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Abstract

We explore the impact of dispersion e0ects on location e0ect estimation and derive approximate joint
con2dence regions for pairs of correlated location e0ect estimates. A procedure for estimating location e0ects
in the presence of a single dispersion e0ect is recommended.
c© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

Two-level fractional factorial designs are often used in screening experiments. In these experiments,
the goal is to apply the Pareto principle of separating the vital few e0ects from the trivial many.
Many approaches have been developed to study location and dispersion e0ects when the experiment
is replicated. In unreplicated designs, there is no error term to be used for testing if we are interested
in estimating e0ects in all columns. Examples of studying location e0ects in unreplicated fractional
factorial designs include Daniel (1959, 1976), Box and Meyer (1986a), and Lenth (1989). See
Hamada and Balakrishnan (1998) for an overview and comparison of di0erent methods.

Others have studied dispersion e0ects in unreplicated fractional factorials. See Box and
Meyer (1986b), Wang (1989), Montgomery (1990), and Bergman and HynAen (1997). Pan (1999),
Brenneman and Nair (2001), and McGrath and Lin (2001a) studied the impact of unidenti2ed
location e0ects on dispersion e0ect identi2cation. What has not been given as much attention in the

∗ Corresponding author.
E-mail addresses: rnmcgra@cba.bgsu.edu (R.N. McGrath), dkl5@psu.edu (D.K.J. Lin).

0167-7152/$ - see front matter c© 2003 Elsevier B.V. All rights reserved.
doi:10.1016/j.spl.2003.10.001

mailto:rnmcgra@cba.bgsu.edu
mailto:dkl5@psu.edu


370 R.N. McGrath, D.K.J. Lin / Statistics & Probability Letters 65 (2003) 369–377

literature is how to study location e0ects in the presence of dispersion e0ects in highly fraction-
ated unreplicated designs. Grego et al. (2000) studied the impact of dispersion on normal plotting
of location e0ect estimates. Wol2nger and Tobias (1998) used a mixed model approach which is
applicable for unreplicated, but not highly fractionated designs.

In this paper, we recommend a step-by-step procedure for estimating both location and dispersion
e0ects in unreplicated 2k−p experiments. In Section 2 we study the distribution of residual sample
variances used to estimate dispersion e0ects and the correlation induced on location e0ect estimates
by the dispersion e0ect. In Section 3 we develop new location e0ect estimation and testing methods
when a dispersion e0ect is present, using an example for illustration. Finally, Section 4 provides a
recommended procedure for studying both location and dispersion e0ects in unreplicated designs.

2. Dispersion e�ect testing and induced correlation

Suppose an unreplicated n = 2k−p fractional factorial design is run. Here, the e0ect matrix, X =
(x0; x1; : : : ; xn−1) represents k factors and possibly interactions between these factors depending on
the degree of fractionation, x0=(1; : : : ; 1)′, and xj=(x1j; x2j; : : : ; xnj)′ with xij=±1, j=1; : : : ; n− 1.
Making the common assumptions (including no dispersion e0ects), we have

Yi =
n−1∑
j=0

xij
j + �i; �i ∼ N(0; �2)

with the �i’s being independent. (It is assumed that some of the 
j = 0, but these are unknown a
priori.) However, suppose column xd produces a dispersion e0ect as follows: Var(�i | i∈Md) = �2d−
and Var(�i | i∈Pd) = �2d+. Here Md = {i: xid = −1} and Pd = {i: xid = +1}. If xj and xj′ are any
pair of columns whose interaction is in column xd, then xijxij′ = xid. We will refer to these as
dispersion–correlation (dc) pairs. Let 
̂j and ˆ
j′ be the ordinary least-squares (OLS) estimators of

j and 
j′ , the regression coeMcients associated with xj and xj′ , respectively.

Box and Meyer (1986b), among others, stated that when attempting to identify dispersion e0ects,
one should 2rst identify location e0ects and study residuals from the 2tted location model. Sample
variances of the residuals from the +1 and −1 levels of a column, xd, can be studied to test
for a dispersion e0ect in that column. As these variances are not, in general, independent, their
joint distribution is rather complicated. Bergman and HynAen (1997) showed that a traditional F-test
can be used to test for dispersion in a given column under a speci2ed condition. Let ei be the
observed residual in row i from a location model. Letting s2d+ = [2=(n − 2)]

∑
i∈Pd e

2
i and s2d− =

[2=(n− 2)]
∑

i∈Md
e2i , Bergman and HynAen (1997) developed a test statistic, DBH = s2d+=s

2
d− that has

an F-distribution if the residuals are calculated from a speci2c form of location model. To form a
Bergman and HynAen (BH) model,

1. record the location model, i.e. the identi2ed location e0ects and the intercept;
2. adapt the above model, if necessary, to include the location e0ect of the column to be tested for

dispersion and the interaction of this column with each of the others already in the model.

There are n− 2g terms in this model and 2g terms left out of the model. The ei are functions of
the location e0ect estimates that are not in the BH model. In fact, they can be calculated based on
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the dc pairs. Let a dc pair of location e0ects not in the BH model be denoted j and j′ and the pair
itself be indexed by f = 1; : : : ; g. Using this notation, McGrath and Lin (2001a) showed that

s2d+ =
n

n− 2

g∑
f=1

(

̂(f)j + 
̂(f)j′

)2; s2d− =
n

n− 2

g∑
f=1

(

̂(f)j − 
̂(f)j′

)2: (1)

It can be shown from (1) that

(n− 2)s2d+
2�2d+

and
(n− 2)s2d−

2�2d−
∼ �2g independently: (2)

Under H0: �2d+ = �2d−, D
BH
d = s2d+=s

2
d− ∼ Fg;g.

The presence of one or more dispersion e0ects complicates location e0ect estimation. A single
dispersion e0ect induces a correlation among the dc pairs of location estimates. It can be shown that
the correlation of 
̂j and 
̂j′ is

�j;j′|d =
�2d+ − �2d−
�2d+ + �2d−

: (3)

This correlation has been discussed by Grego et al. (2000) and in an unpublished manuscript, Asscher
(1991). From (2), it is straightforward to show that

rd =
s2d+ − s2d−
s2d+ + s2d−

(4)

is the maximum likelihood estimator of �j;j′|d.

3. Estimation and signi�cance of location e�ects

So with formal methods for dispersion e0ect testing, we return to location e0ect estimation. We
want to answer the question “How does the fact that 
̂j and 
̂j′ are correlated in the presence of
a dispersion e0ect in column xd change their estimation and interpretation?” As all location e0ect
estimates are correlated in pairs in a BH model, we will estimate them in pairs.

With a single dispersion e0ect in column xd and xijxij′ = xid;∀i,(

̂j


̂j′

)
∼ N2

((

j


j′

)
;
1
2n

(
�2d+ + �2d− �2d+ − �2d−
�2d+ − �2d− �2d+ + �2d−

))
:

From this bivariate normal distribution, it is straightforward to show that

n(�2d+ + �2d−)
2�2d+�

2
d−

[
(
̂j − 
j)2 − 2

�2d+ − �2d−
�2d+ + �2d−

(
̂j − 
j)(
̂j′ − 
j′) + (
̂j′ − 
j′)2
]
∼ �22:

Now �2d+ and �2d− are unknown, but from (2) we have ((n − 2)=2)(s2d+=�
2
d+ + s2d−=�

2
d−) ∼ �22g. As

s2d+ and s2d− are functions of the location e0ect estimates that are not in the BH model, they are
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independent of all 
̂j and 
̂j′ which are in the model. Therefore,

R=
ng
n− 2

(
�2d+ + �2d−

s2d+�
2
d− + s2d−�

2
d+

)

×
[
(
̂j − 
j)2 − 2

�2d+ − �2d−
�2d+ + �2d−

(
̂j − 
j)(
̂j′ − 
j′) + (
̂j′ − 
j′)2
]
∼ F2;2g: (5)

Unfortunately, �2d+ and �2d− are not removed. If they were known, 100(1− �)% con2dence regions
for (
j; 
j′) could be calculated by setting R6F(1−�);2;2g. If we set 
j=
j′ =0 in (5), for a given �,
and this elliptical region includes values of 
j = 0, then the location e0ect would not be considered
active. As it does not appear an exact con2dence region is possible, we will calculate a statistic by
using �̂2d+ = (n− 2)s2d+=2g and �̂2d− = (n− 2)s2d−=2g from (2) yielding

Ṙ=
ng

2(n− 2)

[(
1
s2d+

+
1
s2d−

)
((
̂j − 
j)2 + (
̂j′ − 
j′)2)

−2
(

1
s2d+

− 1
s2d−

)
(
̂j′ − 
j′)(
̂j − 
j)

]
: (6)

Due to this substitution of unbiased estimators, Ṙ will not have an F2;2g distribution. Intuitively, an
adjustment should be made in the degrees of freedom. It can be shown that E(Ṙ)=g=(g−2), the ex-
pected value of an F·; g random variable. To see if Ṙ has an approximate F2; g distribution, simulations
were performed using g = 4; 5; 6; 7 and � = 0:10; 0:05; 0:01. For each condition, 10,000 simulations
were performed. (Simulation results are available at http://www.cba.bgsu.edu/faculty sta=/McGrath/
statprob/sims.pdf.) From these simulations, it is apparent that Ṙ :∼F2; g. Thus we will form approxi-
mate 100(1− �)% con2dence regions based on (6) by setting Ṙ6F(1−�);2; g.

Example. As an example, we look at data originally analyzed by Anderson and McLean (1974,
pp. 256–259). The experiment was a 25−1 design to study the impact of 2ve factors on an index of
“goodness” of asphalt concrete. The data are shown in Table 1. Anderson and McLean used this as
an example of how to analyze a 1

2 fraction with no intention of studying dispersion. As the main
e0ects and two-factor interactions consume all 15 degrees of freedom, they used a previous estimate
of 200 for the error mean square. Using this value and performing ANOVA, the F tests are based
on 1 and ∞ degrees of freedom. If � = 0:05 is used, four e0ects are found active: AD, AE, BD,
and DE. Fitting this location model results in a mean square error of 179.5, reasonably close to the
pre-experiment estimate of 200. Note that none of the active e0ects are main e0ects.

Table 2 shows the sample variances, DBH statistics, and associated p-values for this four location
e0ect model. Based on DBH, we see that AB and E have mildly signi2cant dispersion e0ects with
p-values of 0.0567 and 0.0424 respectively. However, a limitation of the DBH test is that it is not
applicable if multiple dispersion e0ects are present. In addition, a single dispersion e0ect inVates the
signi2cance level of null dispersion e0ects. As the DBH tests indicate there may be two dispersion
e0ects, we also apply the recently developed test of McGrath and Lin (2001b). This test is designed
for testing multiple dispersion e0ects, but can only be calculated for certain columns depending on the
location model. The results (FML) are also given in Table 1 along with approximate p-values. Note
that using FML, AB does not appear to have a signi2cant dispersion e0ect. Unfortunately, E cannot

http://www.cba.bgsu.edu/faculty_staff/McGrath/statprob/sims.pdf.
http://www.cba.bgsu.edu/faculty_staff/McGrath/statprob/sims.pdf.
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Table 1
Example e0ect matrix, responses, and ols location e0ect estimates

A B C D AB AC AD BC BD CD DE CE BE AE E y

1 1 −1 −1 −1 −1 1 1 1 1 1 1 −1 −1 −1 −1 1 13
2 1 1 −1 −1 −1 −1 −1 −1 1 1 1 1 1 1 −1 −1 54
3 1 −1 1 −1 −1 −1 1 1 −1 −1 1 1 1 −1 1 −1 44
4 1 1 1 −1 −1 1 −1 −1 −1 −1 1 −1 −1 1 1 1 49
5 1 −1 −1 1 −1 1 −1 1 −1 1 −1 1 −1 1 1 −1 13
6 1 1 −1 1 −1 −1 1 −1 −1 1 −1 −1 1 −1 1 1 14
7 1 −1 1 1 −1 −1 −1 1 1 −1 −1 −1 1 1 −1 1 18
8 1 1 1 1 −1 1 1 −1 1 −1 −1 1 −1 −1 −1 −1 85
9 1 −1 −1 −1 1 1 1 −1 1 −1 −1 −1 1 1 1 −1 41
10 1 1 −1 −1 1 −1 −1 1 1 −1 −1 1 −1 −1 1 1 73
11 1 −1 1 −1 1 −1 1 −1 −1 1 −1 1 −1 1 −1 1 79
12 1 1 1 −1 1 1 −1 1 −1 1 −1 −1 1 −1 −1 −1 17
13 1 −1 −1 1 1 1 −1 −1 −1 −1 1 1 1 −1 −1 1 82
14 1 1 −1 1 1 −1 1 1 −1 −1 1 −1 −1 1 −1 −1 58
15 1 −1 1 1 1 −1 −1 −1 1 1 1 −1 −1 −1 1 −1 10
16 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 29


̂0=42:4375 
̂A=4:9375 
̂B=−1:0625 
̂C=−3:8125 
̂D=6:1875 
̂AB=−1:3125 
̂AC=2:9375 
̂AD=9:3125 
̂BC=−2:0625

̂BD =−13:8125 
̂CD =−0:0625 
̂DE = 14:9375 
̂CE =−5:0625 
̂BE = 0:1875 
̂AE =−8:3125 
̂E = 2:1875

Table 2
Concrete experiment dispersion e0ect statistics

Column s2d− s2d+ DBH p-value FML p-value

A 52.21 7.34 0.14 0.1413
B 52.71 60.91 1.16 0.9082
C 110.43 134.36 1.22 0.8757 0.58 0.682
D 40.79 74.77 1.83 0.6310
AB 220.14 24.64 0.11 0.0567 0.12 0.134
AC 129.29 60.91 0.47 0.5523
AD 69.29 208.80 3.01 0.2513 5.56 0.223
BC 60.79 57.34 0.94 0.9629
BD 179.57 65.21 0.36 0.3502 0.48 0.588
CD 154.07 37.34 0.24 0.2748
DE 128.29 153.66 1.20 0.8478 2.61 0.483
CE 111.21 34.20 0.31 0.3586
BE 63.00 181.79 2.89 0.3292 9.59 0.119
AE 145.87 126.44 0.87 0.8792 1.11 0.937
E 5.36 93.05 17.37 0.0424

be tested using FML. However, by combining the DBH and FML 2ndings, we may be reasonably
con2dent that there is at most a single dispersion e0ect due to E. We make this assumption for the
rest of this section.
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Fig. 1. 90%, 95%, and 99% Con2dence regions (E = dispersion e0ect).

With a dispersion e0ect in E, �2E+=�
2
E− = "E , we have the following correlation pattern:

Correlation Pattern ("E ¿ 1):

I : E D : DE
A : AE AB : CD
B : BE AC : BD
C : CE AD : BC

The notation AB : CD, for example, means that 
̂AB and 
̂CD are correlated. The “active” e0ects
from the initial analysis are shown in bold. Using (4) with s2E+ = 93:05 and s2E− = 5:36, we have
rE = 87:69=98:41 = 0:89. Thus, each “active” location e0ect estimate is highly correlated with an
“inactive” estimate.

To study the location e0ect estimates in pairs, we 2t a BH model: Ŷ i = 
̂0 + 
̂ExiE + 
̂AxiA+

̂AExiAE + 
̂DxiD + 
̂DExiDE + 
̂ACxiAC + 
̂BDxiBD + 
̂ADxiAD + 
̂BCxiBC . As three pairs are left out
of the model, we construct con2dence region plots based on (6) with g = 3 and Ṙ6F(1−�);2;3.
Fig. 1 shows these plots for the four pairs in the BH model. The smallest ellipse in each plot is the
approximate 90% joint con2dence region with the mid-sized and largest ellipses being the 95% and
99% regions, respectively. If an entire ellipse is on one side of an e0ects axis, then the p-value is
less than the value of � used to create the region. For example, the 90% region for AE just barely
crosses 0 implying the joint region p-value is slightly greater than 0.10.

One drawback of using these p-values is that the joint relationship between paired estimates is
not fully considered. Looking at the A : AE region again, if we assume that A is null (i.e. =0), then
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the three intervals for AE created by slicing the region at A = 0 are all well below 0. Thus, if we
believe A is inactive, we also believe AE is active even though its joint region p-value is greater
than 0.10. In a similar manner, if we believe AC = 0, then BD is active.

The D :DE region provides another interesting interpretation. DE appears to be active as it is
signi2cant at � = 0:05 regardless of the value of D, but D does not appear to be active as all of
the ellipses cross D = 0. However, if we assume that the DE location e0ect is the value obtained
from the experiment (
DE = 14:9375, an admittedly strong assumption) and slice the ellipse at this
value, we 2nd that only the 99% interval crosses D=0. Thus, we may conclude that D is an active
location e0ect (0:016p-value 6 0:05) conditioned on DE = 14:9375. (Substituting 
̂DE = 
DE into
(6) and comparing Ṙ to an F2;3 distribution we get a conditional p-value of approximately 0.03.)
This seems reasonable in this experiment as the original four location e0ects identi2ed were all
two-factor interactions, three of which involve D.

So from the above analysis, we may conclude that there are four active two-factor location e0ect
interactions, a location e0ect due to D, and a dispersion e0ect due to E. Obviously other interpre-
tations are possible. It seems clear, however, that factor C is not as important as the others. If this
truly was a screening experiment, the next round of experimentation should include the other four
factors. If some replication is included in this future experiment, it may be possible to more clearly
identify the active location and dispersion e0ects.

4. Summary

In today’s modern industry, extremely short product life cycles demand eMcient and e0ective
use of experimentation to develop the next generation of processes and products. However, with
the limited amount of data provided in unreplicated 2k−p fractional factorial experiments (typically
16 or 32 observations), it is quite ambitious to study both location and dispersion e0ects in a single
experiment.

So if we suspect both location and dispersion e0ects may be present, how do we proceed? We
propose an approach exempli2ed in the previous section.

1. Use a standard procedure, e.g. ANOVA or normal or half-normal plots, to tentatively identify
active location e0ects and 2t a reduced model.

2. Test for dispersion e0ects. DBH may be used to test each column, assuming all other columns
do not have a dispersion e0ect. If multiple dispersion e0ects are suspected, FML may be used on
columns determined by the location model. Use the DBH and FML results to identify the dispersion
e0ects.

3. Based on step 2,

(a) If no dispersion e0ects are detected, accept that the e0ects in (1) are the active location e0ects
and stop.

(b) If a single dispersion e0ect is considered active, then create con2dence region plots for each
correlated pair that includes an e0ect from (1) and identify location e0ects now believed to be
active.

(c) If multiple dispersion e0ects are identi2ed, additional data appears to be necessary to con2dently
determine the active location and dispersion e0ects.
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Many techniques view the analysis of location and dispersion e0ects (to some extent) as separate
problems. Another approach, Engel and Huele (1996) and Lee and Nelder (1998), uses generalized
linear models. Following Lee and Nelder, we assume a normal distribution with an identity link for
the mean model. Squared residuals from this model are the response for the dispersion model using
a gamma distribution with a log link. The predicted values from the dispersion model are used as
weights for the mean model and the procedure is iterated. However, these weights have no impact
on the location estimates of dc pairs when there is a single dispersion e0ect. Thus, if a BH model
is 2t, no iteration is necessary and the location and dispersion e0ect estimates are the same as in
our approach.

By studying the correlation among location e0ect estimates induced by a dispersion e0ect, we have
shown that location e0ects should not be studied independently in the presence of dispersion. Sim-
ulation results (available at http://www.cba.bgsu.edu/faculty sta=/McGrath/statprob/sims.pdf) show
that while ignoring this correlation does not impact the power of an individual location e0ect test, it
does a0ect the joint power of pairs of tests. Most results given here are based on the assumption of
a single dispersion e0ect. The extension to multiple dispersion e0ects has been initially investigated.
The complicated correlation structure makes this a very diMcult problem and further research is
required.

In summary, we recommend that an iterative approach be used beginning by identifying location
e0ects. As shown by McGrath and Lin (2001a), failure to include a pair of location e0ects in a
model and using residuals to study dispersion can create a spurious dispersion e0ect. If an estimate
of variance is available from an external source such as previous data, the error variance from the
2tted location model can be compared to this value to see if the location model is reasonable.
Alternatively, if all factors are quantitative, center points may be added to the experiment in order
to calculate a variance estimate. Residuals from the 2tted location model are then used to identify
dispersion e0ects, then the location e0ects are revisited using joint con2dence regions.
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