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Abstract

Fang et al. (Technometrics 42 (2000) 237) proposed a united approach for searching
orthogonal fractional factorial designs. They conjecture an important “equivalence theorem”
between the uniformity of experimental points over the domain and the design orthogon-
ality. They showed numerically that uniformity of experimental points over the domain can
imply design orthogonality and conjecture that every orthogonal design can be obtained by min-
imizing some measure of uniformity. This paper shows that their conjecture is only true in some
special cases. c© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Factorial experiments have become important in all kinds of investigation and have
been found to be of great utility in many areas of experimentation (see, for example,
Dey and Mukerjee, 1999). A complete factorial experiment may involve a large number
of runs, however. This is particularly true when the number of factors and the number
of levels are large. Orthogonal fractional factorial designs (orthogonal designs, or OD
for short) form a major class of fractional factorial designs and have been used in
various Celds.

Let P= {x1; : : : ; xn} be a design of n runs and s q-level factors. A design P is
called an orthogonal design, denoted by Ln(qs), if all the level-combinations for any
two factors appear equally often. The OD is a special case of orthogonal arrays. An
orthogonal array of strength r and size n with s constrains, denoted by OA(n; qs; r), is
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a factorial design of n runs and s q-level factors such that all the level-combinations
for any r factors appear equally often. Obviously, a Ln(qs) is an orthogonal array of
strength two, OA(n; qs; 2).

ODs have been obtained by Bose and Bush (1952), Raghavarao (1971), Bose et al.
(1960, 1961) and Geramita and Seberry (1979), for example. Their approaches strongly
depend on profound mathematics, such as Hadamard matrices, orthogonal Latin squares,
coding theory and Cnite Celds. Fang et al. (2000, FLWZ for short) proposed a way
of searching for ODs based on the concept of uniform design. A uniform design is a
design with experimental points uniformly scattered on the domain (Fang and Wang,
1994).

A U-type design U (n; qs) is an n × s matrix with entries 1; : : : ; q in each column
such that all the entries in each column appear equally often. This is, of course, an OA
of strength 1. Let U(n; qs) be the set of U (n; qs)’s. A U-type design U∗ ∈U (n; qs)
is called a uniform design (UD) under a given measure of uniformity, denoted by
Un(qs), if it has the best uniformity over U(n; qs). For given (n; q; s) and a measure of
uniformity, the corresponding uniform design can be found using optimization tools.
If the centered L2-discrepancy (see Section 2) is used as the measure of uniformity,
FLWZ found that for many cases the uniform design Un(qs), especially with a small
number of runs, is indeed an orthogonal design Ln(qs). They further conjectured that
Un(qs) will also be an Ln(qs) in general. If the conjecture is true, both the OD and
UD can be regarded as the same type of experimental designs and we can give another
justiCcation for the UD.

This note obtains the exact conditions that their conjecture will be valid. Such an
equivalence between uniformity and orthogonality provides an additional rationale for
using the uniform design. Uniform design are widely used in applications. One reviewer
points out that:

Designs that are ‘spread out’ or ‘uniform’ are commonly used in the computer
experiments literature. The most popular are Latin hypercube designs. The rationale
for using such designs has generally been heuristic; it seems sensible to spread
points evenly throughout the design space so that one can explore a variety of
models. Also, if one is trying to locate maxima or minima, spreading observations
throughout the design space guarantees that no unobserved points in the space are
far from a point that has been observed. The connection between uniformity and
orthogonality provides an additional rationale for using designs that are uniform
in the sense deCned in this paper. Furthermore, this connection suggests that the
measures of uniformity proposed in this paper may be more sensible than others
currently popular (cf. Fang and Mukerjee, 2000 and Ma et al., 2001).

This paper is organized as follows. Section 2 introduces the centered L2-discrepancy
criterion and derives a useful quadratic form for such a criterion. Some properties of
this quadratic form are also discussed. The main results are presented in Section 3,
where we show that the FLWZ conjecture is true only if (n; q) = (qs; 2), (qs, odd),
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or (2s−1; 2), where n is the number of runs and q is the number of levels. Some
concluding remarks are given in Section 4. Throughout this paper, we use bold small
letters for column vectors and bold capital letters for matrices. The m-column vector
of 1’s (0’s) is denoted by 1m or 1 (0m or 0). The determinant of A is denoted by |A|.
The Kronecker product of two matrices=vectors is denoted by A⊗ B.

2. Centered L2-discrepancy

Let P= {x1; : : : ; xn} be a set of n points in the s-dimensional unit cube Cs = [0; 1)s.
Let Fn(x) be the empirical distribution of P and F(x) be the uniform distribution
on Cs. The centered L2-discrepancy (CL2-discrepancy for short) of P, denoted by
CL2(P), measures the diOerence between Fn(x) and F(x) by ||Fn(x) − F(x)||, where
the norm is deCned according to the following considerations: (1) CL2(P) is invariant
under reordering the points and relabeling the coordinates of the points; (2) CL2(P)
is invariant under rePections of P about the any plane xj = 0:5; (3) it considers not
only the uniformity of P over Cs, but also the projection uniformity of P.

The CL2-discrepancy is deCned by

(CL2(P))2 =
∑
u �=∅

∫
Cu

∣∣∣∣N (P; Jxu)
n

− Vol(Jxu)
∣∣∣∣
2

du; (2.1)

where u is a non-empty subset of the set of coordinate indices S = {1; : : : ; s}, |u| denotes
the cardinality of u, Cu is the |u|-dimensional unit cube involving the coordinates in
u, Jx is a rectangle uniquely determined by x, N (P; Jxu) is the number of points of P

falling in Jxu and Vol(Jxu) is the volume of the projection of Jx on Cu. The rectangle
Jx is chosen under some geometric consideration. For given x= (x1; : : : ; xs)∈Cs, let
a= (a1; : : : ; as) be the closest vertex of Cs to x. Jx is the hyper-rectangle containing x
and a, i.e.,

Jx = {y∈Cs |min(aj; xj)6yj ¡ max(aj; xj); for 16 j6 s}:
The CL2-discrepancy was proposed by Hickernell (1998) who derived an analytical
expression

(CL2(P))2 =
(

13
12

)s

− 2
n

n∑
k=1

s∏
j=1

(
1 +

1
2
|xkj − 0:5| − 1

2
|xkj − 0:5|2

)

+
1
n2

n∑
k=1

n∑
j=1

s∏
i=1

[
1 +

1
2
|xki − 0:5| +

1
2
|xji − 0:5| − 1

2
|xki − xji|

]
:

(2.2)

The CL2-discrepancy can be used as a criterion for comparing factorial designs (Fang
and Mukerjee, 2000) and detecting non-isomorphic factorial designs (Ma et al., 2001).
This is the main reason why we choose the CL2-discrepancy in this study, although
many other measures for uniformity have been proposed (see, Hickernell, 1998).
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Consider a set of lattice points P= {xk ; k = 1; : : : ; n} where xk ∈Gs;q and

Gs;q = {(i1; i2; : : : ; is)|ik = 1; : : : ; q; k = 1; : : : ; s}:
Given n; s and q, denote P(n; qs) as the set of all such P. Obviously, U(n; qs) ⊂
P(n; qs). A design P∈P(n; qs) is called a P-uniform design (P-UD for short) if it
has the smallest CL2-value in the class P(n; qs). The uniform design based on U(n; qs)
will be called U-uniform design (U-UD for short). From now on, if we do not mention
any speciCc measure of uniformity, it is under the centered L2-discrepancy. Note that
a design in P(n; qs) is a factorial design of n runs and s q-level factors and is not
necessary to be a U-type design and so does a P-uniform design.

To evaluate the CL2-value of a set P∈P(n; qs), we have to transform its q levels
into (0,1). We will use the mapping k → (2k − 1)=2k, k = 1; : : : ; q, which is common
in the literature. Other transformations, such as k → k=(q + 1), can be used. The
CL2-values may be diOerent from the formula below, but the ordering will be kept.

Denote by n(i1; i2; : : : ; is) the number of runs at the level-combination (i1; i2; : : : ; is)
in P∈P(n; qs). The CL2(P) can be expressed as

(CL2(P))2 =
(

13
12

)s

− 2
n

∑
(i1 ;:::; is)∈G

n(i1; : : : ; is)
s∏

j=1
tij

+
1
n2

∑
(i1 ;:::; is)∈G

∑
(k1 ;:::; ks)∈G

n(i1; : : : ; is)n(k1; : : : ; ks)
s∏

j=1
tijkj ; (2.3)

where

ti = 1 +
1
2

∣∣∣∣2i − 1 − q
2q

∣∣∣∣− 1
2

∣∣∣∣2i − 1 − q
2q

∣∣∣∣
2

; (2.4)

tij = 1 +
1
2

∣∣∣∣2i − 1 − q
2q

∣∣∣∣+
1
2

∣∣∣∣2j − 1 − q
2q

∣∣∣∣− 1
2

∣∣∣∣ i − j
q

∣∣∣∣ : (2.5)

Let y(P) (or y for short) be a qs-vector with elements n(i1; : : : ; is) arranged lexi-
cographically. For example, when q = 2 and s = 3, the order is n(1; 1; 1), n(1; 1; 2),
n(1; 2; 1), n(1; 2; 2), n(2; 1; 1), n(2; 1; 2), n(2; 2; 1), and n(2; 2; 2). Let b0 = (t1; : : : ; tq)′,
A0 = (tij ; i; j = 1; : : : ; q), bs =⊗s b0 and As =⊗s A0, where ⊗ is the Kronecker product.
Now we can express CL2(P) as a quadratic form of y from (2.3).

Lemma 1.

[CL2(P)]2 =
(

13
12

)s

− 2
n
b′sy+

1
n2 y

′Asy: (2.6)

3. Connections between uniformity and orthogonality

A design is called a complete design if all level-combinations of the factors appear
equally often. Any complete design is an OD and the corresponding vector of integers



C.-X. Ma et al. / Journal of Statistical Planning and Inference 113 (2003) 323–334 327

y(P) is a multiple of 1. For any factorial design P∈P(n; qs), y(P)=n can be regarded
as a probability measure over qs level-combinations. Therefore, we can extend y(P)
to be a measure on qs level-combinations, i.e. y(P) is a qs-real vector with constraint
y′1= n.

Theorem 1. Let P∈P(n; qs) be a set of n lattice points. Then;

(1) when q = 2 or q is odd; P minimizes CL2(P) over P(n; qs) if and only if
y(P) = (n=qs)1;

(2) when q is even (but not 2); P minimizes CL2(P) over P(n; qs) if and only if

y(P) =
n
qs ⊗s




1q=2−1

1 − 1
4(4q+1)

1 − 1
4(4q+1)

1q=2−1


+ n

1 − (1 − 1=(2q(4q + 1)))s

2s ⊗s



0q=2−1

1

1

0q=2−1




(3) when q is even (but not 2) and P∈U(n; qs); P minimizes CL2(P) over P(n; qs)
if and only if

y= nA−1
s bs − n

[
1′A−1

s bs

1′A−1
s 1

(
1 − s(8q2 + 2q)

8q2 + 2q − 1

)
+

s − 1

1′A−1
s 1

]
A−1

s 1

− n
q

(1′A−1
0 b0)s−1 − 1

(1′A−1
0 1)s−1

s∑
i=1

(A−1
0 1)i−1 ⊗ 1⊗ (A−1

0 1)i−1:

Especially; for s = 1; 2 we have y(P) = n=qs1.

The following properties are useful in the proof of Theorem 1.

Lemma 2.

(1) |A0|=



(

1
q

)q−1
; q is odd(

1
q

)q−1 (
1 + 1

4q

)
; q is even:

(2) b′01=

{ 13
12q − 1

12q ; q is odd;

13
12q + 1

24q ; q is even:

(3) A01− qb0 =

{
0; q is odd;

1
8q1; q is even:

(4) A−1
0 is a tridiagonal symmetric matrix. When q is odd; its diagonal elements

are (q; 2q1(q−3)=2; 2q + 1; 2q1(q−3)=2; q)′ and its all second diagonal elements
are −q. When q is even; the diagonal elements are (q; 2q1(q−4)=2; 2q + q=(2q + 1);
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2q + q=(2q + 1); 2q1(q−4)=2; q)′ and the second diagonal elements are (−q1(q−2)=2;
−q + q=(2q + 1);−q1(q−2)=2)′.

(5) A−1
0 1=




(0′; 1; 0′)′; q is odd;

2q
4q+1 (0′; 1; 1; 0′)′; q is even:

(6) 1′A−1
0 1=




1; q is odd;

4q
4q+1 ; q is even:

(7) A−1
0 b0 =

{ 1
q1; q is odd;

1
q1− 1

8q2A−1
0 1; q is even:

Proof of Theorem 1. From Lemma 1 and the Lagrange multiplier method, let

L(y; �) =
(

13
12

)s

− 2
n
b′sy+

1
n2 y

′Asy+ �(y′1− n):

The following system of equations

@L
@�

= y′1− n = 0;

@L
@y

= − 2
n
bs +

2
n2Asy+ �1= 0;

give

� =
2(1′A−1

s bs − 1)

n1′A−1
s 1

and

y= nA−1
s bs − n

1′A−1
s bs − 1

1′A−1
s 1

A−1
s 1:

When q is odd, from (3) of Lemma 2 we have bs = (1=qs)As1 and y= nA−1
s bs =

(n=qs)1: When q = 2, it is easy to Cnd

b0 =
35
32
1; A0 =

( 5
4 1

1 5
4

)
; A−1

0 =

( 20
9 − 16

9

− 16
9

20
9

)

and

bs =
(

35
32

)s

1; A−1
s bs =

(
35
32

)s

⊗s (A−1
0 1) =

(
35
32

4
9

)s

1:

By straightforward algebra, it follows that y= (n=2s)12s . When q is even, the assertion
(2) follows by a similar approach.
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(3) Denote by tk the k-order Kronecker product of a vector t. Let

L(y; �; �1; : : : ; �s) =
(

13
12

)s

− 2
n
b′sy+

1
n2 y

′Asy+ �(y′1− n)

+
s∑

i=1

(
y′Gi − n

q
1′
)

�i;

where Gi = 1i−1⊗Iq⊗1s−i, and �i (q×1 vector) satisCes 1′A−1
0 �i = 1′A−1

0 1; i = 1; : : : ; s.
Then

@L
@�

= y′1− n = 0; (3.1)

@L
@y

= − 2
n
bs +

2
n2Asy+ �1+

s∑
i=1

Gi�i = 0; (3.2)

@L
@�i

= G′
iy−

n
q
1= 0; i = 1; : : : ; s: (3.3)

(In fact, Eq. (3.3) indicate that the design is a U-type design.) From (3.2),

−2
n
A−1

s bs +
2
n2 y+ �A−1

s 1+
s∑

i=1
(A−1

0 1)i−1 ⊗ (A−1
0 �i) ⊗ (A−1

0 1)s−i = 0: (3.4)

Multiplying 1qs to both sides in (3.4),

− 2
n
1′A−1

s bs +
2
n2 1

′y+ �1′A−1
s 1

+
s∑

i=1
(1′A−1

0 1)i−1 ⊗ (1′A−1
0 �i) ⊗ (1′A−1

0 1)s−i = 0

gives

� =
2(1′A−1

s bs − 1)

n1′A−1
s 1

− s: (3.5)

Multiplying G′
k to both sides in (3.4),

− 2
n

(1′A−1
0 b0)s−1A−1

0 b0 +
2
n2 G′y+ �(1′A−1

0 1)s−1A−1
0 1

+
s∑

i=1; i �=k
(1′A−1

0 1)s−1(A−1
0 1) + (1′A−1

0 1)s−1(A−1
0 �k) = 0:

From (3.3)–(3.5),

�k =
2
nq

(1′A−1
0 b0)s−1 − 1

(1′A−1
0 1)s−1

A01+
2
n

[
1

1′A−1
s 1

− 8q2 + 2q
8q2 + 2q − 1

1′A−1
s bs

1′A−1
s 1

]
1+ 1
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Table 1
The number of level-combinations

n(1; i; j) n(2; i; j) n(3; i; j) n(4; i; j)

68 67 67 68 67 70 70 67 67 70 70 67 68 67 67 68
67 70 70 67 70 65 65 70 70 65 65 70 67 70 70 67
67 70 70 67 70 65 65 70 70 65 65 70 67 70 70 67
68 67 67 68 67 70 70 67 67 70 70 67 68 67 67 68

and

y= nA−1
s bs − n2�

2
A−1

s 1− n2

2

s∑
i=1

(A−1
0 1)i−1 ⊗ (A−1

0 �i) ⊗ (A−1
0 1)s−i

= nA−1
s bs − n

[
1′A−1

s bs

1′A−1
s 1

(
1 − s(8q2 + 2q)

8q2 + 2q − 1

)
+

s − 1

1′A−1
s 1

]
A−1

s 1

− n
q

(1′A−1
0 b0)s−1 − 1

(1′A−1
0 1)s−1

s∑
i=1

(A−1
0 1)i−1 ⊗ 1⊗ (A−1

0 1)i−1:

When s = 1; 2, from Lemma 2, y= n=qs1.

Note that Theorem 1 does not require P to be a U-type design in the Crst two
assertions. When q is odd or 2 and n is a multiple of qs, Theorem 1 shows that a
complete design is a P-uniform design for the cases of q = 2, odd q and even q only
for s = 1; 2. For these cases the conjecture is true. P is complete. The conjecture in
the case of even q and s ¿ 2 is more complicated. First, a P-uniform design is not
necessary a U-type design. For example, when n = 1088; q = 4 and s = 2, the n(i; j)
elements of the P-uniform design are given by

N ≡ (n(i; j)) =




68 67 67 68

67 70 70 67

67 70 70 67

68 67 67 68


 :

Second, if the design P is a U-type, the assertion (3) shows that the complete design
for s = 1; 2 is a U-uniform design and orthogonal design. Third, the conjecture is not
true for the cases of even q and s ¿ 2. For example, the case of n = 4352; q = 4; s = 3,
the n(i; j; k) elements of the P-uniform design given in Table 1 show that the design
is U-type, but not orthogonal.

Note that calculation of the CL2-value for any complete design is a rather easy
task.
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Theorem 2. For a complete design P in P(n; qs) with n = rqs runs where r is a
positive integer;

[CL2(P)]2 =
(

13
12

)s

−
(

13
12

− 1
12q2

)s

; if q is odd ;

=
(

13
12

)s

− 2
(

13
12

+
1

24q2

)s

+
(

13
12

+
1

6q2

)s

; if q is even

which is independent of r.

Proof. As P is complete, it follows y(P) = r1qs . From Lemma 1 we have

[CL2(P)]2 =
(

13
12

)s

− 2
n
r ⊗s (b′01) +

1
n2 r2 ⊗s (1′A01):

When q is odd, from (2) and (3) of Lemma 2 we have

2
n
r ⊗s (b′01) =

2
n
rqs
(

13
12

− 1
12q2

)s

= 2
(

13
12

− 1
12q2

)s

and

1
n2 r2 ⊗s (1′A01) =

r2

n2 (qb′01)
s =
(

13
12

− 1
12q2

)s

:

The assertion follows immediately. The assertion for the even case can be proven in
a similar manner.

When a lattice design P is not complete, does the conjecture still hold? Note that
[CL2(P)]2 =

∑
u �=∅Iu(P)2, where Iu(P) = I|u|(Pu); Pu is the projection of P onto Cu

and

Is(P)2 =
∫

Cs

(
N (P; Jx)

n
− Vol(Jx)

)2

dx:

Obviously, the Is(P)2 can be considered as a measure of uniformity and can be ex-
pressed as a similar formula to (2.2) and (2.6), respectively

Is(P)2 =
(

1
12

)s

− 2
n

n∑
k=1

s∏
j=1

(
1
2
|xkj − 0:5| − 1

2
|xkj − 0:5|2

)

+
1
n2

n∑
k=1

n∑
j=1

s∏
i=1

[
1
2
|xki − 0:5| +

1
2
|xji − 0:5| − 1

2
|xki − xji|

]

=
(

1
12

)s

− 2
n
f ′s y+

1
n2 y

′Esy; (3.6)
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where fs = ⊗s f0; Es = ⊗s E0; f0 = (f1; : : : ; fq)′; and E0 = (eij; i; j = 1; : : : ; q) with

fi =
1
2

∣∣∣∣2i − 1 − q
2q

∣∣∣∣− 1
2

∣∣∣∣2i − 1 − q
2q

∣∣∣∣
2

;

eij =
1
2

∣∣∣∣2i − 1 − q
2q

∣∣∣∣+
1
2

∣∣∣∣2j − 1 − q
2q

∣∣∣∣− 1
2

∣∣∣∣ i − j
q

∣∣∣∣ :
Similar to Lemma 2 we have the following results:

(1) |E0|=



0; q is odd;(
1
q

)q−2
1

4q2 ; q is even;

(2) E01− qf0 =

{
0; q is odd;

1
8q1; q is even:

(3) When q = 2; E0 = 1=4I2; Es = 1=4sI2s ; f0 = 3
321; fs = ( 3

32 )s1; and

Is(P)2 =
(

1
12

)s

− 2
(

3
32

)s

+
1

n24s y
′y: (3.7)

Based on the measure of uniformity Is(P) we have

Lemma 3. Let P be a lattice design in P(n; 2s).

(1) If n = r2s is a multiple of 2s; then P minimizes Is(P) over P(n; 2s) if it is
complete; in this case the minimum Is(P)2 is 1=n22s + ( 1

12 )s − 2( 3
32 )s.

(2) If n ¡ 2s; then P minimizes Is(P) over P(n; 2s) if there are no duplicates at any
level-combination; in this case the minimum Is(P)2 is 1=n22s + ( 1

12 )s − 2( 3
32 )s. As

a consequence; the components of y(P) are n 1’s and (2s − n) 0’s.

Proof. From (3.7) we have

Is(P)2 =
(

1
12

)s

− 2
(

3
32

)s

+
1

n24s [(y− r1)′(y− r1) + 2ry′1− r21′1]

=
(

1
12

)s

− 2
(

3
32

)s

+
1

n24s [(y− r1)′(y− r1) + 2rn − r21′1]

that achieves its minimum at y= r1 and the Crst assertion follows.
As I 2

s (P) is a linear function of y′y=
∑

(i1 ;:::;is)∈Gn2(i1; : : : ; is) from (3.7), and∑
n2(i1; : : : ; is)¿

∑
n(i1; : : : ; is) = n;

Is(P) achieves its minimum at P with components of y(P) being 1 or 0. The assertion
follows.

Theorem 3. Let P be a set in P(n; 2s) with n = 2s−1 and s¿ 3. Then P is a U-
uniform design if and only if it is an orthogonal array OA(n; 2s; s − 1).
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Proof. Note

(CL2(P))2 =
∑

|u|¡s;u �=∅
Iu(P)2 + Is(P)2:

Su>ciency: If the design P is an OA(n; 2s; s − 1), its projection onto any |u|-
dimensional space with |u|¡ s is a complete design and its Iu(P) achieves its minimum
from Lemma 3. Furthermore, the components of y(P) are diOerent from each other
and Is(P) achieves its minimum from Lemma 3. Thus, P is a U-uniform design.

Necessarity: Suppose that P is a U-uniform design. Its projection onto any |u|-
dimensional space with |u|¡ s must be a complete design, otherwise we can Cnd
another design (for example, take an OA(n; 2s; s−1)) such that the latter has a smaller
CL2-value than P from Lemma 3. The orthogonality of P follows.

Theorem 3 indicates that the conjecture is true when q = 2; s¿ 3 and n = qs−1.
However, deCning a new measure of uniformity as

[CL2; t(P)]2 =
∑

0¡|u|6t
Iu(P)2;

we have

Theorem 4. A U-uniform design Un(qs) under CL2; t ; where t ¡ s; n is a multiple of
qt and q equals 2 or q is odd; is an orthogonal array OA(n; qs; t); if the latter exists.

The proof of this theorem is based on the following Lemma whose proof is similar
to that of Theorem 1.

Lemma 4. Under the assumption of Theorem 1; when q = 2 or q is odd; P minimizes
Is(P) over P(n; qs) if and only if y(P) = (n=qs)1.

4. Conclusion and discussion

In this paper, we have shown that the conjecture proposed by FLWZ is true if the
lattice design is complete and the number of levels is 2 or odd or if the lattice design
has n = 2s−1 runs with each factor having 2 levels. The conjecture is also true for even
q and s = 1; 2. The conjecture is not true when the design is complete with even number
of levels (with the exception of 2) and s ¿ 2. In fact, all the above cases produce OA
of strength s or s− 1. So the question is: is there a discrepancy function that yields an
OA of strength 2? The answer in this note is yes — the function CL2; t(P) with t = 2.
We also show that the conjecture is true in the cases of q = 2 or q odd, if we choose
CL2; t as the measure of uniformity.

The conjecture also opens a number of further research problems. First, there are
many useful measures of uniformity in the literature (see Hickernell, 1998). We might
choose another measure such that a close relationships between orthogonality and uni-
formity can be obtained. Second, Ma and Fang (1998) proposed a new concept of
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uniformly orthogonal design: a design that is both orthogonal and uniform (under a
given measure of uniformity). They found that the uniformly orthogonal design has
good properties in confounding and estimation. A further study on uniformly orthogo-
nal designs is currently under investigation by the authors.
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