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We examine a stochastic capacity-planning problem with two resources that can satisfy demand for two services. One of
the resources can only satisfy demand for a specific service, whereas the other resource can provide both services. We
formulate the problem of choosing the capacity levels of each resource to maximize expected profits. In addition, we
provide analytic, easy-to-interpret optimal solutions, as well as perform a comparative statics analysis. As applying the
optimal solutions effectively requires good estimates of the unknown demand parameters, we also examine Bayesian
estimates of the demand parameters derived via a class of conjugate priors. We compare the optimal expected profits
when demands for the two services follow independent distributions with informative and non-informative priors, and
demonstrate that using good informative priors on demand can significantly improve performance.
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Introduction

Capacity planning is an inherently difficult problem due to

demand uncertainty, particularly in the service sector,

because services often cannot be inventoried. As an example,

consider the decision of determining how many single and

double rooms to build for a hotel expansion project. Once

the additional rooms of each type have been built, the hotel

has to rely on the existing rooms to satisfy the daily

fluctuations in demand. (It is practically impossible to build

new rooms on a daily basis to perfectly match demand with

capacity.) Recent increased customers’ expectations for high

service levels, as well as opportunities for substitution among

the available resources (eg a customer requesting a single

room can stay in a double room) complicate further the

problem of planning for the right amount of capacity before

demand materializes. Moreover, even when a manager is

faced with a well-defined capacity planning problem, for

which theoretically optimal solutions can be obtained,

applying these solutions in practice requires the estimation

of unknown parameters of the demand distribution. For this

reason, we examine a stochastic capacity planning problem

from both of these perspectives: deriving optimal solutions

and estimating the unknown demand parameters.

We consider a problem with two resources and two

products where demand for one of the products can be

satisfied by either resource. We derive the expected-profit-

maximizing capacity levels for general demand distributions

and show that they correspond to modified ‘critical fractile’

ratios. These modified critical fractiles are similar to the ones

derived for the classical single resource, single-period news-

vendor model, but they also take into account the possibility

of satisfying some demand using either of the two resources.

We also investigate the impact of changes to the input and

demand parameters via a comparative statics analysis, which

highlights results that would have been difficult to predict

otherwise. Finally, we compare the estimation of the

unknown demand parameters via classical and Bayesian

approaches.

A common practice when solving the capacity planning

problem is to substitute sample estimates for the population

parameters in the demand distribution. It is likely, however,

that prior information regarding the distribution of the

demand parameters is available from various sources, such

as industry trends, customer surveys, expert opinions, etc.

Ideally, one could use this prior information to derive better

estimates for the demand parameters than those obtained

from the standard sample estimates, and to generate a

distribution of maximum profits, rather than a single

expected profit value. A powerful method for encoding

prior knowledge through subjective probabilities into the

decision process is to use the Bayesian theory. In fact, in

some cases (eg the normal demand case to be discussed

here), classical estimates are actually Bayesian estimates with

respect to certain non-informative priors. Hence, employing

Bayesian estimates with informative priors could improve

the decision-making process, especially if the noninformative

priors are considered unlikely to be true. As modern

computing power becomes inexpensive, applying the Baye-

sian paradigm in practice is not only feasible but also

important. In their recent book, for example, French and
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Smith1 cited various real-world applications of Bayesian

theory in diverse industries. In addition, many Bayesian

applications have recently been developed in the marketing

and economics literature (see for example, Fong and

Bolton,2 Pammer et al,3 Fong et al,4 and DeSabo et al5).

In this paper, we demonstrate how we can quantify the value

of incorporating prior information in a stochastic capacity

planning setting with product substitution.

The remainder of this paper is organized as follows. First

we provide a brief literature review. Then we present the

model formulation, derive analytically optimal solutions,

and perform a comparative statics analysis on the optimal

solution. Next, the Bayesian procedures that we employ are

discussed. Numerical work, with which we compare the

conventional sample estimation approach with a Bayesian

approach that assigns informative priors on the demand

parameters, is then presented. The final section summarizes

our findings and concludes.

Related work

There are two research streams related to this work: single-

period capacity planning problems for multiple, substituta-

ble resources (see Sethi and Sethi6 for a review), and single-

period stochastic inventory models for multiple, substituta-

ble products (see Bassok et al7 for a review). The works of

Harrison and Van Mieghem,8 Netessine et al9 (stochastic

capacity planning models), Bassok et al,7 and Parlar and

Goyal10 (single-period inventory models) provide standard

formulations that are closely related to ours. All of these

authors, however, focus on providing conditions for

optimality and investigating the properties of the optimal

inventory policy, but do not provide easily interpretable

analytic solutions, nor perform a comparative statics

analysis. In contrast, by focusing on a two-product, two-

resource setting, we are able to provide fairly simple

equations that the optimal capacities must satisfy, as well

as interpret these equations based on the classic single-

product newsvendor model. In addition, unlike most of the

papers in the aforementioned literature, with the exception

of Hill,11 we consider the aspect of estimating the demand

parameters when prior information is available. Hill employs

conjugate priors in the context of a standard newsvendor

problem and demonstrates the value of Bayesian estimation

for a single unknown parameter of three different demand

distributions. Similarly, we investigate the effects of para-

meter estimation on expected profits in the two-resource,

capacity-planning setting.

In contrast to the lack of Bayesian applications for single-

period inventory models, the application of Bayesian theory

to estimate demand parameters of multiperiod inventory

models has been well studied (see Azouri,12 for a recent

literature review, and Bradford and Sugrue13 for a two-

period application). Most multiperiod inventory models,

however, focus on the single-resource, single-product case,

and typically obtain optimal Bayesian policies via stochastic

dynamic programming formulations. In addition, most of

these papers ignore the issue of lost sales, and do not

consider the fixed costs associated with acquiring resources.

While multiperiod settings may be appropriate in certain

business environments, there are cases for which single-

period inventory or capacity planning models, such as ours,

are more appropriate; consider for example a case for which

the planning horizon is too long to allow for repeated

updates (as in our hotel expansion example). Thus, our

interest is in integrating a Bayesian estimation procedure

with a single-period, two-resource, capacity planning model.

In addition to single-period inventory models, revenue

management models that focus on optimal stopping rules

are somewhat related with this work (for a recent review of

revenue management research see McGill and Van Ryzin14).

This similarity stems from the fact that identifying the

optimal booking limit for discount passengers (ie the optimal

stopping rule) is based on a formula qualitatively similar to

the single-period newsvendor result. However, even though

research papers by Bodily and Weatherford,15 Brumelle

et al,16 and Ladany17 consider two-resource revenue

management problems with some notion of substitution (ie

allowing customers to upgrade) or Bayesian updating, the

assumptions as well as the focus of these papers are

significantly different from ours, and thus we do not review

them further here; to illustrate, Brumelle et al assume that

there is a positive probability that a customer denied a

discount fare will upgrade to a full fare, whereas we (and

capacity planning problems in general) do not account for

such a probability, but instead consider the shortage cost of

not satisfying all demand, and allow for upgrades only if

there is excess capacity.

Capacity planning model with substitution

Assumptions and model structure

Consider a monopolist offering two services (products) at

fixed prices pi via two resources. Resource type 2 can only be

used to satisfy demand for service 2, whereas resource type 1

can be used to satisfy either type of demand. That is,

demand for service type 2 can be upgraded, but demand for

service type 1 cannot be downgraded.

Given this structure, the monopolist must choose the

capacity level Ti for each resource i, i¼ 1, 2, to satisfy

demand during a given time horizon (eg the hotel manager

decides on the number of single and double rooms available

in her hotel within the next 3 years). Note that this decision

must be made before the monopolist observes demand. For

each unit of type i capacity the firm acquires, it incurs a fixed

cost Gi, even if that unit is not used to satisfy demand. The

firm also incurs a variable cost vi, for every unit of type i

capacity it uses to satisfy demand.
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After the monopolist buys capacity for each resource type,

customers arrive randomly during the fixed time horizon and

place their orders. Customers must either be served within

their respective periods of arrival or be turned away. If the

firm is unable to serve a customer by the available capacity,

it must compensate that customer. In other words, the firm

internalizes the cost of not satisfying demand by paying a

shortage cost of ci, for each unit of unmet demand.

Given the above input parameters (price pi, fixed Gi and

variable vi capacity costs, and shortage cost ci) and the firm’s

capacity choices T1 and T2, the actual demand values

realized during the assumed time horizon determine the

actual amount of profit (or loss) for the monopolist.

However, since the monopolist will determine the actual

profit only at the end of the time horizon, she must decide on

the amount of capacities to acquire based on her expected

profits. Thus, the monopolist’s objective is to determine the

optimal level of capacity of each resource type T1 and T2 so

as to maximize expected profits.

To calculate expected profits, the monopolist must have

some knowledge of the nature of randomness for the

demands. We assume that, irrespective of how customers

arrive during the given time horizon, the probability

distribution function of the total demand for each service

type is known. Moreover, we assume that the demands Di,

i¼ 1, 2, for the two services are independent and continuous
random variables, with probability density functions fi and

cumulative distribution functions Fi, respectively.

We also assume the following with respect to our input

parameters: (1) all input parameters (pi, vi, ci, and Gi) are

strictly positive, (2) pi�vi40, (3) v14v2, so that it is not

optimal to substitute resource 1 for resource 2 whenever

there is excess amount of resource 2 available, (4)

p1�c14p2�c240, so that it is more profitable to satisfy

unmet demand of type 1 rather than of type 2, and (5)

p2�v140, so that substitution of resource 2 from resource 1

when satisfying demand of type 2 is profitable.

Model formulation

We can now formally express both the net revenue and cost

associated with choosing capacities T1 and T2. The net

revenue function, denoted by g(T1, T2), equals

gðT1;T2Þ ¼ ðp1 � v1ÞminðD1;T1Þ þ ðp2 � v2ÞminðD2;T2Þ

þ ðp2 � v1Þmin½ðD2 � T2Þþ ; ðT1 �D1Þþ �

The last term of g(T1, T2) describes the net revenue

generated from a customer requesting service 2 whose

demand is satisfied by resource 1. Note that this substitution

is made only when there is excess amount of resource 1 (ie

T14D1) and excess demand for service 2 (ie D24T2).
Moreover, note that g(T1, T2) is a random variable since D1
and D2 are also random variables.

The cost function, denoted by h(T1, T2), is

hðT1;T2Þ ¼ c1ðD1 � T1Þþ þ c2ðD2 � T2 � ðT1 �D1Þþ Þþ
þ G1T1 þ G2T2

The first term of h(T1, T2) expresses the shortage cost of not

satisfying demand for service 1 from resource 1. The second

term of h(T1, T2) expresses the shortage cost of not satisfying

demand for service 2 given that resource 1 may also be used

to satisfy some of that demand. In other words, if T14D1
then there is extra type 1 capacity, equal to T1�D1, which
can be used to satisfy type 2 demand when D24T2. Thus,
the shortage cost associated with type 2 demand is incurred

only if the quantity D2�T2�(T1�D1)þ is non-negative.

The net profit for a given demand realization (D1, D2) is

p(T1, T2)¼ g(T1, T2)�h(T1, T2), and thus the firm’s problem
is to

max
T1;T2

fED1;D2 ½pðT1;T2Þ�g ¼max
T1;T2

fED1;D2 ½gðT1;T2Þ

� hðT1;T2Þ�g
ð1Þ

Note that the term min[(D2�T2)þ , (T1�D1)þ ] in g(T1, T2)
equals D2�T2 if (D2�T2oT1�D1 and D2�T240) and

equals T1�Dl if (T1�DloD2�T2 and T1�Dl40). Similarly,

the term (D2�T2�(T1�D1)þ )þ in h(T1, T2) equals D2�T2 if
(T1�Dlo0 and D2�T240) and equals D2�(T1�D1)�T2 if
(T1�D140 and D2�(T1�D1)�T240).

Thus, we can express the expected profit ED1;D2 ½pðT1;T2Þ�
function as follows:

ED1;D2 ½pðT1;T2Þ�

¼
X2
i¼1

ðpi � viÞ
Z Ti

0

xfiðxÞdx þ
Z 1

Ti

TifiðxÞdx
� �

þ ðp2 � v1Þ
Z T1

0

Z 1

T1 þT2�x
ðT1 � xÞf2ðyÞdy

� ��
f1ðxÞdx

þ
Z T1

0

Z T1 þT2�x

T2

ðy� T2Þf2ðyÞdy
� �

f1ðxÞdx
�

� c1
Z 1

T1

ðx� T1Þf1ðxÞdx

� c2
Z T1

0

Z 1

T1 þT2�x
ðy þ x� T1 � T2Þf2ðyÞdy

� �
f1ðxÞdx

�

þ
Z 1

T1

Z 1

T2

ðy� T2Þf2ðyÞdy
� �

f1ðxÞdx
�
� G1T1 � G2T2

ð2Þ

Proposition 1 If the firm can make positive profits, the

optimal capacity levels maximizing the expected profit in

expression (2) are found by solving the following two

equations:

F1ðT1Þ ¼
ðp1 � v1 þ c1Þ � G1 þ ðp2 � v1 þ c2ÞP½0oD1oT1 and D24T1 þ T2 �D1�

p1 � v1 þ c1

ð3Þ
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F2ðT2Þ ¼
ðp2 � v2 þ c2Þ � G2 � ðp2 � v1 þ c2ÞP½0oD1oT1 and D2oT1 þ T2 �D1�

ðp2 � v2 þ c2Þ � ðp2 � v1 þ c2ÞP½0oD1oT1�
ð4Þ

with respect to T1 and T2.

Proof. See Appendix.

Interpreting the optimal solution

By carefully looking at expressions (3) and (4), we can draw

an analogy between the optimal two-recourse capacity levels

and the optimal single-period newsvendor capacity level. Let

us consider, for a moment, resource i, for i¼ 1, 2, in
isolation, as in the single-period newsvendor model. Then,

the optimal capacity for resource i is derived by setting the

critical fractile ratio (pi�viþ ci�Gi)/(pi�viþ ci) equal to

Fi(Ti), where pi�viþ ci�Gi is the marginal gain of selling

one extra unit of capacity and Gi is the marginal loss of one

unused unit of capacity. The optimal solutions to the two-

resource, two-service capacity planning problem have similar

interpretations. To better understand these interpretations,

let us first explain the meaning of two probability expres-

sions: (1) P[0oD1oT1 and D2oT1þT2�D1] is the prob-
ability of the event that there is excess type 1 capacity, which

can be used to satisfy all of excess type 2 demand (ie no

customers are left unserved), whereas (2) P[0oD1oT1 and
D24T1þT2�D1] is the probability of the event that there is
excess type 1 capacity, which can all be used to satisfy excess

type 2 demand, and there is extra type 2 demand left

unserved. Keeping these meanings of the above probability

expressions in mind, we now return to the two-resource

problem, and express the marginal gain of one extra unit of

type 1 capacity that can be used to satisfy demand as

Gain1 ¼ðp1 � v1 þ c1Þ � G1 þ ðp2 � v1 þ c2Þ

�P½0oD1oT1 and D24T1 þ T2 �D1�

Observe that (p2�v1þ c2) is multiplied by the probability of
having extra type 1 capacity (since T14D1) and extra type 2
demand, which cannot be satisfied by resource 2 alone, or

even by all the excess type 1 capacity (since

D24T1þT2�D1). In other words, the marginal gain of

one extra unit of capacity for resource 1 equals the

corresponding single-resource marginal gain, plus the

marginal gain associated with satisfying demand for service

2 from recourse 1, when excess type 1 capacity is surely

needed.

The marginal loss of one extra unit of unsold type 1

capacity equals

Loss1 ¼G1 � ðp2 � v1 þ c2Þ

�P½0oD1oT1 andD24T1 þ T2 �D1�

That is, the fixed cost G1 is not considered a complete ‘loss’ if

recourse 1 is used to satisfy demand for service 2. Thus, the

optimal amount of capacity for resource 1 satisfies

F1(T1)¼Gain1/(Gain1þLoss1), which has the same intuitive
structure as the critical fractile of the single-resource

newsvendor model.

Similarly, the marginal gain of one extra unit of type 2

capacity that can be used to satisfy demand equals

Gain2 ¼ðp2 � v2 þ c2Þ � G2 � ðp2 � v1 þ c2Þ

�P½0oD1oT1 and D2oT1 þ T2 �D1�

In other words, the marginal gain for resource 2 consists of

the corresponding single-resource marginal gain, adjusted

downwards by the marginal gain associated with satisfying

all excess type 2 demand by excess type 1 capacity (rather

than by type 2 capacity). The marginal loss of one extra unit

of unsold type 2 capacity equals

Loss2 ¼G2 � ðp2 � v1 þ c2Þ

�P½0oD1oT1 and D24T1 þ T2 �D1�

In other words, one extra unit of type 2 capacity implies

a loss of G2 only if the firm could not have used all

of the excess type 1 capacity to satisfy all of the

excess type 2 demand. Observe that Gain2þLoss2¼
(p2�v2þ c2)�(p2�v1þ c2){P[0oD1o T1 and D2oT1þT2�
D1]þP[0oD1oT1 and D24T1þT2�D1]}¼ (p2�v2þ c2)�
(p2�v1þ c2)P[0oD1oT1], which equals the denominator

of expression (4). Therefore, the optimal amount of

capacity for resource 2 satisfies F2(T2)¼Gain2/(Gain2þ
Loss2), which is again similar to the single-resource

newsvendor model.

Comparative statics analysis

In the previous subsection we enhanced our understanding

of the structure of the optimal policy based on a marginal

analysis interpretation of the optimal expressions, (3) and

(4), as in the single-resource newsvendor model. In this

subsection, as commonly done in the literature (eg

Agnihothri et al18), we further our insights on the behavior

of the optimal solution, by performing a comparative statics

analysis with respect to the model input and demand

parameters. Unfortunately, deriving closed-form solutions

from expressions (3) and (4) is not feasible even for fairly

simple demand distributions, such as the uniform. Therefore,

we perform our analysis numerically. We assume indepen-

dent normal distributions for the demands of the two service

types, because the normal distribution is so often employed

in practice, and is also relatively easy to handle mathema-

tically. However (with one exception we report in the section

Impact of changes to the demand parameters), our conclu-

sions also hold for other symmetric two-parameter distribu-

tions (such as the Student’s t-distribution). Table 1

summarizes the parameter values for the base case we

considered in our numerical work.
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Note that customer type 1 is willing to pay a higher price

for resource type 1 but also expects to be compensated a

higher value if her demand cannot be satisfied. Moreover,

note that resource type 1 is more expensive as it has higher

fixed and variable costs. In Table 2 we report the impact on

T1 and T2 of changes to the input or demand parameters.

We also evaluate and report the impact on the average

percentage of type 1 capacity used to satisfy type 2

demand. We refer to this percentage as the substitution

rate and denote it as S12, where S12 � E½ðT1 �D1Þ
1ðD1oT1;D24T1þT2�D1Þ þ ðD2 � T2Þ1ðD1oT1;T2oD2 oT1 þT2�D1Þ�=
T1¼ð1=T1Þð

R T1
0 ðT1�xÞf1ðxÞð

R1
T1 þT2�xf2ðyÞdyÞdxþ

R T1
0 f1ðxÞ

ð
R T1 þT2�x
T2

ðy� T2Þf2ðyÞdyÞdxÞ: The results in Table 2 pro-
vide a number of interesting insights, which we discuss next.

Impact of changes to the input parameters. Table 2

illustrates that (with the exception of profits) the directions

of change for the optimal decision variables T1 and T2
when considering small increases in price or shortage cost

are the same (ie other than the profit column, the first two

rows of Table 2 are the same). Similarly, the directions of

change for T1 and T2 when considering small increases in

the variable or fixed capacity cost are the same (see third

and fourth rows of Table 2). Let us first consider increases

on the fixed or variable capacity costs. As expected, when

the fixed (G1) or variable (v1) capacity cost for resource 1

increases, the firm should optimally decrease type 1

capacity and increase type 2 capacity, while also decreasing

the substitution rate S12. Analogously, as v2 and G2
increase, both T1 and S12 increase while T2 decreases. In

both cases, of course, expected profits decrease.

Turning to changes in price or shortage cost, Table 2

shows that when all other parameters remain the same, and

the price p1 of resource 1 increases (implying that type 1

customers are now more valuable), the firm should optimally

increase its type 1 capacity. Interestingly, when p1 increases,

not only should the optimal type 1 capacity increase but type

2 capacity should also optimally decrease. To explain this

last, somewhat unexpected result, recall that even though

price has increased, the demand distribution remains the

same. Therefore, when type 1 capacity increases, we may

have excess type 1 capacity more often, which can then be

used to satisfy demand for service type 2. To put it

differently, since the demand distribution remains constant,

random demand realizations would not affect the mean

demand, but would now be satisfied from higher levels of

type 1 capacity, implying a higher frequency of realizing

leftover type 1 capacity. Therefore, as p1 increases, the firm

should not only increase T1 but at the same time decrease T2,

thereby increasing the substitution rate S12. To give one

example of the magnitude of these optimal adjustments, we

report the impact of a 50% increase in price or variable

capacity cost v1 from the base-case scenario we considered in

Table 1: a 50% increase in p1 implies a 4.6% increase in T1, a

2.0% decrease in T2, a 56% increase in profits, and a 35.3%

increase in the substitution rate S12, whereas a 50% increase

in v1 implies a 2.8% decrease in T1, a 4.1% increase in T2, an

11.3% decrease in profits, and a 34.7% decrease in the

substitution rate S12.

The comparative statics results for increases in p2 are

somewhat different from those for increases in p1, because

resource 2 cannot be used to satisfy type 1 demand. From

Table 2 we see that as p2 increases, and service 2 becomes

more valuable, both types 1 and 2 capacities should

optimally increase to ensure better service for type 2

customers. Interestingly, we also find that as p2 increases,

T2 increases enough to make the optimal substitution rate

S12 decrease.

We can now apply arguments similar to the ones we

employed for increases in price to explain what happens to

the decision variables as shortage cost increases. As the

shortage cost c1 of resource type 1 increases, it becomes more

important to the firm to satisfy demand for service type 1,

implying, as with increases in p1, that capacity for resource

type 1 should optimally increase, capacity for resource type 2

should decrease (because, as before, there may be extra type

1 capacity to use for type 2 demand), and the substitution

percentage should increase. Similarly, as c2 increases, both

T1 and T2 increase while S12 decreases.

Impact of changes to the demand parameters. As we see

from Table 2, changes in the mean demand of one of the

resources do not affect the optimal capacity choice for the

other resource, whereas changes in the standard deviation

of one of the resources affect the capacity choices for both

resources. Even though the first result is not necessarily

counterintuitive, it is somewhat surprising. Before looking

at Table 2, for example, we may have expected that when m2
increases, both T1 and T2 should increase, or that when m1

Table 1 Sample data

Input parameters Demand parameters

Resource pi ci Gi vi mi si

1 9 3 2 2 130 22
2 7 2 1 1 150 25

Table 2 Comparative statics

T1 T2 S12 p T1 T2 S12 p

p1 þ � þ þ p2 þ þ � þ
c1 þ � þ � c2 þ þ � �
v1 � þ � � v2 þ � þ �
G1 � þ � � G2 þ � þ �

m1 þ 0 � þ m2 0 þ 0 0
s1 þ � þ � s2 þ þ þ �
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increases, T2 may decrease. However, we find that an

increase in m2 only affects T2, but leaves both T1 and S12
unchanged. In contrast, as s2 increases, the optimal values
of both capacity types are affected; in fact, when s2
increases, the optimal values for all three variables (T1, T2,

and S12) should optimally increase. Similarly, when the

standard deviation s1 of type 1 demand increases (while the
mean remains the same) both capacities are affected, with

T1 and S12 increasing, and T2 decreasing. To verify whether

these results are specific to the normal distribution, we

compared them with the corresponding results for t-

distributed, independent demands. We found that, as with

the normal distribution, increases in m2 do not affect T1 and
S12, and that changes to the standard deviation of either

resource do affect the optimal capacity choices of both

recourse types. Unlike the normal distribution case,

however, we did observe a slight decrease in T2 when m1
increased. We, therefore, conclude that the impact of

changes on the mean demand of one resource is distribu-

tion specific, and thus may or may not affect the optimal

capacity choice of the other resource.

In summary, our comparative statics analysis provided us

with a better understanding of how the optimal capacities

should be adjusted when the problem parameters change.

One interesting finding, for example, is that when type 1

capacity increases (as a reaction to type 1 demand being

more profitable, or type 2 demand being more variable), type

2 capacity should also be adjusted downwards. This finding

is of course linked with our independent demands assump-

tion. If demands are positively correlated, for example, then

we may see that increases in p1, or s1, may not necessarily
imply a decrease in T2. Our results also suggest the

importance of applying accurate estimates for the demand

distributions. Particularly, we found that changes in the

mean or standard deviation of demand may imply notable

differences in expected profits; for example, a 10% increase

in the mean of type 1(2) demand from the base level of

130(150) we considered, implies a 5%(3%) increase in

profits. Therefore, in the next section we discuss how one

could employ an improved estimation method for the

demand parameters before calculating the optimal capacity

choices.

Bayesian updating for the two-resource capacity planning

model

So far we focused on maximizing the expected profit

function shown in expression (1). We provided analytic

solutions for this problem via Equations (3) and (4), which

hold for any two independent and continuous probability

distribution functions. In practice, demands are often

assumed to be normal with a given mean and variance.

For example, if we denote by zi(x) the probability density

function of a normal distribution with mean mi and standard

deviation si, that is, ziðxÞ ¼ 1=ð
ffiffiffiffiffiffi
2p

p
siÞe�ð1=2Þ½ðx�miÞ=si �2 , i¼ 1,

2, and by Zi( � ) the corresponding cumulative distribution
function, then the optimal capacity levels are determined by

the following relationships:

Z1ðT1Þ ¼
ðp1 � v1 þ c1Þ � G1 þ ðp2 � v1 þ c2Þ

R T1
0 ½1� Z2ðT1 þ T2 � xÞ�z1ðxÞdx

p1 � v1 þ c1

ð5Þ

Z2ðT2Þ ¼
ðp2 � v2 þ c2Þ � G2 � ðp2 � v1 þ c2Þ

R T1
0 Z2ðT1 þ T2 � xÞ�z1ðxÞdx

ðp2 � v2 þ c2Þ � ðp2 � v1 þ c2Þ½Z1ðT1Þ � Z1ð0Þ�
ð6Þ

In order to solve these equations we must first estimate the

means and variances of the normal distributions. Obviously,

the estimation of the unknown parameters is critical when

maximizing the expected profit function. Typically, the

sample mean
.
Xi and the sample variance Si

2/(ni�1) (where Si2
denotes the sum of squared errors and ni the sample size) are

used to estimate the true demand parameters. However, this

traditional estimation approach may not be effective under

certain circumstances. For example, traditional estimation

would provide only a single value for the maximum expected

profit, whereas a Bayesian approach would provide a sample

distribution of maximum profits so that one can assess the

effect of demand estimation on the potential maximum

profit. In addition, it is possible that demands are not

stationary and have some or all of their parameters varying

with time. Are there better estimates for the parameters of

the demand distributions that should be used in such cases?

In particular, should managers strive to incorporate prior

information on the demand parameters when addressing the

capacity planning problem? To investigate such questions,

we next present how Bayesian theory can be employed for

two different demand scenarios.

Normally distributed demands case

Assume that demands are normally distributed with mean mi
and standard deviation si, that is, that DiBN(mi, si), i¼ 1, 2.
Instead of using the sample mean and sample variance to

estimate the population parameters, we could employ

Bayesian estimates incorporating existing prior information.

A common class of priors for the mean and variance of

normal distributions (see Fong and Ord19) is

mi �tð2ai;mi; gibi=aiÞ and s2i � IGðai; biÞ;
i ¼ 1; 2; all independent

ð7Þ

where t denotes the Student’s t-distribution, IG denotes the

inverse gamma distribution (so that ui¼ 1/si2 is Gamma-
distributed with density f ðuiÞ ¼ uai�1i baii expð�uibiÞ=GðaiÞ,
and ai, bi, gi, and mi are constants; these constants are
specified based on subjective beliefs/expert opinions regard-
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ing the demand parameters, and not necessarily based on

observed data. For example, referring back to our hotel

expansion setting, if the hotel manager knows of a change in

the population demographics that would increase demand

by a certain percentage in the next few years, he would

incorporate this information into his beliefs for the prior

distribution of the demand parameters, and specify ai, bi, gi,
and mi accordingly (see the section Numerical results for a

specific example of how to determine these four constants).

Even though we employ conjugate priors in this paper, in

practice more realistic, non-conjugate priors can also be

handled by using advanced computational approaches such

as Markov Chain Monte Carlo methods (see Gilks et al20).

Note that the prior of (mi,si
2) in expression (7) is equi-

valent to the normal-inverse gamma conjugate prior given

by mijs2i � Nðmi; si
ffiffiffiffi
gi

p Þ, and si
2BIG(ai, bi). Thus, the con-

ditional density of mi given (si
2,x) is Nððgini �XXi þ miÞ=

ð1 þ giniÞ; si
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gi=ð1 þ giniÞ

p
Þ, and the marginal posterior

density of si
2 is IG(aiþ ni/2, biþSi2/2þ ( �XXi�mi)2/2(giþ 1/ni)),

which implies that the Bayesian estimates for mi and si
2 are

m̂mi ¼
ðgini �XXi þ miÞ
ð1 þ giniÞ

ð8Þ

ŝs2i ¼
bi þ S2i =2 þ ð �XXi �miÞ2=ð2ðgi þ 1=niÞÞ

ai þ ni=2� 1
ð9Þ

Note that when bi¼ 0, ai ¼ 1
2
, and gi-N, then m̂mi- �XXi

and ŝsi-Si
2/(ni�1). In other words, the traditional sample

estimates of the mean and variance are indeed Bayesian

estimates with respect to a non-informative prior.

Thus, we are interested in comparing expected profits

when using parameter estimates with informative priors (m̂mi,
ŝsi), or non-informative priors ( �XXi, Si

2/(ni�1)). To summarize,
assuming that the true demand distribution is normal (we

refer to this case as the normally distributed demands

(NDD) case), we want to compare the following two

estimation scenarios when maximizing expected profit:

Scenario NDD-NIP: Substitute simple sample estimates (ie

Bayesian estimates with a non-informative prior (NIP)) for

the mean and variance of the normal demand distributions

in the expected profit expression (2). In other words,

substitute �XXi and Si=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðni � 1Þ

p
for mi and si, respectively,

in Equations (5) and (6).

Scenario NDD-IP: Substitute the Bayes estimates of the

informative priors (IP) for the mean and variance (see

expression (7)) in the expected profit expression (2). In other

words, substitute m̂mi and ŝsi and for mi and si, respectively, in
Equations (5) and (6). We present numerical results for these

two demand scenarios in the section Numerical results.

t-Distributed demands case

In the previous subsection we assumed that demands follow

a stationary normal distribution. In certain cases, however, it

is possible that the demand distributions are non-stationary.

We consider a special non-stationary demands case here, in

which the true demands are t-distributed, DiBt(2ai, mi, 2bi),
i¼ 1, 2; this case occurs when the means of normally

distributed demands remain constant, but the variances are

assumed to vary with time and follow an inverse gamma

distribution. In other words, we assume that Dij|sijB
N(mi, sij) and sij

2BIG(ai, bi), where the subscript j¼ 1,y,

ni denotes the current time period.

Given this class of t-distributed true demands, and using

the same class of conjugate priors that we employed in the

previous subsection, the predictive distribution of future

demand conditional on existing data X for service type i (for

any time period j4ni) is Di|XBt(2aiþ ni, ~mmi, ~ssi2), where the
location parameter ~mmi, and the scale parameter ~ssi

2 are given

as follows:

~mmi ¼
ðgini �XXi þ miÞ
ð1 þ giniÞ

ð10Þ

~ss2i ¼
½ð1 þ giniÞð2bi þ S2i Þ þ nið �XXi �miÞ2�½1 þ gi þ gini�

ð2ai þ niÞð1 þ giniÞ2

ð11Þ

We refer to this case as the t-distributed demands (TDD)

case, and so we want to compare the following two

estimation scenarios when maximizing expected profit:

Scenario TDD-NIP: Use a normal distribution to

approximate the distribution of each demand and substitute

sample estimates for the mean and variance of the normal

demand distributions in expression (2). In other words,

substitute �XXi and Si=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðni � 1Þ

p
for mi and si, respectively, in

Equations (5) and (6).

Scenario TDD-IP: Use the predictive distributions

t(2aiþ ni, ~mmi, ~ssi
2), t¼ 1, 2. In other words, use this t-

distribution with location and scale estimates ~mmi and ~ssi in
Equations (3) and (4).

For both the NDD and the TDD cases, we next compare

the use of informative and non-informative priors by (i)

simulating random samples from the true distributions, (ii)

deriving optimal capacity decisions based on these samples,

and (iii) comparing expected profits for each scenario.

Numerical results

Our main motivation in numerically comparing the various

demand scenarios described in the previous section is to

verify and quantify the value of using informative priors on

the demand parameters for our capacity planning problem.

Our purpose is not to perform a large simulation study, but

rather to illustrate that good (not perfect) prior information

can be valuable and can improve performance when making

capacity decisions under uncertainty. We also give a specific

example of how the parameters of the common class of

priors introduced in the previous section can be calculated.
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Method description

A detailed pseudoalgorithm for the method we use to

compare the estimation scenarios is shown in the appendix.

We should emphasize that the Bayesian approach we

described in the previous section is based on the joint

posterior distribution of mi and si for both the NDD and the

TDD cases. Thus, one can generate samples from the

posterior distribution of {mi, si}, and calculate the corre-

sponding optimal values for the capacities {T1, T2} for each

sample; therefore, one can generate a sample distribution for

{T1, T2} and a corresponding sample distribution for

maximum expected profits. This approach can provide the

decision maker with much more information on profits than

when using classical estimation, where only one value of

maximum expected profit can be generated. In our

numerical results, however, for simplicity, we only consider

the posterior mean and variance and evaluate the corre-

sponding expected profit (see the algorithm described in the

appendix).

To give a specific numerical example, let us first consider

the normally distributed demands case, and let us assume

that the true mean demand for service 1 is m1¼ 130 and the
true variance is s1

2¼ 222¼ 484. Let us consider a decision
maker who believes that the average demand is

E[m1]¼ m1¼ 130, give or take 20 (ie Stdev[m1]¼ 20), and that
the mean variance is E[s1

2]¼ s1
2¼ 484, give or take 225 (ie

Stdev[s1
2]¼ 225). In other words, the decision maker has

good subjective information (because her beliefs regarding

the average demand E[m1] and average variance E[s1
2] are

accurate), but not perfect information (because she also

assigns prior demand distributions around the values of

E[m1] and E[s1
2]).

Given these prior beliefs, the values for the parameters of

the conjugate priors a1, b1, g1, and m1 can be derived as

follows. We have assumed that s1
2BIG(a1, b1); thus, the

mean E[s1
2]¼ b1/(a1�1) and the standard deviation

Stdev½s21� ¼ ðb1=ða1 � 1ÞÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða1 � 2Þ

p
. Solving these two

equations for a1 and b1 yields a1¼ 2þ (E[s12]/Stdev[s12])2
and b1¼ (a1�1)E[s12]. Substituting E[s1

2]¼ 484 and

Stdev[s1
2]¼ 225 in these expressions we get a1¼ 6.63 and

b1¼ 2724.
To calculate the value of g1 as a function of a1 and b1, we

note that if a random variable is t-distributed with k degrees

of freedom, location parameter m, and scale parameter s2,
t(k, m, s2), then its standard deviation is

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½k=ðk� 2Þ�

p
s.

Thus, since we assume that m1Bt(2a1, m1, g1b1/a1), see
expression (7), we have that Stdev½m1� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2a1=ð2a1 � 2Þ

p
�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

g1b1=a1
p

which implies that g1¼ (Stdev[m1])2(a1�1)/b1).
Therefore, substituting the values of a1 and b1 in the

expression for g1 yields g1¼ 0.83. Finally, the location

parameter m1 is set equal to E[m1] som1¼ 130. Summarizing,
given the prior beliefs regarding the average mean and

average variance, the demand parameters for service type 1,

(a1, b1, g1, m1)¼ (6.63, 2724, 0.83, 130). Given these

parameter values, let us assume that a random sample of

size n1¼ 5 is drawn from the normal distribution N(m1,
s1)¼N(130, 22), which produced the sample estimates

ð �XX1;S1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn1 � 1Þ

p
Þ ¼ ð125; 15Þ. Then from Equations (8)

and (9), the Bayesian estimates are (m̂m1, ŝs1)¼ (125.97, 19.8).
Similarly, if m2¼ 150, s2

2¼ 252¼ 625, and subjective

information suggests that E[m2]¼ 150, Stdev[m2]¼ 30,
E[s2

2]¼ 625, and Stdev[s22]¼ 225, the parameters (a2, b2, g2,
m2)¼ (9.72, 5447, 1.44, 150), and if a random sample of size

n2¼ 5 from the normal distribution N(m2, s2)¼N(150, 25)
produces the estimates ð �XX2;S2=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn2 � 1Þ

p
Þ ¼ ð145; 35Þ,

then ( m̂m2, ŝs2)¼ (145.61, 26.55). Based on these estimates,

we compare the two scenarios for the NDD case as

summarized in Table 3.

Note that we assumed a small sample size to reflect cases

for which there is only a small amount of available demand

data, perhaps due to changing business conditions, or due to

the services offered being relatively new. Moreover, for both

service types, the coefficient of variation implied by the

chosen parameter values is low so that the probability of

negative demand is very small.

Let us now consider an example for the TDD case. For

comparison, suppose that the same subjective beliefs

presented above for the NDD case apply here as well,

leading to the same parameter values of (a1, b1, g1, m1)¼
(6.63, 2724, 0.83, 130) and (a2, b2, g2, m2)¼ (9.72, 5447, 1.44,
150). Moreover, suppose that random samples of sizes

n1¼ n2¼ 5 were drawn from the true t-distributions t(2ai, mi,
2bi,), i¼ 1, 2, and produced the same sample estimates

ð �XX1;S1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn1 � 1Þ;

p
�XX2;S2=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn2 � 1Þ

p
Þ ¼ð125; 15; 145; 35Þ.

Then from Equations (10) and (11), the Bayes estimates for

the demand parameters are (~mm1, ~ss1)¼ (125.97, 20.13) for
service 1 and (~mm2, ~ss2)¼ (145.61, 27.58) for service 2. Based on
these estimates, we compare the two scenarios for the TDD

case as summarized in Table 4.

These numerical examples illustrate that neither of the

estimation scenarios (NIP or IP) has perfect information on

the demand processes. Both rely on sample data, but in

addition, the informative prior estimates incorporate sub-

jective beliefs regarding the prior distribution of the mean

and variance. Based on these beliefs, the parameters of the

conjugate priors are estimated. Thus, it is important to

emphasize that our algorithm for comparing the two

estimation scenarios is not designed to favor one versus the

other. At the same time, however, we chose the subjective

beliefs regarding the mean and variance of the unknown

Table 3 Demand scenarios for the NDD case

Scenario Estimated distribution

NDD-NIP Service 1: N(125, 15)
Service 2: N(145, 35)

NDD-IP Service 1: N(125.97, 19.8)
Service 2: N(145.61, 26.55)
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parameters to be reasonably close to the true values because

we want to know how valuable good information can be. If

the decision makers have no specific information regarding

their stochastic processes (somewhat unlikely in most

business settings), then they might simply apply the classical

estimates.

Results

We employ here the same input parameter values we

reported in the section Comparative statics analysis (see

Table 1). For each demand case (normally distributed and

stationary, NDD or t-distributed and non-stationary, TDD)

and each estimation scenario (use of informative prior, IP,

versus use of non-informative prior, NIP) we perform 30

simulations runs. Table 5 summarizes the results for the base

case described in Table 1. It reports the average, maximum,

and minimum percentage differences when compared with

the true expected profit for each scenario. For example, the

‘Average’ of the NDD-NIP scenario is calculated as the ratio

of the difference between the true expected profit and the

average expected profit (based on 30 samples of the NDD-

NIP case), over the true expected profit. Similarly, the ‘max’

of the NDD-IP scenario is calculated as the ratio of the

difference between the true expected profit and the

maximum expected profit (based on 30 samples of the

NDD-NIP case), over the true expected profit.

We have also run simulations with larger sample sizes (eg

ni¼ 10 or 15, instead of 5), larger coefficient of variations (eg
25 or 20% instead of about 16%), and various values for

parameters such as variable and fixed costs. The results

remain qualitatively the same in that the use of informative

priors reduces the difference with the true expected profit

significantly. Thus, our numerical results suggest that it is

desirable to use good prior information, if available.

Summary and conclusions

We investigate both the modeling and the demand-estima-

tion aspects of a capacity planning problem, in which two

available resources provide two services. Demand for one of

the services can be satisfied by both types of capacity,

whereas demand for the other service can only be provided

by a specialized resource (ie downgrades are not allowed).

We provide easy-to-interpret, analytic solutions that resem-

ble the familiar critical fractile ratio of the single-resource

newsvendor model, but also account for the possibility of

substituting one of the resources with the other. We also

enhance our understanding of how changes to demand or

input parameters impact the optimal capacity choices and

profits by performing a Comparative statics analysis. We

then turn our attention to understanding the impact of

estimating the unknown parameters of the demand distribu-

tions. The traditional estimation approach is to use sample

mean and sample variance, respectively, to approximate the

unknown population mean and variance of a demand

distribution. It is often the case, however, that useful prior

information is available that could improve the capacity

planning process significantly. Thus, we describe how prior

information can be used to provide the optimal capacity

levels and a distribution of maximum profits based on a

Bayesian methodology, and we quantify the value of using

such prior information.

In our numerical experiments, we consider the case of

independent NDDs and the case of independent TDDs,

with the latter case corresponding to non-stationary

demands. For each case, we compare expected profits

under scenarios that apply Bayesian estimates or standard

sample estimates. Our simulations show that the

Bayesian estimates yield expected profits that are consis-

tently closer to the true expected profit and thus demonstrate

that informative priors can improve expected profits

significantly.

One future direction related to this work would be to

consider the correlated demands case. In this case, it

would be interesting to identify the circumstances under

which the benefits of prior information are more pro-

nounced.

Acknowledgments—The authors would like to thank the editor and
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Appendix

Proof of Proposition 1. It is easy to show that the objective

function in expression (2) is concave in {T1, T2} (see for

example Bassok et al7 and Parlar and Goyal10). Thus, if the

firm makes positive profits, the first-order conditions are

both necessary and sufficient. Taking the partial derivative

Table 4 Demand scenarios for the TDD case

Scenario Estimated distribution

TDD-NIP Service 1: N(125, 15)
Service 2: N(145, 35)

TDD-IP Service 1: t(18.25, 125.97, 20.132)
Service 2: t(24.43, 145.61, 27.582)

Table 5 Percentage difference between true profits and
expected profits

NDD-NIP NDD-IP TDD-NIP TDD-IP

Average 1.22% 0.09% 1.97% 0.21%
Max 4.31% 0.36% 5.73% 0.76%
Min 0.01% 0.00% 0.27% 0.02%
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of the profit expression (2) with respect to T1 yields

q½expressionð2Þ�
qT1

¼ ðp1 � v1Þð1� F1ðT1ÞÞ � c1ðF1ðT1Þ � 1Þ

� G1 þ ðp2 � v1Þ
Z T1

0

ð1� F2ðT1 þ T2 � xÞÞ f1ðxÞdx

þ c2

Z T1

0

ð1� F2ðT1 þ T2 � xÞÞf1ðxÞdx

Thus, setting the partial with respect to T1 equal to zero we

get that

ðp1 � v1 þ c1 � G1Þ � ðp1 � v1 þ c1ÞF1ðT1Þ

þ ðp2 � v1 þ c2Þ
Z T1

0

ð1� F2ðT1 þ T2 � xÞÞ f1ðxÞdx ¼ 0

which implies Equation (3). Similarly, taking the partial

derivative of the profit expression (2) with respect to T2
yields

q½expressionð2Þ�
qT2

¼ ðp2 � v2Þð1� F2ðT2ÞÞ

� G2 � ðp2 � v1Þ
Z T1

0

½F2ðT1 þ T2 � xÞ � F2ðT2Þ�f1ðxÞdx

þ c2

Z T1

0

½1� F2ðT1 þ T2 � xÞ� f1ðxÞdx



þ
Z 1

T1

½1� F2ðT2Þ� f1ðxÞdx
�

Observing that the last term within the braces of the

previous equation,
R1
T1
½1� F2ðT2Þ�f1ðxÞdx, equals

ð1� F2ðT2ÞÞ �
R T1
0 ð1� F2ðT2ÞÞf1ðxÞdx, we can simplify

the first derivative with respect to T2 as

q½expressionð2Þ�
qT2

¼ ðp2 � v2 þ c2Þð1� F2ðT2ÞÞ

� G2 � ðp2 � v1 þ c2Þ
Z T1

0

½F2ðT1 þ T2 � xÞ

� F2ðT2Þ� f1ðxÞdx

and setting the partial with respect to T2 equal to zero we get

that

ðp2 � v2 þ c2Þð1� F2ðT2ÞÞ � G2

þ ðp2 � v1 þ c2ÞF2ðT2Þ
Z T1

0

f1ðxÞdx

� ðp2 � v1 þ c2Þ
Z T1

0

F2ðT1 þ T2 � xÞf1ðxÞdx ¼ 0

which implies Equation (4). &

Algorithm for calculating our numerical results

(1) Choose a demand scenario R to be either the NDD or

the TDD (ie RA{NDD, TDD}). Choose values for the

true mi and si, i¼ 1, 2. Denote the true demand

distribution for service i by f i
R(.), i¼ 1, 2 (in other

words, f i
R(.) has mean mi and variance si

2). For every

demand scenario R, repeat steps (2) and (3).

(2) Choose an estimation scenario S(R) for a given true

demand distribution R, where S(R)A{NIP, IP}. For
every estimation scenario S(R), repeat steps (3a)–(3f)

several times.

(3a) Generate a random sample of size ni following f i
R(.),

i¼ 1, 2.
(3b) Derive the estimated demand distributions f i

E(S(R))(.),

i¼ 1, 2, for approach S(R), denoted for simplicity by
f i
E(.) (in other words, the parameters of f i

E(.) are ðm̂mi; ŝsiÞ
or ð~mmi; ~ssiÞ depending on S(R)).

(3c) Derive optimal capacity levels, denoted by T̂T1 and T̂T2,

that maximize expected profit for scenario S(R) given

the estimated demand distributions f i
E(.)

pðT̂T1; T̂T2; f E1 ð:Þ; f E2 ð:ÞÞ

¼ max
T1 ;T2

Ef E
1
ð:Þ;f E

2
ð:Þ½pðT1;T2Þ�

n o
:

(3d) Evaluate the true expected profit pðT̂T1; T̂T2; f R1 ð:Þ; f R2 ð:ÞÞ
given capacity levels T̂T1 and T̂T2 and the true demand

distributions f i
R(.), i¼ 1, 2.

(3e) Derive the true optimal capacity levels T 1
R and T2

R that

maximize expected profit for scenario S(R) given the

true demand distributions f i
R(.):

pðTR1 ;TR2 ; f R1 ð:Þ; f R2 ð:ÞÞ

¼ max
T1 ;T2

EfR
1
ð:Þ; f R

2
ð:Þ½pðT1;T2Þ�

n o
:

(3f) Evaluate the difference between the true expected profit

for approximately optimal capacities, pðT̂T1; T̂T2; f R1 ð:Þ;
f R2 ð:ÞÞ, and the true expected profit, p(T1

R, T 2
R, f1

R(.),

f 2
R(.)), given the optimal capacities. When iteration limit

is reached, go to step (2).
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