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We present a single-pass, low-storage, sequential method for estimating an arbitrary quantile of an
unknown distribution. The proposed method performs very well when compared to existing methods
for estimating the median as well as arbitrary quantiles for a wide range of densities. In addition to
explaining the method and presenting the results of the simulation study, we discuss intuition behind
the method and demonstrate empirically, for certain densities, that the proposed estimator converges
to the sample quantile.
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1. Introduction

Quantile estimation for an unknown distribution is a com-
monly studied problem. Pfanzagl (1974) showed that when
nothing is known about a distribution of interest, the sample
quantile has the minimum asymptotic variance among trans-
lation invariant estimators of the population quantile. While
it may be desirable, using the sample quantile as an esti-
mate of the population quantile becomes cumbersome and
in many cases impractical to obtain, both in terms of stor-
age space and computation time, when the size of the data
set becomes large. In this paper we introduce a single-pass,
low-storage method of estimating an arbitrary quantile, based
on a sequential scoring algorithm that combines estimated
ranks and assigned weights, where the weights represent, in
some sense, the information associated with each estimated
rank.

Massive datasets are becoming more and more common in
modern society. They arise from sources as diverse as large
call centers, internet traffic data, sales transactional records, or
satellite feeds. This phenomenon presents a clear need to be
able to process the data accurately and efficiently so that cur-
rent analyses may be performed before becoming inundated by
a continually growing store of data.

Applications of the proposed method include, but are not lim-
ited to, query optimization for large databases and network rout-
ing problems. Manku, Rajagopalan and Lindsay (1998) note that
it is common in the database field to keep summaries of the vari-
ables in the form of equi-depth histograms. However, creating
and maintaining these histograms can be quite costly. Another
possible application could be in the area of network routing.
Network routing decisions, and hence quality of service for the
network users (Kesidis 1999), could be improved by having more
accurate summaries of the distributions of the historical traffic
data, in particular of the tails of these distributions. As noted in
Dunn (1991), a further application is in the computation through
simulation of critical values and percentile points of new statis-
tics whose distributions are unknown. A final application could
be in the area of MCMC analysis where simulations routinely
generate massive amounts of data.

In Section 2, we briefly review existing methods for estimat-
ing the median and arbitrary quantiles. We describe the proposed
estimation method in Section 3. In Section 4, we demonstrate the
performance of this method and highlight some of its properties
by summarizing the results from a collection of simulation stud-
ies. Some theoretical considerations are discussed in Section 5
and we conclude with a discussion of the proposed method and
future research.
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2. Existing methods

We start our discussion by putting forward notation and defini-
tions that will be used throughout the paper. Let X1, . . . , Xn be a
sample from a distribution F , where we assume F is continuous
so that all observations are unique with probability 1. Let the
order statistics X (1) < · · · < X (n) be the observations arranged
in ascending order. The pth population quantile of a distribution
F is defined as

ξp = F−1(p) = inf{x : F(x) ≥ p},

and the pth sample quantile as ξ̂p = X (k), where k = 
np� is the
smallest integer greater than or equal to np, for 0 < p < 1. Hence
a sample quantile can be attained by simply sorting the data and
taking the appropriate order statistic. However, as the size of the
dataset becomes large, computation and storage burdens make
this method infeasible.

Hurley and Modarres (1995) offer a nice survey of current
methods for estimating quantiles. Most of the methods reviewed
in this survey focus on estimating the median of a distribution,
and in practice only one method, the Stochastic Approximation
(S.A.) method introduced in Tierney (1983), is easily extended to
estimate an arbitrary quantile. In addition to reviewing current
methods, Hurley and Modarres (1995) introduce a histogram
based method for estimating quantiles. Their proposed method
has many attractive qualities, in particular for estimation of the
median. However, for estimation of quantiles other than the me-
dian their method has a non-zero probability of having to be
repeated and hence may require more than one pass through the
data set in order to obtain an appropriate estimate of the quan-
tile. Extending their method so that it can be used to estimate
extreme quantiles (quantiles with values of p close to 0 or 1),
would result in an increased probability of requiring more than
one pass through the data set, making it impractical for estimat-
ing extreme quantiles.

Pearl (1981) proposed using a minimax tree to estimate an
arbitrary quantile. While this method is easy to implement and
utilizes very little storage space, it has the drawback that it will
only work for sample sizes that can be specified in terms of
the three parameters which describe the tree. As a result this
method cannot easily be extended to arbitrary quantiles without
ignoring part of the data in order to get a desired sample size.
Rousseeuw and Bassett (1990) proposed the remedian method
of quantile estimation. As with the minimax tree method, there
are restrictions on the size of data sets that can be analyzed
using this method. The remedian method can be extended to
other quantiles (Chao and Lin 1993), however this extension is
not easily accomplished in practice.

Alternatively, the S.A. method proposed by Tierney (1983) is
quite accurate, straightforward to implement for arbitrary sized
datasets, and easily extensible to estimate arbitrary quantiles.
The main drawbacks of the S.A. method are that its accuracy
depends on an initial sample and it allows for estimates which
are outside of the range of possible values. Because the accuracy

depends on getting an initial sample that has a quantile that
is close to the sample quantile of the entire data set, the S.A.
performs poorly when estimating extreme quantiles. This is a
weakness that can only be overcome by increasing the size of the
initial sample which can lead to the same challenges associated
with the sample quantile. With regards to the bounds of the
S.A. estimator, if one were estimating a left tail quantile for
data generated by a χ2

1 distribution, there is nothing to prevent
this estimator from returning a negative value for an estimate,
since the method doesn’t return an actual element of the data
set.

There are several methods that use a variable amount of stor-
age, for example Krutchkoff (1986) and Dunn (1991), where
the authors employ probabilistic techniques based on the nor-
mal approximation to the binomial. While these methods have
merit, we are interested in studying methods which can be im-
plemented with a small fixed amount of storage. As a result we
will not make direct comparisons to methods utilizing variable
amounts of storage.

All of the fixed storage methods that we consider perform ac-
curately and efficiently for median estimation. Some, such as the
S.A. method and histogram based method, are well suited to han-
dle datasets of any size whereas others are restricted to datasets
with a fixed number of elements. In addition, Tierney’s S.A.
method can be easily extended to estimate arbitrary quantiles.
While Tierney’s method works well for quantiles at the center
of the distribution, the variability of the estimator increases as
the quantile moves toward the tails of the distribution. Our main
contribution comes in presenting a new method whose perfor-
mance is comparable to existing methods for quantiles in the
center of a distribution and which performs appreciably better
for quantiles in the tails of a distribution.

3. Proposed method

The proposed method keeps track of a small fraction of the
original data set (typically from 40 to 100 data points are
tracked by the algorithm for any one implementation) and uses
a scoring rule based on an estimated rank and an assigned
weight for each data point to determine which data points to
track and which data points to ignore. The assigned weights
can be viewed in two different ways. From one perspective,
each weight can be seen as a measurement of the amount of
information associated with a particular estimated rank. From
another perspective, each weight can be viewed as an estimate
of the standard deviation associated with a particular estimated
rank. The second perspective provided the inspiration for the
scoring rule used in the algorithm. After giving a brief overview
of the algorithm, we give a detailed description of certain steps
of the algorithm and give motivation for appropriate steps.

Overview of the quantile estimation algorithm

1. Sort the first m data points. Set the estimated rank, ri , for each
data point, xi , equal to the actual rank of the initial sample
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(i.e. ri = i). Set the weight, wi , for each data point to 1
(i.e. wi = 1).

2. Determine the location of the next point in the data set, x∗,
with respect to the m data points that are being tracked, and
increment the ranks of the points that are greater than the new
point, i.e. if xi > x∗, then ri = ri + 1.

3. Calculate an estimated rank for the new point; see detailed
discussion for appropriate formula.

4. Assign a weight to the new point; let

w∗ = min(ri+1 − r∗, r∗ − ri ),

where xi < x∗ < xi+1.
5. Assign a score to all of the points in the array and to the new

point,

s· =
∣∣∣∣
r· − target

w·

∣∣∣∣,

where target = n′ p, n′ is the total number of data points
observed so far and p is the proportion associated with the
pth population quantile.

6. If the maximum score of the points being tracked is larger
than the score for the new point, remove the point with the
largest score from the tracking list and insert the new point,
along with its estimated rank and weight, into the tracking
list.

7. Repeat Steps 2–6 until all elements of the data set have been
seen.

8. The final estimate of the pth population quantile is the point
in the final array with the estimated rank closest to the target
rank.

The proposed method begins by sorting the first m points
from the data set and assigning an estimated rank to each of
these points. The estimated rank is a measure of where each
point falls in relation to the other points previously observed.
The weight associated with each observation is a measure of the
amount of information associated with each estimated rank.

The estimated rank, which is assigned in Step 3, depends on
the location of the new point with respect to the points that are
being tracked. Following are the formulae used to calculate the
estimated rank for a new data point.

• If the new point is a new maximum, x∗ > xm , the new point
becomes the new maximum and the old maximum becomes
the new point. Let r∗ = rm and then let rm = rm + 1.

• If the new point is a new minimum, x∗ < x1, the new point
becomes the new minimum and the old minimum becomes
the new point. Let r∗ = 2 and then let r1 = 1.

• If the new point is just less than the maximum, xm−1 < x∗ <

xm , then

r∗ = rm−1 + rm − rm−1

1 − δ

(
1 − e−λ(x∗−xm−1)

)
, (1)

where

δ = e−λ(xm−xm−1), λ = − log(1 − q2(1 − δ))

q1(xm − xm−1)
,

and q1 and q2 are set by the researcher (as will be discussed
below).

• If the new point is just greater than the minimum, x1 < x∗ <

x2, then

r∗ = r2 + r1 − r2

1 − δ

(
1 − e−λ(x2−x∗)

)
, (2)

where

δ = e−λ(x2−x1), λ = − log(1 − q2(1 − δ))

q1(x2 − x1)
,

and q1 and q2 are, again, set by the researcher.
• If the new point falls any where else, x2 < x∗ < xm−1, then

r∗ = ri + (ri+1 − ri )
x∗ − xi

xi+1 − xi
,

where xi < x∗ < xi+1.

To illustrate these ideas, note in Fig. 1 that if a new point falls
between the current minimum and the second smallest point in
the tracking array or between the current maximum and the sec-
ond largest point in the tracking array (i.e. between x1 and x2 or
between xm−1 and xm) then we use the non-linear interpolation
method for obtaining the estimated rank of the new point. If it
falls between two other points in the tracking array (i.e. between
xi and xi+1, for 2 ≤ i ≤ m−2) then we use a linear interpolation
to estimate the rank. If the new point represents a new maximum
or minimum, we simply switch the old maximum or minimum
with the new point and assign estimated ranks accordingly. If
the new point is between the minimum and the second smallest
point in the list that is being tracked or between the maximum
and the second largest point, we use a non-linear interpolation
to estimate the rank. In all other cases we use a simple linear
interpolation to estimate the rank of the new point. We found
that as the algorithm progresses through a data set, the distance
between the maximum or minimum element of the tracked list
and the next point in the tracked list tends to become very large.
As a result, the values associated with the points being tracked
tend to contain reasonably good information about the rank for
points close to the quantile that is being estimated, but these val-
ues offer very little information about the rank of points that are
not close to this quantile. The non-linear functions, as described
in (1) and (2), are exponential curves which are designed so that
the estimated ranks quickly go to the rank associated with the
maximum or minimum element as the new point moves towards
either of these elements.

The concept of fitting an exponential curve to the tail of a
sorted sample is not a new one. Breiman, Gins and Stone (1979)
propose taking the maximum likelihood estimator of the tail
of the sample and then fitting an exponential curve with this
estimated parameter value to predict unobserved tail quantiles.
Ott (1995) discusses various methods for fitting a two-parameter
exponential curve to the tail of the data. In our approach, we use
fixed parameters for our exponential curves and force them to go
through two points: the minimum (or maximum) and the second
smallest (or second largest) point in the tracking array. The shape
of the exponential curves is determined by the parameters q1 and
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Fig. 1. Estimation of ranks

q2. The rank of the new point is then interpolated from this curve.
These non-linear functions serve as safeguards against heavy-
tailed data. If there is no heavy tailed data, the curves have little
or no effect.

The parameters q1 and q2 determine how quickly the estimated
rank goes to the rank associated with the maximum or minimum.
To illustrate, for the maximum, q1 and q2 are set so that

q1 = x∗ − xm−1

xm − xm−1

and

q2 = r∗ − rm−1

rm − rm−1
.

In practice we set q1 = 0.1 and q2 = 0.9. The reasons for these
choices are purely heuristic. Through experimentation, we have
found these values to work best for the wide range of distribu-
tions considered. The result of choosing these levels of q1 and
q2 is that if the new point were exactly equal to the next largest
value being tracked plus 10% of the distance between the largest
value and the next largest value, i.e. x∗ = xm−1 +q1(xm −xm−1),
then the estimated rank for this new point is equal to the esti-
mated rank associated with the next largest value plus 90% of the
distance between the estimated ranks associated with the largest
value and the next largest value, i.e. r∗ = rm−1 + q2(rm − rm−1).

The score, which is calculated in Step 5, can be thought of
as a ‘z-score’ for the target rank n′ p. The score for each point
could be viewed as the ‘probability’ that the target rank came
from a distribution with a mean equal to the estimated rank and
a standard deviation equal to the assigned weight. The larger the
score, the less likely it is that the target rank is similar to the
estimated rank, and the less likely that the associated point is
similar to the target sample quantile.

If a new point is ‘close’ to one of the points being tracked,
then the estimated rank of the new point will be ‘close’ to the
estimated rank of that point. When a new point is ‘close’ to a
tracked point, the associated weight will be ‘small’, reflecting
the idea that there is little new information associated with the
rank estimate of that new point. As a result, the new point’s score
will tend to be ‘large’ and more likely to be thrown out. This
makes intuitive sense since a point that is ‘close’ to a current
point will not be giving us much new information. However, if
a new point is ‘close’ to the middle of the two adjacent points
that are being tracked, then the estimated rank will tend not to
be ‘close’ to the estimated rank of one of the tracked points. In
this case the associated weight tends to be ‘large’, the associated
score tends to be ‘small’ and the new point is more likely to be
kept. Again this makes sense because a point that falls farther
away from the current points is giving us new information which
may tend to be more useful.
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4. Simulation results

In this section we present the results of four simulation stud-
ies. The first two studies (Tables 1 and 2) focus on assessing
the performance of the proposed method as compared with the
methods reviewed in Hurley and Modarres (1995), with regard
to estimation of the median. The third study (Tables 3 and 4) fo-
cus on the performance of the proposed method compared with
the S.A. method with regard to estimating a collection of differ-
ent quantiles. The fourth study (Table 5) focused on studying the
performance of the proposed method as the number of elements
being tracked is increased. All simulation studies presented here
were implemented using the C programming language using
the Microsoft Visual C++ compiler to compile the code. This
choice was made mainly for reasons of computational efficiency
since the sizes of the datasets generated were so large.

4.1. Description of studies

The first simulation study (Table 1) is a reproduction of the
study presented in Hurley and Modarres (1995) with our
proposed method included. As in their paper, we use samples of
size 50,625 and m = 60 with 1,000 replications for the standard
normal, the standard Cauchy, the chi-square with 1 degree of
freedom, and a mixture with 90% of the data coming from a
standard normal and 10% of the data coming from a normal with
mean 0 and variance 9. For the next three tables (Tables 2–4), we
used data drawn from the same distributions except that the mix-
ture had 90% of the observations drawn from standard normal

Table 1. Median comparison—50,625 observations with m = 60

Distribution Normal Cauchy χ2
1 Mixture

True median 0.00000 0.00000 0.45494 0.00000
Avg. est. Avg. est. Avg. est. Avg. est.
mse ratio mse ratio mse ratio mse ratio

Method mse∗ mse∗ mse∗ mse∗

Histogram 0.00104 0.00138 0.45580 0.00077
1.020 1.025 1.031 1.008
5.8e–05 1.4e–06 7.6e–07 6.9e–05

Stochastic 0.00024 0.00027 0.45497 −0.00004
approx. 1.007 1.017 1.008 1.012

5.7e–05 1.3e–06 2.1e–07 6.9e–05
Remedian 0.00002 −0.00054 0.45508 −0.00052

3.383 3.351 3.451 3.733
1.3e–04 1.2e–04 5.3e–05 1.6e–04

Minimax −0.02252 −0.02851 0.43690 −0.02616
79.730 78.414 148.459 80.723
2.5e–03 3.8e–03 1.6e–03 2.9e–03

Proposed 0.00022 0.00035 0.45505 −0.00010
method 0.998 0.995 0.996 0.997

5.7e–05 1.2e–07 5.8e–08 6.9e–05

Avg. est. = median estimates averaged over 1000 runs.
mse ratio = MSE for given estimator/MSE for sample quantile.
mse∗ = average squared deviation of a given estimate from sample
quantile estimate.

Table 2. Median comparison—3,748,096 observations with m = 100

Distribution Normal Cauchy χ2
1 Mixture

True median 0.00000 0.00000 0.45494 0.13959
Avg. est. Avg. est. Avg. est. Avg. est.
mse ratio mse ratio mse ratio mse ratio

Method mse∗ mse∗ mse∗ mse∗

Histogram 0.00002 −0.00001 0.45493 0.13950
1.003 0.987 1.003 0.966
3.6e–09 4.9e–09 2.3e–09 4.5e–09

Stochastic −0.00003 −0.00007 0.45489 0.13944
approx. 1.004 0.991 1.001 0.988

5.5e–10 7.1e–10 3.8e–10 6.9e–10
Remedian 0.00016 0.00007 0.45569 0.13952

3.444 3.904 5.912 4.119
1.1e–06 1.9e–06 1.4e–06 1.3e–06

Minimax 0.01346 0.01776 0.46250 0.15253
821.465 1125.343 1683.415 895.516
3.8e–04 7.6e–04 2.2e–04 4.0e–04

Proposed −0.00003 −0.00007 0.45489 0.13944
method 1.007 0.998 0.996 0.999

1.6e–10 1.9e–10 1.4e–10 2.7e–10

Avg. est. = median estimates averaged over 100 runs.
mse ratio = MSE for given estimator/MSE for sample quantile.
mse∗ = average squared deviation of a given estimate from sample
quantile estimate.

and 10% of the observations drawn from a normal with mean
10 and variance 9. In the first two studies we used five different
methods to estimate the median: S.A., remedian, histogram,
minimax and the proposed method. In order to accommodate the
restrictions on the size of the data set that can be used for both
the minimax method and the remedian method we generated
data sets with 3,748,096 elements for the second study. (It
should be noted that the with this size of a data set, the minimax
method is actually estimating the 50.44th percentile, not exactly
the median.) In the third study we used the S.A. method and the
proposed method to estimate the quantiles for p = .001, .01,
.05, .10, .25, .75, .90, .95, .99, and .999 and we generated data
sets with 10,000,000 observations. In studies 2, 3, and 4 we
used 100 replications. For the fourth study we used data that was
drawn from the standard normal and standard Cauchy densities
for the purpose of examining the effect of increasing the value
of m.

For each study and each quantity being estimated we cal-
culated the average estimate, the mean square error (MSE) of
each estimation method with regards to the population quantile
and the MSE of the sample quantile with regards to the popula-
tion quantile. The efficiency of each algorithm was assessed by
calculating the ratio of these two MSE estimates. Our motivation
for calculating this MSE ratio is to create a measure of how each
estimator’s variation compares to that of the sample quantile.
We also present a measure called M SE∗ which we define to be
the average squared deviation of the proposed estimate from the
true sample quantile. This measure differs from the usual mean
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Table 3. Arbitrary quantile comparison—10,000,000 observations with m = 100

Normal Cauchy

Method S.A. Proposed Method S.A. Proposed
Avg. est. Avg. est. Avg. est. Avg. est.
mse ratio mse ratio mse ratio mse ratio

p True mse∗ mse∗ True mse∗ mse∗

0.001 −3.0902 −3.0733 −3.0902 −318.31 −519.63 −318.57
8415.2 0.993 180928.7 1.031
7.6e–02 2.2e–08 1.5e + 06 4.7e–01

0.01 −2.3264 −2.3295 −2.3262 −31.821 −44.110 −31.808
72.86 1.001 104023.9 1.008
7.4e–05 1.8e–09 1.1e + 03 2.9e–05

0.05 −1.6449 −1.6448 −1.6448 −6.3138 −6.6253 −6.3137
0.991 0.994 10020.9 0.998
1.2e–09 2.4e–10 7.4e–01 4.7e–08

0.10 −1.2816 −1.2816 −1.2816 −3.0777 −3.0912 −3.0777
1.005 0.995 142.71 0.999
3.1e–10 1.6e–10 1.2e–03 3.2e–09

0.25 −0.6745 −0.6744 −0.6744 −1.0000 −1.0001 −1.0001
1.007 0.997 1.014 0.991
2.0e–10 6.9e–11 2.2e–09 2.0e–10

0.75 0.6745 0.6745 0.6745 1.0000 1.0000 1.0000
1.000 0.996 0.992 1.002
1.9e–10 6.3e–11 2.3e–09 1.8e–10

0.90 1.2816 1.2815 1.2815 3.0777 3.0916 3.0779
0.995 1.002 212.21 1.002
3.9e–10 1.3e–10 2.4e–03 2.7e–09

0.95 1.6449 1.6448 1.6448 6.3138 6.5340 6.3154
0.999 1.006 12337.7 0.992
1.2e–09 2.6e–10 1.0e–00 3.4e–08

0.99 2.3264 2.3261 2.3264 31.821 34.211 31.839
11.56 0.996 34137.4 0.997
1.1e–05 5.0e–09 3.6e + 02 2.5e–05

0.999 3.0902 2.9877 3.0894 318.31 1159.93 317.60
3179.5 1.088 2009247.5 1.168
3.1e–02 1.1e–06 2.2e + 07 2.8e + 00

Avg. est. = median estimates averaged over 100 runs.
mse ratio = MSE for given estimator/MSE for sample quantile.
mse∗ = average squared deviation of a given estimate from sample quantile estimate.

squared error in that we measure deviations from the sample
quantile instead of the population quantile. Our motivation for
including M SE∗ is that we want to see how closely an estimator’s
performance tracks that of the sample quantile.

In the first three studies, the proposed method only kept track
of 100 data points at any one time, or m = 100. As a result
the total storage needed then was 300 memory locations; 100
for each of the arrays used in the algorithm. In these studies,
we also allowed the S.A. and histogram methods to use initial
samples of size 300.

4.2. Results for median comparison

Here we present the results of the two median comparison stud-
ies. Table 1 gives results of the recreation of the study done by

Hurley and Modarres (1995). The results show similar results
as given by Hurley and Modarres but with the inclusion of our
proposed method. Our proposed method appears to perform as
well as or slightly better than the other methods considered.

The next median comparison study was conducted with larger
samples of size 3,748,096 and with appropriate parameter set-
tings for the various methods. The simulation results agree with
those in Table 1 (see Table 2). The minimax estimator consis-
tently displayed the worst performance of all methods. However,
this can be attributed to 2 facts. First, for the given parameter val-
ues, the estimator is actually estimating the 50.44th percentile.
Hence all estimates will have a slight positive bias. Secondly,
the height of the minimax tree is quite small, which is theoreti-
cally known to impact the performance of the minimax method.
The remedian estimator had MSE ratios of between 3 and 4.
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Table 4. Arbitrary quantile comparison—10,000,000 observations with m = 100

Chi-square Mixture

Method S.A. Proposed Method S.A. Proposed
Avg. est. Avg. est. Avg. est. Avg. est.
mse ratio mse ratio mse ratio mse ratio

p True mse∗ mse∗ True mse∗ mse∗

0.001 0.000002 −0.000223 0.000002 −3.0590 −2.9732 −3.0589
36375319.0 0.967 7758.5 1.003
5.7e–08 4.3e–17 5.7e–02 2.2e–08

0.01 0.00016 0.00016 0.00016 −2.2867 −2.2897 −2.2867
1.060 0.993 47.9 1.011
2.7e–13 9.2e–16 8.0e–05 1.6e–09

0.05 0.00393 0.00393 0.00393 −1.5933 −1.5933 −1.5933
0.997 0.997 1.006 1.002
3.6e–13 6.1e–14 2.2e–09 2.1e–10

0.10 0.01579 0.01579 0.01579 −1.2207 −1.2207 −1.2207
1.007 0.998 0.998 0.996
1.1e–12 3.4e–13 5.5e–10 1.1e–10

0.25 0.10153 0.10151 0.10152 −0.5895 −0.5895 −0.5895
1.005 1.000 1.002 0.998
1.1e–11 4.5e–12 1.8e–10 5.9e–11

0.75 1.3233 1.3233 1.3233 0.9668 0.9668 0.9668
1.014 1.000 1.007 0.994
8.8e–10 1.5e–10 3.5e–10 1.1e–10

0.90 2.7055 2.7055 2.7055 3.0509 4.0626 3.0518
0.991 0.999 5492.9 1.010
3.9e–08 8.1e–10 2.8e–00 8.2e–07

0.95 3.8415 3.8422 3.8415 10.000 9.977 9.999
4.473 0.996 1726.8 1.000
1.6e–05 2.7e–09 3.9e–02 1.3e–08

0.99 6.6349 6.5630 6.6342 13.845 13.803 13.844
4237.4 1.007 6093.2 1.011
1.0e–01 8.5e–08 1.7e–01 1.2e–07

0.999 10.828 10.115 10.821 16.979 16.472 16.976
15156.3 1.143 15490.9 1.119
5.2e–00 3.8e–05 1.9e–00 1.5e–05

Avg. est. = median estimates averaged over 100 runs.
mse ratio = MSE for given estimator/MSE for sample quantile.
mse∗ = average squared deviation of a given estimate from sample quantile estimate.

The MSE ratios for the histogram, S.A., and proposed methods
were all very close to 1 for all of the distributions. The proposed
method appears to have a slight advantage with regards to the
M SE∗ measurement. Hence for median estimation, one could
employ either the histogram, S.A., or the proposed method and
achieve comparable performance results.

4.3. Results for arbitrary quantile comparison

As mentioned earlier, for this study we only compared the S.A.
method with the proposed method. Tables 3 and 4 give results
regarding performance for estimating a wide range of quan-
tiles for the four densities under study. The differences here
are much more pronounced than in the median comparison.
To emphasize this point, consider the results for the normal

distribution with p = 0.001. The MSE ratio of the S.A. esti-
mator is 8415.2 whereas the MSE ratio of our method is 0.993.
Similar observations hold for the other quantiles and distribu-
tions considered.

Another interesting result is for p = 0.001 for the chi-
square density. The averaged estimates for the S.A. method is
−0.000223 which is not within the range of values allowed for
the chi-square density. In addition the large MSE ratio for this
quantile suggests that the S.A. method has potential problems
when estimating values near the extreme tail of a density with a
hard cut-off (as is the case here with the chi-square at zero).

The poor tail performance of the S.A. method could be im-
proved by taking a larger initial sample and thereby obtaining a
more accurate starting value. For example, in the above example
with p = 0.001 for the normal density, if instead of an initial
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Table 5. Proposed method varying m for median estimation using
10,000,000 observations

Normal Cauchy
Avg. est. mse Avg. est. mse

m ratio mse∗ ratio mse∗

40 0.000029 −0.001270
1.003 143.979
2.2e–10 3.3e-05

60 0.000023 −0.000087
0.993 3.154
5.5e–11 4.0e-07

80 0.000023 0.000001
0.997 1.000
4.8e–11 9.2e-11

100 0.000024 −0.000001
0.997 1.001
3.1e–11 5.3e-11

500 0.000024 −0.000001
1.000 1.002
4.7e–12 1.1e-11

1000 0.000023 −0.000001
1.001 1.002
2.2e–12 4.0e-12

Avg. est. = median estimates averaged over 100 runs.
mse ratio = MSE for given estimator/MSE for sample quantile.
mse∗ = average squared deviation of a given estimate from sample
quantile estimate.

sample of size 300 we increase the size to 10,000, the MSE ra-
tio decreases from 8415 to 564. For the Cauchy density with
p = 0.999, if we again allow an initial sample of size 10,000
instead of 300 the MSE ratio goes from over 2,000,000 down
to approximately 1099. These are both considerable improve-
ments, but still not close to ratios of 1. One could conceivably
continue to increase the size of the initial sample, however doing
so would introduce a new storage burden.

4.4. Results for changing the number
of points being tracked

In this section, we explore the impact of varying the value of m,
the size of the array of points being tracked. As can be seen in
Table 5, the performance of the proposed estimator as a function
of the number of data points being tracked appears to stabilize
for m = 60 or higher for the normal density and for m = 80 or
higher for the Cauchy density.

This study suggests that array sizes of 100 may be appropriate
for most cases in practice.

5. Theoretical considerations

This algorithm raises questions regarding whether the result-
ing estimator converges to the target population quantile. We
approach the convergence issue by monitoring the distance

between our estimator and the target sample quantile as new
data points are observed (see Fig. 2 for an example of a plot
of this difference for the median from a dataset drawn from the
Cauchy density).

Intuitively this figure suggests that the proposed method
should always be in some order statistic neighborhood of the true
sample quantile at any given step. Experimentation has shown
that when estimating the median the proposed method is always
within ± 3

√
m + k order statistics of the true sample median for

each step of the algorithm. Here k denotes the number of data
points that have been observed after the first m points. If the
proposed estimator always remains within this range then the
following lemma demonstrates that the estimator will converge
to the target population quantile.

Lemma 1. Let X1, . . . , Xn be a random sample from a con-
tinuous distribution function F and let 0 < p < 1. Further
assume that F is twice differentiable at ξp = F−1(p) and that
F ′(ξp) = f (ξp) > 0. Then

√
n
(
X (np+ 3√n) − X (np− 3√n)

) → 0,

as n → ∞.

Proof: Without loss of generality, we can assume np ± 3
√

n
are both integer valued indices. If they are not integer valued,
we can apply the greatest integer function. Then by Bahadur’s
representation of the sample quantiles (see Bahadur 1966 and
Serfling 1980) we have

X (np± 3√n) = ξp + p ± n−2/3 − Fn(ξp)

f (ξp)
+ O

(
n−3/4(log n)3/4

)
,

with probability 1 as n → ∞. Therefore we have

X (np+ 3√n) − X (np− 3√n) = 2n−2/3

f (ξp)
+ O

(
n−3/4(log n)3/4

)
,

and hence the result follows. �

In all of our simulations the proposed estimator has stayed
within ± 3

√
m + k order statistics of the true sample median

and we conjecture that this result will hold when the proposed
method is used for data that comes from an arbitrary continuous
distribution.

6. Discussion

We have demonstrated the ability of our method to accurately
estimate arbitrary quantiles (including tail quantiles) from an
unknown distribution. Using a wide range of quantiles and dis-
tributions we have shown performance differences between our
method and existing methods.

Among the methods discussed, the only estimators which are
easily extended to accommodate tail quantile estimation are the
sample quantile estimator, the S.A. estimator of Tierney (1983),
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Fig. 2. Sequential difference between proposed method and S.Q. for median estimation of a Cauchy sample

and the proposed estimator. The sample quantile estimator be-
comes too costly to employ as the size of the dataset becomes
large, making it unattractive or infeasible for large datasets. The
S.A. method’s accuracy is dependent upon the size of the ini-
tial sample taken for the starting value. The larger the initial
sample, the better the starting value and hence the better the
accuracy of the estimator. The proposed method’s accuracy is
dependent upon m, the size of the array of points being tracked.
The larger the array size, the more closely it approximates the
performance of the sample quantile estimator. However, based
upon our experimental results, setting m = 100 is a reasonable
choice.

When compared with the S.A. method, the proposed method
has at least three advantages over other methods. First, it returns
an actual observation as an estimate. In comparison there is
nothing to prevent the S.A. method from returning an estimate
that is outside the range of possible values for the distribution
that generated the data. Second, the proposed method performs
better than the S.A. method with regards to approximating the
sample quantile, particularly for tail quantiles. It appears that
the only way to overcome that difference in performance is to
increase the size of the initial sample for the S.A. method. A
third advantage has to do with using each method to estimate a
collection of quantiles simultaneously. The S.A. method scales
in a linear fashion with regards to computational time and storage
requirements, i.e. estimating n quantiles would take n times as
long as estimating one quantile. The proposed method could be

easily extended in such a way that it would require less than a one-
to-one increase in computational time and storage requirements.
Exploring this claim is a topic of current research.
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