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Abstract

We investigate expressions for expected item fill rate in a periodic inventory system. The typical treatment of fill rate
found in many operations management texts assumes infinite horizon, independent and stationary demand. For the case when
the horizon is finite, we show that the expected value of the actual fill rate is greater than the value given by the infinite
horizon expression. The implication of our results is that an inventory manager in a finite horizon situation who uses the
infinite horizon expression to set stocking levels will achieve a higher than desired expected fill rate at greater than necessary

inventory expense.
@© 2002 Elsevier Science B.V. All rights reserved.

1. Introduction

The item fill rate is a pervasive measure of customer
service in inventory systems and is defined as the
fraction of demand satisfied from on-hand inventory
(demand that is not backlogged or lost). Classic inven-
tory expressions for fill rate rely on several assump-
tions. First, there is an infinite horizon over which
demand is stationary. Second, if replenishment lead
times are stochastic, the probability of orders crossing
is negligible, and third, each replenishment order is
sufficient to meet the existing backlog of orders. In this
paper, we address the length of horizon effect. Specif-
ically, we investigate an order-up-to inventory system
with T periods and deterministic replenishment time
from the end of one period to the beginning of the next.
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Unmet demand can be lost or backlogged. We show
that the infinite horizon fill rate expression underes-
timates the actual expected fill rate. Furthermore, the
single period expected fill rate is always greater than
the T period expected fill rate.

We are aware of contracts in practice where re-
wards (penalties) are doled out to suppliers that ex-
ceed (fall short of) predetermined fill rate targets over
a finite review period. If such rewards and penalties
are settled on a quarterly basis the supplier and cus-
tomer should be interested in the quarterly fill rate
performance rather than the traditional infinite horizon
expression. Note that the T in our model is the num-
ber of decision points in the appropriate horizon. For
example, weekly orders for a quarterly performance
review would lead to 7 = 13.

It is common practice for inventory managers to
use the infinite horizon expression to determine stock-
ing levels. (Many operations management texts de-
scribe the procedure for using a standard Normal table
or embedded spreadsheet function to determine stock
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levels. See [2] for one example.) One implication of
our results is that an inventory manager setting stock
levels using this technique in a finite horizon setting
will have an expected fill rate greater than that pre-
dicted by the infinite horizon expression.

Other authors have investigated underlying assump-
tions of fill rate expressions. Tyworth and O’Neill
[6] investigate the sensitivity of the shape of the
lead time demand distribution in a continuous review
system. In fact, even if the demand distribution and
parameters are obtained precisely by the firm’s clair-
voyance department, there are still inaccuracies in
standard theoretical expressions. Johnson et al. [1]
discuss the error in fill rate expressions in periodic
inventory systems due to double counting of backo-
rders. This only occurs when the lead time is longer
than one period and the replenishment order is not
sufficient to cover the existing backlogged demand.
This double counting overestimates the number of
stockouts, which leads to underestimating fill rate.
Computational experiments conducted by Robinson
et al. [4] suggests that stochastic lead time models
that ignore the possibility of order crossover can
significantly overestimate the inventory shortfall and
thus underestimate the fill rate.

This paper is organized as follows. In Section 2 we
introduce notation. In Section 3 we formally state and
prove that the finite horizon fill rate lies between the
one period fill rate and the infinite horizon fill rate.
Furthermore, we develop two inequalities describing
the relationship between T and T + 1 period fill rate
expressions. Section 4 offers some conclusions and
comments on the implication of the results.

2. Notation and preliminaries

In this order-up-to system, with stock level s, s units
are on hand at the beginning of the period, demand
is observed, if demand exceeds the stock level, some
demand is backlogged, and finally a replenishment
order is placed to bring next period’s beginning stock
level up to s.

Let X, be independent and identically distributed
(iid) demand random variables. We denote the number
of units satisfied from the shelf in period ¢ by ¥, =
min(s, X, ), the smaller of demand or stock available.
Define ar(s) to be the fraction of demand satisfied

from stock over T periods. The expected fill rate for
T periods is

Y4+ Y
Eler(s)] =E [X—-—-——‘ - ”_+XT] .

We assume no specific form for demand distri-
butions, however, we do require that the random
variables be non-negative. We use the subscript 0 to
denote any random variable having the appropriate
distribution. That is, X;,...,X7 represent demand
random variables in periods 1,...,T, and X, refers to
any random variable having the same distribution as
Xi,....Xr. When demands are iid and T — oo, the
traditional fill rate expression

lim Efoar(s)]
T—oc
_, Expected units short in one period

Expected demand in one period

_EfXo]
E1Xo]

follows directly from renewal theory [3, p. 192].

3. Analytic results

Our stated goal in this work is to understand the
effect of horizon length on expected fill rate. Here, we
establish three results that do not depend on the form
of the distribution but do require that demand random
variables are non-negative, iid.

Our first result establishes that for the same distri-
bution and the same stock level, the expected fill rate
over a finite horizon is greater than or equal to infinite
horizon fill rate when the stock level is greater than
expected demand.

Theorem 1. For any finite T,

Efar(s)] > Jim Elor(s)]}

Proof. Without loss of generality, assume E(X;)=1.
We will also assume that X; has absolutely contin-
uous distribution with density function f(x) > 0 for
all x > 0. The proof of the general case can be easily
obtained from this case. We address the general case
at the end of this proof.
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For convenience, denote Sy = Z,—T=| X;, and we will
work with E[or.,] instead. Due to the 1id structure,
we have

Elorsi] = E [w] .

Xo+ Sy

Since we assumed E(X)) = 1, what we want to show
becomes that the function

hs)=E [ E(Yo)

Yo 1
Xo + St T+1
is non-negative for all s = 0.

It is seen that

RO |

AY X [
h(s):E/O x+STf(x)dx+E[ x+STf(x)ds

1 * =~
_m[/o xf(x)dx+/ sf(x)dx].

hi

Hence, the first and second derivatives of A with re-
spect to s are

oy [ p( Lt
h(s)_[ E(x+Sr T+1>f(x)dx

and

Mgy = N
h (b)_f(s)E{T—%l s+sf]'

Based on these computations, let us list our obser-
vations about A(s).

1. A(0) = h(oco) = 0. This is obvious as E[xr(0)] =0
and Efaz(oc)] =1 for all n.

2. W(s) < 0 whens > T+1. Hence, A(s) is a decreas-
ing function when s = T + 1. Since h(c0) =0, we
conclude that i(s) = 0 whens 2 T+ 1.

3. By Jensen’s inequality (If g(x) is a convex func-
tion, then E[g(X)] = g(E(X)) when the relevant
expectations exist.)

[ i ] 1 1
E = - = .
Xo+ St EXo+Sr) T+1

4. The equality holds only when P(Xp =1) = 1. This
is equivalent to saying that #'(0) > 0.

5. B(s) = 0 has at most one solution in 5. Note that
if #’'(s) = 0, then

1 1
E = .
[S-FST] T+l

6. However, the left-hand side is a strictly decreas-
ing function of s. Let us call this point s*. Hence,
we conclude 4/(s) < 0 whens < s*and #'(s) 2 0
when s = s*.

7. When s* < s, ' (s) < h'(c0) =0 and hence h(s) is
a decreasing function. Therefore, A(s) = h(o0)=0
when s = s*.

8. When s* = s, h(s) is a concave function. At the
same time, #(0) = 0 and A(s*) = 0 from point 5.
Therefore, we must have A(s) = 0 for 0 < s < 5™,

In conclusion, we have shown that A(s) = 0 for all 5.

If the distribution of X, is not absolutely continuous,
we consider X;* =X; +d¢; fori=0,1,...,7 with 6 > 0
being a constant and ¢;’s being iid exponential random
variables with mean 1, and independent of X;’s. Hence,
X+ are absolutely continuous with positive density
function over x > 0 and so the proof applies to X"
(the expectation being 1 + & does not matter). Letting
5 — 0, we obtain the result for the general case. [J

Next, we establish that for the same demand distri-
bution and the same stocking level, the single period
fill rate is greater than or equal to the T period fill rate.
We require the following lemma.

Lemma 1. Let f(x1,X2,...,x) and g(x1,X2,...,%k)
be two n-variate functions such that both f and g are
increasing or decreasing functions concordantly in x;
for fixed x\,...,xi— and Xiiy, ... Xp, I = 1,2,...,n.
Let X,,..., X be independent random variables. Then

Cov(f(Xi,-... Xk ) 9(X1, ... Xx)) 2 0.
Proof. We first prove the lemma for £ = 1. Assume

that both f and g are increasing functions of x;, we
have

{f(» - f@Hg(y) —9(z)} =0

for any y and z. This remains true if both f and g are
decreasing functions. Let ¥ and Z be two independent
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random variables with the same distribution as X;. We
have

E{S(Y) = f(ZD)He(Y) - 9(Z)} 2 0.
Simplifying the expression, we get
2AE{f(Ne(Y)} — E{f(Y)}E{g(Z)}] = 0.

That is, Cov( f(X3),9(X))) = 0.

We assume the lemma istrue fork=1,2,...,n— 1,
and show that it is also true when k = n. The result
for k = | implies

E{f(X\,X2,.... X)g(X1, Xo,o . X)X, X}
2 E{f(X.X,.... X)X, X, }
XE{g(X\, X2, . X\ X2s ... X}

Hence,

Cov( f(X1,Xa,.... X)), 9(X1, Xz, ... X))

=E[E{f(X1.X2,....X})
0. (19, CHED. &) |V, VD, ¢ 3

—E{f(X1.X2,.... X)) }E{g9(X1, X2,.... X))}

2 E(E{f(X, %, ... X)X, .. X0}
xE{g(X). X2,.... X)Xz, ..., X }]
—E{f(X\, X2, ... X))} E{g(X1. X2, ... X))}

—Cou(E{ f(X0. X .. X)X Ko},
XE{g(Xy, Xov. . . XX, . X D).

However,E{ f(X;, X2, ..., X)Xz, ..., X, }and E{g(X,,
Xa,.. . X)X, ..., X, } are obviously increasing func-
tions in each of X}, i=2,3,..., n given others. The in-
duction assumption hence works. This completes the
proof. [J

Theorem 2. For all T>1 and s> 0, we have
Elor(s)] < Elou(s)]).

Proof. Due to the iid structure, we have
TY,

Efoz(s)] = E [—S-l—] :

Hence, we have

.
, Y, Sr — TX
Elo(s) = ()] = ) _E [y‘l —T——S—T—‘} :
Let
Y,
Xi, ... Xr)= <
PSS 7) X,

and
Sy —TX,
Sr
Note f and g are both decreasing function in X, and

both increasing function in X-, ..., Xr. Hence, by the
lemma

Cov(f(X1,....X7)g(X,....XT)) = 0.

g(Xi,... . A1) =

At the same time, it is easy to see that
Elg(Xi,...,.X7r)}=0.
Hence,
E[f(Xy,....XT)g(X1,.... XT)]
=Cov( f(Xy,...,X1).9(Xi,....X7)) = 0.

This completes the proof. [

These two results establish that for the same dis-
tribution and stocking level, the T period fill rate
lies below the one period fill rate and above the in-
finite period fill rate when the stock level is greater
than expected demand. One might expect that these
expressions are monotonically decreasing with T,
Efar.1(s)] < E[ar(s)). Indeed, we conjecture that
this is true although we have been unable to prove it.
We can, however, establish two inequalities relating
E[ar+1(s)]} and E[or(s)] stated in Theorem 3.

Theorem 3. For any s > 0,

(i) TE[ar1](s) < (T + DE[ar(s)k ]
(i) (T+DE[ar,11(s) < TE[ar(s)]+E(YDELXT'],
where X1 = T'Sr.

Proof. First, we have

(T + 1,)Y1}
S7+41

Elar ()] = £ [
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(T + DY,
SE[ St ]

= [1 + T7"E[ar(s)].
This establishes (1).
Next, we write

T+1

S =T""Y 5,
j=1

where §_; = Sr;1 — X. Hence
T(T + 1) Sr4

-1
T+1 T+1

=T+ 1) s, (T+ D7) 57
j=1

Jj=1
as the arithmetic mean is greater than or equal to the
harmonic mean for positive quantities. Therefore,

T+1
[T+ 17 Sl <n |(T+ D7D ST

Jj=1
Consequently,
Elor1(9)] = EIN{(T + D)7 'S0} 71
r+1
>(T+1)™'Y E[TYSI)]
J=1
T

1
- FE b DR -1
T [T7,S; 1+ T 1E[TYlS'A]

f

(1= (T + 1) "Elar(s)]

+(T + DY 'E(Y)EXTY.

This proves (i1). U

Remark. When T is large, E(X7') ~ [E(X))]™".
Then, inequality (i1) becomes

Elar ()] < [1 = (T +1)7'1E[ar(s)]

+(T 4+ D)7 Ela ()]

At the same time, E[ar(s)] = E[ax(s)] is true at
least for s > E(X). Considering this, our conjecture
secms probable, especially for s > E(X). Note that
order-up-to levels will rarely be set below the mean.

4. Conclusion

We have investigated the effect that a finite hori-
zon has on the single item expected fill rate. We
have shown analytically that the expected fill rate for
T > 1 periods lies between the expected fill rate with
T =1 and the commonly used infinite horizon fill rate
expression.

It is important to note here that our results deal with
the expected fill rate only. While understanding the
bias in expected fill rate is important for practitioners,
the behavior of other moments of the random variable
will be important. The related paper by Thomas [5]
further investigates the effect that the finite horizon
assumption has on inventory performance.

We started this discussion by noting that several
assumptions underlying common fill rate expressions
may in fact not hold. Here, we investigated the effect of
the horizon length assumption. It is interesting to note
that potential double counting of backorders, order
crossover (for systems with stochastic lead times) and
our finite horizon results presented here all have the
same directional effect, namely that the expected fill
rate is underestimated.
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