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A note on optimal foldover design
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Abstract

This note provides a theoretical justi2cation for the optimal foldover plans for two-level designs, including
the regular 2s–p, non-regular, saturated and supersaturated designs.
c© 2003 Elsevier Science B.V. All rights reserved.
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Foldover is a classic technique that reverses the signs of one or more factors in the initial design
for the follow-up experiment (called a foldover design). This standard strategy can be found in
the literature. The conventional wisdom is to reverse signs for all factors. The foldover plan for
reversing only one factor was discussed by Box et al. (1978) to de-alias the speci2c factor from all
other factors. Montgomery and Runger (1996) studied foldover for resolution IV designs. Using an
exhausted search, Li and Lin (2003) and Li and Mee (2002) recently gave all optimal foldover plans
for regular two-level fractional factorial designs, in terms of the aberration criterion of the combined
design. Li et al. (2003) studied optimal foldover plans for non-regular two-level factorial designs
in terms of the generalized minimum aberration of the combined design. A theoretical justi2cation,
however, is lacking. In this note, we will provide a theoretical justi2cation for optimal foldover
design, based on uniformity criterion.

Consider a two-level fractional factorial design with n runs and s factors, denoted as
T = (t1; t2; : : : ; ts) = (tij), tij = ±1. De2ne a foldover plan as the set of factors whose signs are
reversed in the foldover design. This plan is denoted by 
= �1 · · · �s, where �i=1 if the ith column

∗ Corresponding author.
E-mail address: ktfang@math.hkbu.edu.hk (K.-T. Fang).

0167-7152/03/$ - see front matter c© 2003 Elsevier Science B.V. All rights reserved.
doi:10.1016/S0167-7152(03)00008-7

mailto:ktfang@math.hkbu.edu.hk


246 K.-T. Fang et al. / Statistics & Probability Letters 62 (2003) 245–250

of T is reversed otherwise 0. The corresponding foldover plan space then is denoted by � with 2s

possible foldover plans. For the foldover plan 
, let m=
∑s

i=1 �i. When m= s, the foldover plan is
called a full foldover plan in the statistical literature. Speci2cally, for a two-level factorial design T
with design columns, ti’s, and a given foldover plan 
, a new 2n-run and s-factor combined design
T (
) is then

T (
) =

(
t1 t2 · · · ts

(−1)�1 t1 (−1)�2 t2 · · · (−1)�s ts

)
:

Uniformity has received a great deal of attention in the recent design literature (see, for example,
Fang and Mukerjee, 2000; Fang and Lin, 2003). There are many measures of uniformity. Among
them, the centered L2-discrepancy (CD for short) has good properties (Hickernell, 1998a). The
squared CD can be expressed in the close form
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where P= {x1; : : : ; xn} is a set of n points on [0; 1)s.
For the combined design T (
) = (t∗ij) we can make the transformation from T (
) to a set of 2n

points on [0; 1)s, PT (
) = {x1; : : : ; x2n}, where xij = (t∗ij + 2)=4∈ [0; 1). Then, the CD value of T (
),
denoted by CD(T (
)), can be calculated as follows:
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)
; (1)

where c = (13=12)s − 2(35=32)s. From (1), it is clear that the value CD(T (
)) mainly concerns the
2rst n points of PT (
) and the foldover plan 
. For an initial design T , diLerent CD-values of T (
)
are given by diLerent foldover plans 
.

For regular two-level designs, Fang and Mukerjee (2000) obtained a link between CD and the word
length pattern, that can be extended to non-regular two-level designs (see Eqs. (A.1) and (A.2) in
Appendix A). We can see the minimum (generalized) aberration criterion and the uniformity criterion
in the sense of the CD are almost equivalent for two-level factorials. We have checked all designs
given in Chen et al. (1993) and found that these two criteria are consistent without any exception.
We thus de2ne such an “almost equivalent” as “A-equivalent”. Thenceforward, the optimal foldover
plan in this paper is de2ned as the foldover plan 
 such that its combined design T
 has the smallest
CD-value over �. The main advantages of the uniformity criterion are: (1) it is applicable to regular
and non-regular two-level designs and (2) it is very easy to compute.

For convenience in this paper, an E(s2)-optimal supersaturated design means that the Hamming
distance (see MacWilliams and Sloane, 1977) of any two distinct rows of the design is a constant (see
Nguyen, 1996; Tang and Wu, 1997). Following Mukerjee and Wu (1995), the Hamming distance
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of any two distinct rows of a saturated orthogonal array is also a constant. We have the following
theorem whose proof is given in Appendix A.

Theorem 1. (i) For regular 2s–p designs, the optimal foldover plan given here is A-equivalent to
an optimal foldover plan proposed by Li and Lin (2003).

(ii) For non-regular two-level factorial designs, the optimal foldover plan given here is A-equivalent
to an optimal foldover plan proposed by Li et al. (2003).

(iii) If the initial design is a two-level saturated orthogonal array or an E(s2)-optimal supersat-
urated two-level design, then the optimal foldover plan is the full foldover plan.
(iv) For 9xed m and the initial design being a two-level saturated orthogonal array or an

E(s2)-optimal supersaturated two-level design, the optimal foldover plan 
∗ is A-equivalent to the
one 
 such that N
 has the minimum generalized aberration, where N
 is the sub-design of T
consisting of s–m unchanged columns under 
.
(v) Under the full foldover plan, all initial designs with identical even-length words result in the

identical CD-value for the combined design.

Remark 1. Note that similar conclusions also hold if the wrap-around L2-discrepancy or the sym-
metric L2-discrepancy, proposed by Hickernell (1998a, b) and discussed by Fang and Ma (2001),
serves as a measure of uniformity.

Remark 2. The statement (v) indicates that if the initial design is a uniform design with even
resolution, then the resulting combined design under the full foldover plan has the lowest discrepancy.
This fact does not hold for initial designs of odd resolution. For example, consider two regular
designs, D1 and D2, both with 16 runs and seven factors. Suppose that the generating relations of
D1 and D2 are 5 = 12, 6 = 13, 7 = 234, and 5 = 12, 6 = 13, 7 = 23, with word length patterns
(0; 0; 2; 3; 2; 0; 0) and (0; 0; 4; 3; 0; 0), respectively. It is clear that both designs have resolution III and
the CD-value of D1 is less than that of D2. However, the resulting combined designs under full
foldover plan have the same generalized word length pattern (0; 0; 0; 3; 0; 0; 0) and same CD-value
0.287896.

Remark 3. It is important to note from (v) that, under the full foldover plan, diLerent initial designs
may result in the same CD-value for the combined designs. Consider, for example, two 16-run,
5-factor designs with generating relations 5 = 1234 and 5 = 12. One design is of resolution V, and
the other one is of resolution III. However, both of their combined designs under the full foldover
plan are full factorial designs.
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Appendix A. Proof of Theorem 1

Fang and Mukerjee (2000) provided the following analytic connection between uniformity and
aberration in regular two-level designs:

(CD(T (
)))2 = c +
(
9
8

)s [
1 +

s∑
i=1

Ai(T (
))
9i

]
; (A.1)

where c is de2ned in (1) and (A1(T (
)); : : : ; As(T (
))) is the word length pattern of design T (
).
From (A.1), it is clear that the minimum aberration criterion and the uniformity criterion in the
sense of the CD are A-equivalent for regular 2s–p factorials. Recall that the optimal foldover plan 
∗
proposed by Li and Lin (2003) is the one such that T (
) has minimum aberration. Thus, statement
(i) follows.

For non-regular two-level designs, Ma and Fang (2001) proved the following formula:

(CD(T (
)))2 = c +
(
9
8

)s [
1 +

s∑
i=1

Agi (T (
))
9i

]
; (A.2)

where c is de2ned in (1) and (Ag1(T (
)); : : : ; A
g
s (T (
))) is the generalized word length pattern of

T (
) (proposed by Ma and Fang, 2001; Xu and Wu, 2001). It is well known that the criterion
of minimum generalized aberration, independently proposed by Ma and Fang (2001) and Xu and
Wu (2001) is essentially identical for two-level designs. From (A.2) we can see the CD and the
generalized minimum aberration are A-equivalent for non-regular two-level factorials. Note that the
optimal foldover plans proposed by Li et al. (2003) are in terms of the generalized minimum
aberration. Therefore, statement (ii) is proved.

Let DHT(xk ; xj) and DHN(xk ; xj) be the Hamming distance between the kth and jth rows in T
and N
, respectively. The identity (1) can be expressed in terms of Hamming distances as follows:
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When DHT(xk ; xj) = � for all pairs (k; j) (k 	= j), (A.3) becomes
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where (E0(T ); E1(T ); : : : ; Es(T )) is the distance distribution of T (see Ma and Fang, 2001).
Now, it is not hard to see that (CD(T (
)))2 achieves its minimum value if and only if m = s,

which establishes statement (iii).



K.-T. Fang et al. / Statistics & Probability Letters 62 (2003) 245–250 249

From (A.4) and two formulae:
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is the Krawtchouk polynomial (see MacWilliams and Sloane, 1977), we have

(CD(T (
)))2 = c +
1
2n

[(
5
4

)s
+ (n− 1)

(
5
4

)s−�
+
(
5
4

)s−m
−
(
5
4

)s−m+�]

+
1
2

(
5
4

)�(41
40

)s−m [
1 +

s−m∑
t=1

(
9
41

)t
Agt (N
)

]
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From (A.5), it is clear that, for 2xed m, (CD(T (
)))2 achieves its minimum value is A-equivalent
to that N
 has minimum generalized aberration. Hence, statement (iv) follows.

When m= s, (A.3) becomes

(CD(T (
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It is clear that (CD(T (
)))2 depends only on even-length words of T . Statement (v) is proved.
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