of a design a word. For
example, the design APB has the following 15 words: x1x2x3,
x1x2x4, . . . , x1x2x3x4x5.

In a regular design, word length is de� ned to be the number
of letters of the word. (We call each xi in a word a letter.) Each
word implies full aliasing among associated factorial effects. In
a nonregular design, however, partial aliasing exists. Thus two
words with the same numbers of letters may indicate different
degrees of aliasing. Note that jbI=b;j, which is always between
0 and 1, measures the degree of aliasing associated with the
word XI . We de� ne the generalized word length of XI as the
number of letters of the word plus (1 ¡ jbI=b;j). For a regular
design, word length equals the number of letters of the word,
because each word XI has jbI=b;j D 1, whereas the length of
words for a nonregular design may be fractional. Consider the
word x1x2x3 in design APB , based on the de� nition, its length
is 3 C .1 ¡ 4=12/ D 3 2

3 . In fact, this design has 10 length-(3 2
3 )

words, 5 length-(4 2
3) words, and 1 length-(51

3 ) word. This new
de� nition keeps the desirability of words. The shorter a word,
the less desired it is. Let fiCj=n be the number of length-(i C j=n)
words. We de� ne extended word length pattern (EWLP) of A to
be .f1; : : : ; f1C.n¡1/=n; f2; : : : ; f2C.n¡1/=n; : : : ; fk; : : : ; fkC.n¡1/=n/.
For example, the extend word length pattern of design APB has
f3 2

3
D 10, f4 2

3
D 5, f5 1

3
D 1. Its resolution is 3 2

3 .

3. PROPERTIES OF FOLDOVER DESIGNS

Denote a foldover plan by a set ° , in which each element
represents a factor whose sign is reversed in the foldover de-
sign. From the de� nition of the indicator function, we can eas-
ily obtain the following three properties, which are essential for
studying the foldover design:

1. Let F.x1;x2; : : : ;xk/ be the indicator function of a design.
If the sign of factor Xi is reversed, then the indicator func-
tion of the new design is F.x1; : : : ;¡xi; : : : ;xk/.

2. Let FA and FB be indicator functions of two designs,
A and B. Then the indicator function of the combined
design A [ B is given by FA[B D FA C FB .

3. Denote the initial design and its foldover resulting from a
foldover plan ° by A and A° . Let the combined design
of A and A° be denoted by S D A [ A° . Then the indi-
cator functionsof A° and S are given by F..¡1/±1x1; : : : ;

.¡1/±kxk/ and F.x1; : : : ; xk/CF..¡1/±1x1; : : : ; .¡1/±k xk/,
where ±i D 1 if Xi 2 ° and 0 otherwise, i D 1; : : : ;k.

The proofs are straightforward and thus are omitted.
In general, let A be a two-level factorial design with the in-

dicator function FA.x1; : : : ;xk/ D
P

I2P bIXI . Let A° be its
foldover with the indicator function FA° .x1;:::;xk/ D

P
I2P b0

IXI .
The indicator function of the combined design S D A [ A° is
given by FS.x1; : : : ; xk/ D

P
I2P cIXI , where cI D bI C b0

I from
Property 3. Here we call a word an even-letter word if it has an
even number of letters. That is, the integer part of its length is
an even number. The odd-letter word is de� ned similarly. From
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Property 3, it is not dif� cult to see that a word in the initial de-
sign will be cancelled in the combined design if and only if the
signs of an odd number of factors are reversed in the foldover
design; that is,

cI D
»

0 if ° \ I has an odd number of elements
2bI if ° \ I has an even number of elements.

(2)

Condition (2) shows that it is not necessary to reverse the signs
of all factors to eliminate all 3-letter words. Speci� cally, for de-
signs with resolution at least 4 but less than 5, there exists a
better foldover plan than the full-foldover plan. This is because
the shortest word must be a 4-letter word, which can be elimi-
nated by simply reversing the sign of one factor involved in the
word.

Three additional important properties of foldover designs are
given next. For simplicity of presentation, their proofs are pro-
vided in Appendix A.

4. Let A be a two-level factorial design with the generalized
resolution 3 · RA < 4. Let S be the combined design of
A and its full foldover. Then the resolution of S is at least
4. Moreover, the design has no odd-letter word.

5. Let A be a two-level factorial design with the general-
ized resolution 4 · RA < 5. The combined design after
full foldover has the same resolution as the initial design.
Moreover, all even-letter words of the initial design have
the same lengths in the combined design.

6. There exists a foldover plan that can either increase the
resolution or reduce the number of shortest-length words
of the initial design.

Note that Properties 4 and 5, regarding the full-foldover
plan, are direct extensions of the well known fact that the full-
foldover plan results in a combined design of resolution IV for
any regular 2k¡p design of resolution III or IV.

4. OPTIMAL FOLDOVER DESIGNS

Consider a combined design S D A[A° . For a given design
A, its optimal foldoverplan is given by ° ¤ such that EWLP.A[
A° ¤/ D min° EWLP.A [ A° /. In this section we discuss the
optimal foldover plans for 12-run, 16-run, and 20-run designs.
We focus on 16-run designs, because they are most commonly
used in practice.

4.1 Foldover of Minimum Aberration 16-Run Designs

For n D 16, there are 5 nonisomorphic Hadamard matrices.
Lin and Draper (1992) � rst studied the geometric projection

properties of these Hadamard matrices onto dimensions 3, 4,
and 5. Using a computer search method, Sun (1993) obtained
all nonisomorphic 16 £ m designs. Li and Lin (2003) studied
optimal foldover plans (in terms of the aberration criterion) for
the regular 16-run designs.

Here we focus on the optimal foldover plans for nonregular
16-run designs (see, e.g., Lin and Draper 1995). By using the
generalizedaberration criterion discussed in Section 2, we iden-
tify the best designs among regular and nonregular designs for
all nonisomorphic 16 £ m (5 · m · 14) designs given by Sun
(1993). Table 2 shows that when m · 8, the minimum aberra-
tion regular designs are preferred. They have a resolution of 4
or higher, whereas the best nonregular designs have a general-
ized resolution of 3.5. For m ¸ 9, however, the minimum aber-
ration nonregular designs may be preferable, because they have
a resolution of 3.5, compared with the minimum aberration de-
signs with a resolution of 3. In the former designs, no main
effects are fully confounded with the two-factor interactions.
The EWLP of each design is also displayed in the table, be-
cause it provides further information on the design considered.
For example, for m D 9, there are 23 resolution-3.5 nonregular
designs. Among them, the number of length-3.5 words ranges
from 16 to 28. The EWLPs of all of the 16£ m designs are pro-
vided in Tables 5–14 as are the optimal foldover plans for all
16-run designs and the results. (To save space, these tables are
not included in this article. An electronic copy can be obtained
at http://legacy.csom.umn.edu/wwwpages/faculty/wli.)

Table 3 summarizes the optimal foldover plans for all min-
imum aberration designs. The design index in the table corre-
sponds to the index number used by Sun (1993). As indicated in
Table 3, for m · 8, the minimum aberration designs are regular
designs; the others are nonregular designs. For m D 12, there
are two minimum aberration designs, designs 12.29 and 12.36.
Note that nonisomorphic designs may have the same EWLPs
as shown here. Table 3 demonstrates that in all cases, the com-
bined designs have resolution 4. The conventional foldover
plan—the full-foldover plan—is optimal in some cases, espe-
cially for large values of m.

4.2 Combined-Optimal Designs

The experimenter usually prefers the minimum aberration
design, because it minimizes the aliasing among effects gen-
erally. However, the foldover of a minimum aberration de-

Table 2. Summary of Best 16-Run Designs Among Regular and Nonregular Designs

Total number of Number of regular Minimum aberration regular design Minimum aberration nonregular design
m designs designs Resolution WLP Resolution WLP

5 11 5 5.0 (0 0, 0 0, 1 0) 3.5 (0 1, 0 2, 0 1)
6 27 5 4.0 (0 0, 3 0, 0 0, 0 0) 3.5 (0 2, 1 4, 0 2, 0 0)
7 55 6 4.0 (0 0, 7 0, 0 0, 0 0) 3.5 (0 4, 3 8, 0 4, 0 0)
8 80 6 4.0 (0 0, 14 0, 0 0, 0 0) 3.5 (0 12, 1 24, 0 16, 0 0)
9 87 5 3.0 (6 0, 9 0, 9 0, 0 0) 3.5 (0 16, 14 0, 0 32, 0 0)

10 78 4 3.0 (8 0, 18 0, 16 0, 8 0) 3.5 (0 32, 10 32, 0 64, 0 32)
11 58 3 3.0 (12 0, 26 0, 28 0, 24 0) 3.5 (0 48, 14 48, 0 112, 8 64)
12 36 2 3.0 (16 0, 39 0, 48 0, 48 0) 3.5 (0 64, 15 96, 0 192, 0 192)
13 18 1 3.0 (22 0, 55 0, 72 0, 96 0) 3.5 (0 88, 15 160, 0 288, 0 384)
14 10 1 3.0 (28 0, 77 0, 112 0, 168 0) 3.5 (0 112, 21 224, 0 448, 0 672)

NOTE: For 16-run designs, each word length is either k or k C :5 .2 < k < m C 1/.
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Table 3. Minimum Aberration 16 £ m Designs and Their Optimal Foldover Plans

Design Initial design Optimal Combined design
m index Resolution WLP foldover plan Resolution WLP

6 6:5 4.0 (0 0, 3 0, 0 0, 0 0) {1} 4.0 (1 0, 0 0, 0 0)
7 7:6 4.0 (0 0, 7 0, 0 0, 0 0) {1, 6} 4.0 (3 0, 0 0, 0 0)
8 8:6 4.0 (0 0, 14 0, 0 0, 0 0) {1, 2} 4.0 (6 0, 0 0, 0 0)
9 9:25 3.5 (0 16, 14 0, 0 32, 0 0) {9} 4.0 (14 0, 0 0, 0 0)

10 10:48 3.5 (0 32, 10 32, 0 64, 0 32) {1, 2, 3, 4} 4.0 (10 32, 0 0, 0 32)
11 11:37 3.5 (0 48, 14 48, 0 112, 8 64) {1, 2, 3, 4} 4.0 (14 48, 0 0, 8 64)
12 12:29 3.5 (0 64, 15 96, 0 192, 0 192) Full-foldover 4.0 (15 96, 0 0, 0 192)

12:36 3.5 (0 64, 15 96, 0 192, 0 192) {1, 2, 3, 4} 4.0 (15 96, 0 0, 0 192)
13 13:15 3.5 (0 88, 15 160, 0 288, 0 384) Full-foldover 4.0 (15 160, 0 0, 0 384)
14 14:8 3.5 (0 112, 21 224, 0 448, 0 672) Full-foldover 4.0 (21 224, 0 0, 0 672)

NOTE: For both initial and combined designs, each word length is either k or k C :5 .2 < k < m C 1/.

sign may not produce a good design in terms of the aber-
ration of the combined design. Thus Li and Lin (2003) pro-
posed the combined-optimal design. Recall that for a given
design A, its optimal foldover plan is given by ° ¤ such that
EWLP.A [ A° ¤/ D min° EWLP.A [ A° /. Then a design Ac

is called a combined-optimal design if EWLP.Ac [ Ac
° ¤/ D

minA EWLP.A [ A° ¤/.
Table 4 summarizes the optimal foldover plans for all com-

bined-optimal designs. We � rst note that only one combined-
optimal design—design 6.3—is a regular design. All the other
designs are nonregular designs. For m · 9, the combined-
optimal designs have a nice property: their combined designs
have a resolution of 4.5 or higher. In these cases, no two-
factor interaction is fully confoundedwith a main effect or other
two-factor interactions. For m ¸ 10, the combined-optimal de-
signs are generally not recommended; these initial designs are
resolution-3 designs, whereas the minimum aberration designs
have a resolution of 3.5. In both cases, their combined designs
have a resolution of 4.

In Section 1, we described a 16 £ 8 design in which there
are 12 partially aliased three-factor effects. This design corre-
sponds to design 8.42 of Table 4. As shown in the table, the
optimal foldover plan ° ¤ D f2;3; 4g results in the EWLP D
.0;12I 1; 12I 0;0/ for the combined design. Had a full foldover
plan been used, the resulting combined design would have had
1 length-4 word and 24 length-4.5 words. Obviously, ° ¤ is a
much better plan.

4.3 Foldover of 12-Run and 20-Run Designs

All 12-run orthogonal designs are projection of the unique
nonisomorphic 12-run Hadamard matrix. It can be shown that
for all 12-run orthogonal designs, the full-foldover plan is the
optimal foldover plan. Furthermore, it is the only foldover plan
that generates resolution IV combined designs. The proof is
given in Appendix B.

In a recent report, Sun, Li, and Ye (2002) presented a com-
plete catalog of all these nonisomorphic20-run 2-level designs.
We investigate the optimal foldoverplans of all these 20-run de-
signs and � nd that all optimal foldover plans are full-foldover
plans. The proof of this is also given in Appendix B.

5. CONCLUDING REMARKS

In this article we have investigatedoptimal foldoverplans for
nonregulardesigns. We used the indicator function to de� ne the
fractional length word pattern and the EWLP. After providing
some theoretical results on foldover designs, we discussed the
optimal foldovers of 12-run, 16-run, and 20-run designs.

Tables 2, 3, and 4 focus on the use of aberration criterion
based on the EWLP. We also obtained optimal foldover plans
according to the G2 criterion proposed by Tang and Deng
(2000). The G2 criterion aims to compare the average degree
of confounding of words with same number of letters. Using
the indicator function, the G2 aberration criterion can be de-
� ned as f®1.A/; : : : ; ®s.A/g, where ®j.A/ D

P
kIkDj.bI=b;/2

(Ye 2003).

Table 4. Combined-Optimal 16 £ m Designs and Their Optimal Foldover Plans

Design Initial design Optimal Combined design
m index Resolution WLP foldover plan Resolution WLP

6 6:3 3.0 (0 8, 0 0, 0 0, 1 0) {1, 4} 6.0 (0 0, 0 0, 1 0)
6:18 3.5 (0 8, 0 0, 0 0, 1 0) {1, 2} 6.0 (0 0, 0 0, 1 0)

7 7:11 3.0 (1 4, 1 8, 1 4, 0 0) {1, 7} 4.5 (0 4, 1 4, 0 0)
7:32 3.5 (0 8, 0 12, 1 4, 0 0) {2, 3} 4.5 (0 4, 1 4, 0 0)

8 8:39 3.0 (1 12, 0 24, 1 12, 0 0) {2, 3, 4} 4.5 (0 12, 1 12, 0 0)
8:42 3.5 (0 12, 1 24, 1 12, 0 0) {2, 3, 4} 4.5 (0 12, 1 12, 0 0)

9 9:71 3.0 (1 20, 0 42, 0 30, 0 14) Full-foldover 4.5 (0 42, 0 0, 0 14)
10 10:62 3.0 (2 28, 1 62, 0 58, 0 44) Full-foldover 4.0 (1 62, 0 0, 0 44)
11 11:45 3.0 (3 39, 3 90, 0 102, 0 102) Full-foldover 4.0 (3 90, 0 0, 0 102)

11:46 3.0 (3 38, 3 90, 0 106, 0 102) Full-foldover 4.0 (3 90, 0 0, 0 102)
12 12:27 3.0 (4 52, 6 128, 0 176, 0 208) Full-foldover 4.0 (6 128, 0 0, 0 208)

12:33 3.0 (4 52, 6 128, 0 176, 0 208) {1, 2, 3, 4, 5, 6} 4.0 (6 128, 0 0, 0 208)
13 13:14 3.0 (5 68, 10 180, 0 288, 0 384) Full-foldover 4.0 (10 180, 0 0, 0 384)

13:16 3.0 (7 60, 10 180, 0 288, 0 384) {1, 2, 3, 4, 5, 6, 7} 4.0 (10 180, 0 0, 0 384)
13:17 3.0 (4 72, 10 180, 0 288, 0 384) {1, 2, 3, 4, 5, 6} 4.0 (10 180, 0 0, 0 384)

14 14:9 3.0 (7 84, 14 252, 0 448, 0 672) {1, 2, 3, 4, 5, 6, 7} 4.0 (14 252, 0 0, 0 672)

NOTE: For both initial and combined designs, each word length is either k or k C :5 .2 < k < m C 1/.
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Tang and Deng (2000) proposed a family of Gp aberration
criteria de� ned as ®j.A/ D

P
kIkDj jbI=b;jp. Ye (2003) showed

a justi� cation for using G2 over other Gp criteria. That is, the
sum of the G2 word length pattern vector of a design A equals
2k

n ¡ 1, regardless of whether it is regular or nonregular if it
has no replicates. This property does not hold for other Gp cri-
teria. In general, the EWLP criteria and the G2 criteria do not
necessarily produce the same optimal foldover designs. How-
ever, for all 16-run two-level designs, we � nd that the op-
timal foldover plans resulting from the G2 criterion are the
same as those resulting from the EWLP criterion. The G2 crite-
rion values of the initial designs and the combined designs are
given in Tables 5–14 (available at http://legacy.csom.umn.edu/
wwwpages/faculty/wli).

During the � nal stage of this project, we were made aware
that table 2 of Deng and Tang (2002) provides the minimum
aberration designs for the cases of 16 £ p (p D 3; : : : ;14). The
difference is that in our Table 2, we further distinguish between
minimum aberration regular design and minimum aberration
nonregular design for each p.
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APPENDIX A: PROOFS OF PROPERTIES 4, 5, AND 6
OF SECTION 3

Proof of Property 4

Because the initial design has a resolution of at least 3 but
less than 4, the word with the least length in its indication
function has 3 letters. When the full-foldover plan is used, the
signs of all factors are reversed in the foldover design. Thus, all
3-letter words and other odd-letter words will not appear in the
indicator function of the foldover design.

Proof of Property 5

Because the resolution of the initial design is at least 4 and
less than 5, the term with the least length in the indicator func-
tion has 4 letters. For a full-foldover plan, all even-letter words
stay in the combined design and their coef� cients cI D 2bI.
The constant term c; D 2b; is also doubled. Therefore, for an
even-letter word I , the word length kIk ¡ cI=c; is unchanged.
From the de� nition, the combined design has the same resolu-
tion as A.

Proof of Property 6

Let XI be the shortest word. Then for a foldover plan ° that
contains an odd number of factors in I , the word XI is then
eliminated in the combined design.

APPENDIX B: OPTIMAL FOLDOVER PLANS FOR
12-RUN AND 20-RUN DESIGNS

In the 12-run Plackett–Burman design, all main effects are
partially confounded with all other two-factor interactions not
containing this effect. That is, all 3-letter words are present in
the indicator function. Without loss of generality, consider a
projection to the � rst l columns. For I ½ f1;2; : : : ; lg, it is easy
to see that

P
A XI D n.bI=b;/ are the same. Thus all 3-letter

words of the projection are still in its indicator function. Be-
cause the full-foldover plan is the only foldover plan to make
all 3-letter words disappear in the combined design, the full-
foldover plan is the optimal foldover plan.

By examining all nonisomorphic 20-run orthogonal arrays
presented by Sun et al. (2002), we � nd that each design has
all possible 3-letter words in its indicator function. Therefore,
following the same arguments for 12-run designs, the optimal
foldover plan of 20-run designs is the full-foldover plan.

[Received July 2003. Revised July 2003.]
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