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Abstract. A supersaturated design is essentially a fractional factorial in which
the number of potential effects is greater than the number of runs. In this
paper, E(fnop) criterion is employed for comparing supersaturated designs
from the viewpoint of orthogonality and uniformity, and a lower bound of
E(fnop) which can serve as a benchmark of design optimality is obtained. It is
shown that the existing E(s*) and ave y? criteria (for two- and three-level
supersaturated designs respectively) are in fact special cases of this criterion.
Furthermore, a construction method for mixed-level supersaturated designs is
proposed and some properties of the resulting designs are investigated.
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1 Introduction

In industrial and scientific experimental settings, scientists are constantly
faced with distinguishing between the effects that are caused by particular
factors and those that are due to random error. Often, there are a large
number of effects to be investigated while the total number of experiments is
limited because of excessive costs (e.g., with respect to money or time). With
powerful statistical software readily available for data analysis (screening and
predicting), there is no doubt that data collection (or design) is the most
important part of such problems.

*Corresponding author.
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As for the design of experiments, there has been increasing interest in the
study of supersaturated designs. A supersaturated design is essentially a
fractional factorial in which the number of potential effects is greater than the
number of runs. Satterthwaite (1959) stands as a pioneer and proposed the
idea of supersaturated design in random balanced designs. Booth and Cox
(1962) first examined this problem systematically. After then, there had been
little study on the subject of supersaturated designs until recently (e.g., Lin,
1993), except perhaps the work on the search design (see, Srivastava, 1975).
Most studies have focused on two-level supersaturated designs. These two-
level designs can be used for screening the factors in linear models. In some
situations, however, certain factors have more than two levels. It may be
undesirable to reduce the factor levels to two if it would result in severe loss in
information. Examples include (a) a categorical factor with three machine
types and (b) a continuous factor with three temperature settings. For case
(a), the three machine types should all be included in the study for the pur-
pose of screening and comparison. For case (b), if the response depends on
the temperature in a non-monotone fashion, choice of two temperature set-
tings may result that the temperature factor could not be screened out, and
thus the curvilinear relation would not be explored. In these and other sce-
narios, multi-level designs may be adopted.

The main purpose of this article is to provide a class of universally
optimal mixed-level supersaturated designs. In Section 2, design criteria for
comparing supersaturated designs are discussed. Properties of the E(fyop)
criterion from the viewpoint of orthogonality and uniformity are presented.
Especially, a lower bound of E(fyop) is obtained as a benchmark of design
optimality. A construction method for supersaturated design is proposed in
Section 3, along with the discussion of properties of the resulting designs.
Some designs are tabulated for practical use. Finally, conclusions are pro-
vided in Section 4. For the brevity of the main presentation, all proofs are
deferred to an Appendix.

2 Design criteria

Some knowledge and related notations are as follows. Throughout this paper,
let X' = (x;;) be an n x m matrix of a factorial design, x; be the ith row of X
and x/ be the jth column. Rows and columns are identified with the runs and
factors respectively. X is called a U-type design in the class % (n; q1, .. ., qm), if
it has elements 1,...,g; at ¥/ such that these g; elements appear in this column
equally often. Here ¢y, . .., gy are positive divisors of n. When some g,’s are
equal, we denote it by %(n; z;’l" -+ gf) with E;=1 k; = m. U-type designs play
the key role in the construction of uniform designs (Fang and Hickernell,
1995; Fang et al., 2000). A U-type design is called an orthogonal array of
strength 2, denoted by L,(q1,...,qm), if any two columns have all of their
factor level-combinations appear equally often. In this case,
2e1(g;—1) <n—1. When 377 ,(g; — 1) = n — 1, the design is called satu-
rated. When Z;"=1 (gj —1) > n =1, orthogonality is not obtainable and the
design is called supersaturated, denoted by S(n; g, ... ,gm). It is necessary that
no two columns of a supersaturated design are fully aliased, i.e., no column of
the design can be obtained from another by permuting levels. The following
are some criteria for comparing fractional factorial designs.
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2.1 Existing criteria for two- and three-level factorials

For a two-level design X, the two levels are commonly denoted by —1 and 1.
Let s;; be the (i, j)-element of X'X. The popular E(s?) criterion, proposed by
Booth and Cox (1962), is to minimize E(?) = Y, q;cj<n 55/ (). Its lower
bound was obtained by Nguyen (1996). Namely, =~

n*(m —n+1)
(m—1)(n-1) (1)

For three-level supersaturated designs, Yamada and Lin (1999) defined a
measure for dependency between two columns x’ and x/ by

3 (n —n/9 ’
xz(xi,x‘j) = Z (—n/g_l_, 2

up=1

E(sz) >

where n{) is the number of (u, v)-pairs in (x/, x/), and n/9 is just the average
frequency of all the nine (u, v)-pairs in (x*, x/). Then they defined a ¢riterion
for the whole design X by minimizing ave > = ¥, ;i< ¥*(¥', %) / () and
also showed a lower bound of o

2n(2m —n+1)
ave Xz 2 Wl—) (3)

2.2 Discrepancy

The uniformity criterion has gained more popularity in recent years. It has
played a crucial role in the construction of space-filling designs for computer
experiments (Bates et al., 1996; Fang and Wang, 1994). It has also been
shown to be intimately connected to many other design criteria. For example,
Fang and Mukerjee (2000) provided an analytic connection between unifor-
mity and aberration in two-level factorial designs. Recently, Liu and Hick-
ernell (2002) and Liu (2002) proposed a kind of discrepancy, called the
discrete discrepancy, to evaluate the uniformity of factorial designs with
equal-level factors. Their results show that orthogonality and uniformity are
strongly related to each other and the discrete discrepancy plays an important
role in evaluating such equal-level experimental designs. Now we modify the
discrete discrepancy to be used as a measure of uniformity of mixed-level
designs.

A discrepancy measure of uniformity can be defined by a kernel function.
Let & be a measurable subset of R™. A kernel function K(x,w) is any real-
valued function defined on & x & and is symmetric in its arguments and non-
negative definite, i.e.,

K(x,w) =K(w,x), forany x,w € ¥ and 4)
n

Za,-ajK(x,-,x,-) > 0, for any a;,a; € R, X, X € Z. (5)

ij=1

Let F, denote the uniform distribution function over . For example, if
Z ={1,...,q}, then F, just assigns probability 4~ to each member of this
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set. Let P = {z1,...,2,} C % be a set of design points and F, denote the
associated empirical distribution, where

1
Fy(x) = ;Z Lizex}-
(34

Here 2= (21,...,2n) £x = (%1,...,X,) means that z; <x; for all j. Then
given a kernel function K(x,w), the discrepancy of P (Hickernell, 1999) is
defined by

4
DPiK) = { [ K(xwlF(s) = F(eMalF00) - Fi0) |

n

= { /x K (x, w)dF, (x)dF,(w) —2; /! K(x,z)dF.(x)

5
+5 S KG, z)} . ©)

3,7'€P

Note that if the kernel X (-, -) and the design region & are given, D(P;K)
depends only on the empirical distribution F;, of P, and measures how far apart
F, is from F,. It tends to zero when F, tends to F,, and equals zero in the extreme
case when F, =F,, such as when P is the full factorial design over
Z ={1,...,q},i.e.each member of & appears once in P. So for a fixed number
of points, n, a design with low-discrepancy is preferred (Fang and Wang, 1994).

For any factorial design X € ¥(n;q1,...,qm), F={1,...,q1} x---x
{1,...,9m} comprising all possible level combinations of the m factors, F,
assigns probability (g1 X - -- X g)~! to each member of . Let

Kj(x,w)={z :f,i;‘; forx,we {l,...,q;}, a>b>0,

and

Ki(x,w) = HKj(Xj, wj), forany x,we & @)
J=1
And then K;(x, w) is a kernel function and satisfies conditions (4) and (5). The

corresponding discrete discrepancy can be used for measuring the uniformity
of mixed-level design points.

2.3 E(fwop) criterion

For any two design columns x' and x/, define

B 4 9 B n 2

Hoo =323 (0 - 2., ®
u=1 v=1 9:9;

where n{) is the number of (u, v)-pairs in (x, ¥/), and n/(g:g;) stands for the

average frequency of level-combinations in each pair of columns x’ and x/.

Here, the subscript NOD stands for non-orthogonality of the design. A crite-

rion E(fyop) is defined as minimizing
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E(fon) = > fion/(5)- 9)

1<i<j<m

It is obvious that E(fwop) =0 for an orthogonal array. Let Ay =
2721 L{sy=xy}, Where 1, is the indicator function of 4, i.e. 4 is the number of
coincidences between the two rows x; and x;. It is obvious that Ay = m. Note
that the measure E(fyop) is motivated by taking 6(x) = x and ¢(x) = x* from
the work of Ma, Fang and Liski (2000).

For the E(fyop) criterion, the following theorem gives its expression and
lower bound (in terms of Ax’s).

Theorem 1. For any design X € U(n;q1, . ..,qm),

n 2
EUNOD)=%%;'{—*’I;E+C(n,qI,...,qM) (10)
m __m2
> DEEII I | gy, ) (1)

where C(n,q1,...,qm) = 24 ~ 7Ty (Z:'_'__l ;—t + 2ol i 3’57) depends on X
only through n,qy, ... ,qm, and the lower bound of E(fyop) on the right-hand
side of (11) can be achieved if and only if A = (Xj=1n/gi—m)/(n—1) is a
positive integer and all the Ays for k # 1 are equal to .

When all the g;’s are equal to g, the theorem reduces to the following.

Corollary 1. For any design X € U(n; q™),

Fthw) 2 i (1) 551 () - (). @

and the lower bound of E(fnop) on the right-hand side of (12) can be achieved if
and only if A = m(n/q — 1)/ (n — 1) is a positive integer and all the Ays for k # 1
are equal to A. '

Based on Theorem 1 and its corollary, the E(fyop) criterion can be used as
a measure of non-orthogonality for constructing supersaturated designs and
the lower bound can be used as a benchmark of design optimality. -

2.4 The connections between E{fyop) criterion and other criteria

It is easy to see the E(s*) and ave y? criteria are in fact special cases of the
E(fwop) criterion. Thus we have the following lemma.

Lemma 1. For any design X € %(n;qi,...,qm), the three design criteria
E(fwop), E(s®) and avey? satisfy the following relations:

E(fNop)=gavex2, whenq;=3,i=1,...,m, and (13)

E(fvop) =%E(s2), when q;=2,i=1,...,m, withtwo levels — 1 and 1. (14)
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Furthermore, the lower bound of E(fwop) in (11) includes those lower bounds of
E(s*) in (1) and of ave x* in (3) as special cases, and these three forms of lower
bounds also satisfy similar relations in (13) and (14).

This lemma indicates a strong justification for using minimizing E(fvop) as a
criterion for supersaturated designs. Unlike the E(s?) and ave y?, the E(fvop)
can be used for mixed-level designs. However, the lower bound of E(fyop) in
(11) may not be obtainable. This happens when 4 = (Xmin/q;—m)/(n—1)is
not a positive integer or when it is a positive integer buf some A;,’s for k # I are
not equal to this positive integer. In this paper, we only discuss supersaturated
designs with E(fyop) achieving its lower bound and call these designs E(fyop)-
optimal supersaturated designs (for two- or three-level supersaturated designs,
they are also E(s?)-optimal or ave y*-optimal). The following analytical
expression and lower bound of the corresponding discrete discrepancy can be
easily derived.

Theorem 2. For any set of design X € U(n;q1,...,qm),

rlat(g—1)p] o™ b g~ (a\a
DX(X;Ky) = — [" . +—+— =) (15)
;13 9 " "zk,z;#(b)
rfa+ (g, —1)b] a™ n—1_,/a\
> - Mj /7 e -
>[I T e (), (16)

and the lower bound on the right-hand side of (16) can be achieved if and
only if A= (3L n/qj—m)/(n—1) is a positive integer and all the Xys
Sor k#1 are equal to A. In this case, the design is an E(fnop)-optimal
design.

We call a design X € #(n; qu, ...,qm) a uniform design under D(X; K;) if its
square discrepancy D?(X;K,) achieves the lower bound in (16). Theorem 2
leads to the equivalence between E(fyop) optimality and uniformity of any
supersaturated design X. If X is E(fyop)-optimal, then it is also a uniform
design in the sense of D(X;K;), and vice versa. -

Remark 1 Let Hy = m — Ay. This is known as the Hamming distance between
rows x; and x;, which is the number of positions where they differ. From
Theorems 1 and 2, we know that the non-orthogonality and uniformity of a
U-type design is determined by its Hamming distances. If a U-type super-
saturated design has equal Hamming distances between its rows, it is both an
E(fnop)-optimal design and a uniform design in the sense of D(X;K,) over
#(n;q1,...,9m), and this is also true on the contrary. However, when the
lower bound of E(fnop) in (11), and thus the lower bound of D*(X;K;) in
(16), is not obtainable, the Hamming distances can not be all equal. In this
case, we seeck a design whose Hamming distances distribute as evenly as
possible over #(n;q;,...,qm)-

Remark 2. The uniformity of E(s?)- and ave y’-optimal supersaturated
designs can be obtained directly based on Theorems 1 and 2, as special cases
of supersaturated designs with equal-level factors.
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3 Design construction

In this section we will present a method of constructing E(fyop)-optimal
mixed-level supersaturated designs and study the properties of the resulting
designs.

3.1 Construction method

Many E(s*)-optimal designs have been constructed (for example, Lin, 1993
and 1995; Tang and Wu, 1997; Liu and Zhang, 2000). Yamada and Lin
(1999) and Yamada et al. (1999) presented two construction methods for
three-level supersaturated designs based on ave y? criterion. It can be verified
that only the two desi§ns with 9 runs of Yamada et al. (1999) achieve the
lower bound of ave x°(also E(fyop)). Recently Fang, Lin and Ma (2000)
obtained a new class of multi-level supersaturated designs by collapsing a
U-type uniform design to an orthogonal array. Many of their designs are
E(fyop)-optimal also. The following theorem plays an important role in our
construction method of mixed-level supersaturated designs.

Theorem 3. Suppose X is a saturated orthogonal array L,(q™), where

Case (i) q is a prime power,n=¢',m= (n—1)/(q—1) and t > 2, or
Case (ii) g=2,n=4, m=4t— 1 and t > 1, then the Hamming distances
between different rows are equal to ¢"~' in Case (i) or 2t in Case (ii). That is,
the design is E(fnop)-optimal and the most uniform.

Recall that Lin (1993) provided a method of constructing two-level
supersaturated designs of size (n,m) = (2¢,41 — 2) using a half fraction of a
Hadamard matrix (HFHM). The Hadamard matrices are saturated orthog-
onal arrays with parameters satisfying Case (ii) of Theorem 3. Thus the
E(fwop) (as well as E(s?)) optimality of the resulted supersaturated designs
easily follows from Corollary 1 as the resulting designs have equal Hamming
distances from Theorem 3. ,

We next present a method of constructing E(fyop)-optimal mixed-level
supersaturated designs from saturated orthogonal arrays with parameters
satisfying Case (i) of Theorem 3. Let X be such an orthogonal array L,(q™),
the construction method can be carried out as follows:

Step 1. Choose a column from X, say the kth column (k), split the total n
rows of X into ¢ groups, such that Group i has all the n/q = ¢! level ’s in
column (k). We call this column (k) the branching column.

Step 2. Given p (2 < p < g), delete any g — p group (if g — p = 1) or groups
(if g — p > 1) of X, the remaining p groups form a mixed-level supersaturated
design S(pg"~!; p'q™!) to examine one p-level factor on the branching column
and m — 1 g-level factors on other columns.

This method can be regarded as an extension of Lin’s (1993) HFHM, and
we call it fractions of saturated orthogonal arrays (FSOA for simplicity). These
supersaturated designs are E(fyop)-optimal, as will be shown in Theorem 4.
Now let us take the L;s(4°) saturated orthogonal array as an illustrative
example. Table 1 shows the Lis(4°) design. If we take column (1) as the
branching column, then the total n = 16 rows can be split into g = 4 groups,
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Table 1. Supersaturated designs derived from L;s(4°) (using 1 as the branching column)

5(12;314%) 5(8;2'4%) Row 1 2 3 4 5
1 1 1 1 1 1 1
2 2 1 2 2 2 2
3 3 1 3 3 3 3
4 4 1 4 4 4 4
5 1 5 2 1 2 3 4
6 2 6 2 2 1 4 3
7 3 7 2 3 4 1 2
8 4 8 2 4 3 2 1

5 9 3 1 3 4 2
6 10 3 2 4 3 1
7 11 3 3 1 2 4
8 12 3 4 2 1 3
9 13 4 1 4 2 3

10 14 4 2 3 1 4

1 15 4 3 2 4 1

12 16 4 4 1 3 2

i.e., rows 1-4, 5-8, 9-12, and 13-16. Deleting any group causes the remammg
rows to form a mixed-level supersaturated design S(12; 3'4%) to examine one
3-level factor and four 4-level factors, i.e., rows 1-8 and 13-16. Deleting any
two groups causes the remammg rows to form a mixed-level supersaturated
design S(8;2'4%), to examine one 2-level factor and four 4-level factors (rows
5-12). In Table 1 we give two such designs whose designs are entitled
S(12;3!4%) and S(8;2'4%) respectively.

3.2 Properties

Section 3.1 presented the construction procedure for mixed-level supersatu-
rated designs. As for which column will be selected as the branching column
and which group or groups will be deleted from an L,(g™), we have the
following theorem which is proved in the Appendix.

Theorem 4. Let X be a saturated orthogonal array L,(q™), where ¢ > 2 is a
prime power, n=q', m = (n —1) { q—1) and t > 2. The mixed-level super-
saturated designs S(pq’ 1 ) obtained by the FSOA method are
E(fvop)-optimal and the p(2 < p < q)-level factor is orthogonal to those
g-level factors, no matter which column is selected as the branching column
and which group ls (or groups are) deleted. Furthermore, if t = 2, the g-level
factors of S(pq;p'q?) are equally correlated in the meaning of fNOD, i.e. all

Ehe ff')ODS for j#i are equal to pq—p*, and E(fwop) = p(q —p)(g — 1)/
q+

Based on this theorem, we can construct E(fyop)-optimal mixed-level
supersaturated designs by the FSOA method from any given saturated
orthogonal array L,(¢q™), where ¢ is a prime power, n=¢', m= (n—1)/
(g —1) and ¢ > 2 (choosing any branching column and any groups). Espe-
cially when ¢ = 2, the resulting design S(pg; p'q?) has two kinds of 1\{00 $
forj +# i. It is zero when one factor is the p(2 < p < g)-level, and pg — p* when
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both factors are g-level. Note that the p-level factor is an important one as it is
orthogonal to others. When ¢ > 2, the values of f}/,, are somewhat compli-
cated. This case needs further study. We are, however, able to offer the fol-
lowing theorem.

Theorem S. Let X be a saturated orthogonal array L,(q™), where ¢ > 2 is a
prime power, n=q', m=(n—1)/(q—1) and t > 2. For any mixed-level
supersaturated design S(pg'~'; p'q™ ') obtained by the FSO A method, there are
no fully aliased factors.

Saturated orthogonal arrays are available in many design books. He-
dayat, Sloane and Stufken (1999), for example, provided a systematic ac-
count of the theory and applications of orthogonal arrays. (A large number
of the saturated orthogonal arrays constructed in the book can be found at
http: //www. research. att. com/"njas/oadir/.) Using saturated
orthogonal arrays with parameters satisfying Case (i) of Theorem 3, mixed-
level supersaturated designs can be constructed by the FSOA method
described earlier. Table 2 gives a list of such designs for ¢ < 10 and ¢ =2,
with their E(fvop) and fy,, values. Also listed are the ratios of fy,, to
fHops where fio, =gqp? — p* is the maximum of fy,p’s only when two
g-level factors are fully aliased. The ratio fy,,//yop 2lso measures the
non-orthogonality among the g-level factors. Note that this ratio equals 1

Table 2. Mixed-level supersaturated designs S(pg; p'q?) obtained by FSOA for prime power
g<10

n=pq q p E(fyw) FxA ratio®
6 3 2 1.00 2 0.2500
8 4 2 2.40 4 0.3333
12 4 3 1.80 3 0.1111
10 5 2 4.00 6 0.3750
15 5 3 4.00 6 0.1667
20 5 4 2.67 4 0.0625
14 7 2 7.50 10 0.4167
21 7 3 9.00 12 0.2222
28 7 4 9.00 12 0.1250
35 7 5 7.50 10 0.0667
42 7 6 4.50 6 0.0278
16 8 2 9.33 12 0.4286
24 8 3 11.67 15 0.2381
32 8 4 12.44 16 0.1429
40 8 5 11.67 15 0.0857
48 8 6 9.33 12 0.0476
56 8 7 544 7 0.0204
18 9 2 11.20 14 0.4375
27 9 3 14.40 18 0.2500
36 9 4 16.00 20 0.1562
45 9 5 16.00 20 0.1000
54 9 6 14.40 18 0.0625
63 9 7 11.20 14 0.0357
72 9 8 6.40 8 0.0156

* ratio = f;éiou//friop
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when the two g-level factors are fully aliased and 0 when they are orthog-
onal to each other. So from the viewpoint of orthogonality, designs with
small ratios are preferred. And most designs listed in Table 2 have ratios
less than or equal to 0.25, some ratios are even less than 0.1, which means
that there are strong nearly-orthogonality among the g-level factors of the
corresponding designs. Also note that the p(2 < p < g)-level factor is
orthogonal to those g-level factors. Designs for ¢ > 10 were not listed be-
cause they are of less practical value, although they can be easily con-
structed by the FSOA method and their corresponding non-orthogonality
values can be computed straightforwardly.

4 Conclusions

We have proposed a criterion (the E(fyop) criterion) and a construction
method (the FSOA method) for mixed-level supersaturated designs. The
mixed-level supersaturated designs constructed here are optimal in terms of
the E(fwop) criterion, i.e., they are optimal not only from the viewpoint of
minimizing non-orthogonality but also from the viewpoint of space-filling
uniformity. In a factorial design, it is necessary that no two columns are fully
aliased, as we cannot use two fully aliased columns to accommodate two
different factors. In any of the newly constructed supersaturated designs,
there are no fully aliased factors and all the factors have desirable nearly-
orthogonality among them. ’
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Appendix

Proof of Theorem 1. Let N;; = (n%). For each column ¥/ of X, let Z/ = (z,)
be an n x g; matrix, where

. 1, ika,-=u, _ _ )
ziku—{o’ otherwise, k=1,...,n, u=1,...,q; (17)

and let Z = (Z',...,2Z™). From (17), it can be easily verified that Z satisfies
ZZ = (M), and

ﬁlm Mz ... Nm
gz | N El o N
le Nm2 ;’}_’Iq.
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And from the definition of f,ffop,
4 4

. 2
;VJOD_EZ((n(U) i qxq,+ n 2)

e (gi9;)

u=1 v=1 q'ql

= tr(Ny;N;i) — ‘_q
So

)= 3 (oo =32) /()

1<i<j<m

_ Drjetpi TGN ey W1 (0:95)

m(m — 1) ~ m(m—1)
_u(Z zy) -yn nte  Thmgst (@)
m(m — 1) m(m — 1) ’

as tr(Z2'2)* = (22)* = > ki1 4 and Ag = m, we obtain (10).
For a U-type design, it is obvious that

z": /l,d:in/qj—m, k=1,...,n (18)

I=1,l#k Jj=1

Then from (10) and the well known arithmetic-geometric means inequality,
(11) holds under constraint (18), and because Ay’s are integers, the
lowerbound of E(fyop) on the right hand side of (11) can be achieved
ifand only if A is a positive integer and all the A4;’s for k # [ are equal to
A ]

Proof of Theorem 2 (15) just from the definition of discrepancy D(X;K) (6)
and

Ki(xp,x1) = H K (ors, x35) H K, x1;)

Xp=Xy Xu#xi
A
= al”bm—;.u bm (b) d

where x; and x, are two rows and Ay = m. The proof of (16) is similar to that
of (11) and the last conclusion just follows from Theorem 1. |

Proof of Theorem 3 As for the existence of such orthogonal arrays, please see
Hedayat, Sloane and Stufken (1999, Theorems 3.20 and 7.5).

Case (i) From the definition of orthogonal array, E(fyop) = 0. On the
other hand, if we substitute the parameters in this theorem into the lower
bound of E(fnop) in (12), note that all the g,’s, j = 1,...,m, are equal to g
here, the lower bound is just equal to zero, that means X is E(fyop)-optimal.
So from Corollary 3, all the Ay’s for k # I are equal to m(n/q — 1)/(n — 1) =
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(@' —-1)/(g—1). As Hy = m — Ay, then we know all the Hamming dis-
tances between different rows are equal to ¢*~!.
Case (ii) The proof is similar to Case (i), we omit the details. |

Proof of Theorem 4. From Theorem 3, X has equal Hamming distances
between different rows, so deleting rows doesn’t change the Hamming dis-
tances between the remaining rows. After deleting any group or groups
according to any branching column, the resulting mixed-level design is still a
U-type design, so its E(fyop)-optimality just follows from Theorem 1. The
orthogonality between the p-level factor and other g-level factors can be easily
obtained from that of the original array.

If ¢ = 2, for any two factors there are ¢° level-combinations each occurring
once in the original array. In the mixed-level supersaturated design S(pg; p'q?)
derived from FSOA, for any two g-level factors, there are pg level-combi-
nations each occurring once and other ¢> — pg level-combinations don’t
occur. We can compute all the fy,,’s for j # i from (8), which are equal to
pq — P, the E(fyop) value can be calculated either from its definition (9) or
from the lower bound in (11) which are the same one. |

Proof of Theorem 5. We only need to consider the g-level factors. Suppose
there are two fully aliased factors, # and # (say), then there are only ¢ level-
combinations each occurring pg*~? times, the other g% — ¢ level-combinations
don’t occur. As there are ¢° level-combinations in the original factors x’ and
x/ which are orthogonal to each other, the other ¢ — ¢ level-combinations
must appear pg‘~? times also in the deleted group or groups. Therefore, we
know there are altogether ¢* x pg*~2 = pq' rows in the original array, which
contradicts the assumption that there are only ¢’ rows, as p > 2. |
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