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ABSTRACT : The paper presents (wo new non-isomorphic symmetric orthogonal arrays
OA (4°,41.4.3). Furthermore, based on thesc orthogonal arrays, we have obtained some

new trend resistance orthogonal arrays and an asymmetric orthogonal array OA
(4°.40.(4%)x4".2)

1. INTRODUCTION

Rao [13]. [14] introduced the concept of orthogonal arrays in the context
of fractional factorial experiments. Orthogonal arrays are rclated to
combinatorics. finite fields, geometry and error-correcting codes. Asymmetric
orthogonal arrays. also introduced by Rao [15] have received great attention
in recent years. Symmetric and asymmetric orthogonal arrays have been used
extensively by Taguchi [17] and his colleagues in industrial experiments for
quality improvement. Their usc in agricultural experiments has also been
widespread. Orthogonal plans have been found useful in sctiing up many
experiments in the physical and engincering sciences. Sometimes when the
experimental runs are carried out in a time-ordered sequence. the response
can depend on the run order. To avoid unwanted time effect. one may be
interested 1 a run order which is trend resistant i.e. the experimental runs are
arranged in such a way that all the effects (main or r-factor interaction) are
independent of trend (linear, quadratic ele.)

An Nxnarray A with entries from S. where S is a set of ¢ symbols or levels,
is said to be an orthogonal array with ¢ levels, strength g and index A, if every
Nxg subarray of A contains cach g-tuple based on S exactly A times (as a row),
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and is denoted by OA (N, n. ¢, g). Two orthogonal arrays arc said to be
isomorphic if one can be obtained from the other by a sequence of permutations
of the columns, the rows. and the levels of cach factor. It is well known that an

orthogonal array of strength g is a fractional factorial design of resolution
g+l

Bosc (1947) studied the following packing problem. Let m, (A, ¢) denote
the maximum number of columns, that can be chosen in a &k rowed matrix,
whosc clements belong to a Galois Field of order ¢, GF(g) where ¢ = p”and
p is prime, and which has the property P that no 1 columns arc linearly
dependent. Equivalently m, (k,¢) is the maximum number of factors which
can be accommodated in a confounded g™ symmetric factorial experiment
with q"'”k blocks, ecach of xsize qk . such that no r-tactor or lower order
interaction is confounded.

Consider the k-1 dimensional projective space over the finite ficld F,, of
order g denoted by PG(k — 1.¢) . Ann-capin PG(k —1,q) is asctofn points,
no three of which are linearly dependent. Finding valuc of m, (k,g) is known
as the Packing problem. The problem of determining the valucs of m,(k,q),
first considered by Bose [ 1], was quickly solved for g = 2 for allk. An cxcellent
review of this problem is given in Hirschfield and Storme [10].

Recently Edel and Bierbrauer [7] have shown that 41 is the largest size cap
in PG (4.4) i.c. m,(5,4) =41. In statistical tcrminology this implies that 41 is
the maximum number of factors. cach at 4 levels, which can be accommodated
in a symmetrical 44 factorial design with blocks of sizc 4%, such that no
three factor or lower order interaction is confounded. As remarked by Bose
and Srivasatava [3] it can be interpreted that in a fractionally replicated g4+1-36
design, consisting of a single block with 45 plots or experimental units, such

that no main effect is aliased with any other main effect or with any 2-factor
intcraction.

Ann-capin PG(k —1,q) isasctofn points, nothree of which are lincarly
dependent. If we write the 1 points as columns of a matrix such that every sct
of three columns is lincarly independent, then it is used as a generator matrix
of a linear orthogonal array of strength 3.

The packing problem discussed by Bose [1] has cquivalent formulations in
finite pfojectivc spaces and coding theory. A close connection between
orthogonal arrays and linear codes is discussed in Hadayat, Sloane and Stufken
[9]. In this paper, two new orthogonal arrays and various statistical applications
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of these orthogonal arrays are discusscd. Section 2 gives two non-isomorphic
orthogonal arrays QA(4°.41,4,3) and they are distinguished using minimum
aberration criteria. Trend resistance orthogonal arrays obtained from the
generator matrix of this orthogonal array are discussed in Section 3. Asymmetric
orthogonal array OA(4° 40,(4%)x 4™ 2). obtainable from the above
gencrator matrix is presented in Section 4.

2. ORTHOGONAL ARRAY OA(45, 41, 4, 3)

Let ¢(22) be a prime or a prime power and consider GF (q) . the Galois
ficld of order ¢. The following fundamental lemma due to Bose and Bush [2]is
helpful.

Lemma 2.1 : Let there exist an rxn matrix C, with clements from GF(q)
such that every rxg submatrix of C has rank g. Further let § denote an ¢ X r
matrix whosc rows are all possible r-tuples over GF(q) . Then an orthogonal
array QA(q",n,q,g) can be constructed,

ic., A=EC isan OA(q".n,q,8).

Edel and Bicrbrauer (1999) have given two essentially differcnt 41-caps in

PG(4,4).
A : The columns of the following matrix M, form a 41-cap in PG(4.4).
[ 1000021301 0223333122103103230321021023032 |
01000132101013221322010121332022301101303

M, = | 00100303223220123321330101023302112102012

00010032111103331223101030223133210010212

__O()OO] 130331132032231021013303320332120102 |
B : The columns of the following matrix M, form another4l-capin PG4.4)
——100()()1 122133223331113330200221003113 10012.—.
01000100200210110110130300230321231311222
M, = | 00100012002001101101103302003312213311222
0001011001 1100001 T LI RT1T111111101001
| 00001001111122222211133333300022222200113

Let the elements be GF(4) of {O.I,X.xl} where 2 — x 4+ 1. Here
elements are denoted by 0,1,2,3 with 2+3=1 and 2.3=1.
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In Lemma 2.1 if we put g=4, r=5, g=3 and n=41, then every 4x3 submatrix
of M, (M,)hasrank 3. Hence A =& M, yiclds an OA(4°,414,3) . Again
with M, . we get another OA(4° 414 .3) . These orthogonal arrays are non-
isomorphic. The orthogonal array OA(4° 414,3) is apparently new in the

literature, being saturated in the sense that it contains the maximum possible
number of 4-lcvel factors.

Minimum aberration is a criterion to distinguish between several non-
isomorphic orthogonal arrays (see Fries and Hunter (8)). For any two fractional
factorial designs d,and d, with the same paramcters. let i be the smallest
integer such that A _(d,) # A, (d,) . wherec A, denotes the number of words
of length 7 in the dcfining contrast subgroup. then d, is said to have less
aberration than d, if

A (d) <A d,).
Consider, for example, the following two 27-2 designs.
d,:]1 =4567 =12346=12357
d,:1 =1236 = 1457 = 234567
the word length patterns are W(d,) =(0,0,0.1,2.0,0) and
W(d,) =(0,0,0,2.0,1.0) . Here d, has minimum aberration.

The weight enimerator of an [n.k.d] code Cis We(x.y)= Y Ax"y
where A, is the number of codewords of weight i. The weight ennmerator of
the dual code L can be obtained using the formula given by Macwilliams
and Sloane (11) as Wet (x.v) = (1/ N)We(x + (g — 1) y.x — y) for N =g*.For
details see Macwilliams and Sloane (11). The weight distribution of dual code
of a g-ary linear [”-k‘d]q code is related to the word length pattern of g level
fractional factorial design as given by Ma and Fang (12).

WLP = (1/ g - 1) weight distribution of the dual code.

The orthogonal array generated above is a [415.28], code. Edel and Bierbrauer
[7] have given the weight distribution of [41.5.‘28]4 code (. The weight
distribution of the code generatedby M is Ay = 120. A,y =360, A, =288,
Ay, =135, Ay, =120 and the weight distribution of the code gencerated by
M, is Ay =29, Ay =12, Ay =105 A, =660. A, =90, A, =36
A 251 Ay =60.

~ Using Macwilliam's identity we have obtained the weight cnumerator of the
dual code [41,36,4], . We obscrve that the number of codewords with weight 4
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in the code generated by M, are 9450 and in the code generated by M, are

9930. Hence the QA(4° 41,4.3) generated by M| has less aberration and thus
is better.

3. Trend Resistance Orthogonal Arrays

In some industrial situations, the order of the treatment combinations is
important such as, where the experiment is carried over a period of time and
consecutive observations under any given plan are influcnced by a time trend
in addition to the factorial effects. One may be interested in a run order which
is trend resistant.

For any d € Dy, the class of N runs plan, let the successive observations
correspond to equispaced points of time and supposc that these observations
arc influenced by a time trend that can be represented by a polynomial of
degrec v(<1<v< N —1). Hence one may be interested to get a v-trend frec
plan, which is optimal.

A fractional factorial plan that ensures estimability of thc general mean
and complete sets of contrasts belonging to factorial effects involving at most
f factors under the aSsumption of absence of factorial effects involving (7 + 1)
or more factors, where 1< f <1<n—1, is referred to as a resolution (f,1)
plan. For details sce Dey & Mukerjee [6].

An orthogonal array is called trend free of order (f,v) (f.vz1 ifit has
strength at least f and in addition the associated plan sausfics

1 N

P S - k
2“ x«;‘, ’ (u"]i:““‘]‘.[ ) - ((]il ””‘]il ) 21( 1< I3 <v
u=l\
for every ijedy and Jyoorrdy, IS0 <on<ip S 0, g, 00 =450,

where Xf;"j' (“;ji,'"'ji,) is an iﬁdicator function assuming value 1 if the
obscrvation at the time point i according 1o d corresponds to level Ji, --»-f;, of
the i,-"'.....,i_f’ factors respectively and value 0, otherwise.

Results due to Coster and Cheng (5) can bc uscd to construct some trend

resistance orthogonal arrays obtainable from the gencrator matrix of
OA(4%,4143).

Theorem 3.1 : Let ¢(22) be a primc or prime power. Suppose that there
exists an rx pn matrix C. with elements from GF(g). such that every rX g
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submatrix of C hasrank £ and cvery column of ¢ has at lcast v 4 | nonzero

elements. then there exists a symmetric OA(qg",n,q,g) that is trend free of
order (1.v).

From the matrix M, given in Section 2. if we take all thc columns of
weight 5. we have a matrix

el

")
N

o

i)
i1
o
(%) —
DWW
. N
[N N N W N

(8]

L]
(98]

fw w
3
t2
IN]

and from matrix M, we get

23311312]
11231322
C,=|11213322
11111111
21222213

where. we definc the weight of a column as the number of nonzero elements
in a column. The matrices C, and C, satisfy the conditions of Theorem 3.1
with g=4. r=5 g=3, v+1=5 n=6 and p=8 respectively. Hence C,
gives an OA(4%.6,4.3) and C, gives an OA(4%.84.3) .

These orthogonal arrays are trend free of order (1,4). Similarly suppose
from M, and M, we take all columns which have weight greater than or
equal to 4. The two matrices obtained are
31301022333312232303210212
13210101322132213320223013
C,=1303223220123321 10233021122
03211110333122302231332102
_130331]320322313303320332%_
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which gives an QA(4°26.4.3) . This is trend free of order (1,3).
(333332223330100311312]
021101101303321231322
Cy=1201011011033312213322
201011011033312213322

__11011’1111111111111111

C, gives an 0A(4°214.3), which is trend frec of order (1,3).

If all columns of weight greater than or equal to 3 are taken from M, matnx
we gel ' ‘

[213010223333122323032102121031002303]
132101013221322133202230130101210130
Cs =1303223220123321102330211223301010201
032111103331223022313321021010301021
| 130331132032231330332033220210112010 ]
and from M, we get

(333332223330100311312112212220022100)
021101101303321231322100201000130112
C, =1201011011033312213322012000102003112
201011011033312213322110010011111010
lOllllilllHllllllllOOl11223330000_1_

K
which generatc QA(4°.36.4,3) . These are trend frce of order (1.2).
4. Asymmetric Orthogonal Array

Rao [15] introduced asymmetric orthogonal arrays having factors with
mixed levels which are used for planning industrial experiments. A large number
of techniques are known for constructing orthogonal arrays based on Galois
field, finite Geometries, Difference schemes, Hadamard matrices, Latin squares
and Error correcting codes. For details see Hadayat, Sloane and Stufken [9].
Suen, Das and Dey [16] gave a general method for constructing asymmetric
orthogonal arrays of arbitrary strength based on finite fields.

29



IaAPQrR TRANSACTIONS

An orthogonal array OA(N.n,.q, :}(qzx ..... Xq,,8) 1S N xn matrix with
symbols in the i column from a finite set of g;(2 2) symbols, 1< <n.such

that in every N X g submatrix, all possible combinations of symbols appear
equally often as a row. In particular, if g, = ... ..... =q, (= q. say), then we
get a symmetric orthogonal array which is denoted by OA(N,n.q,8) .

Consider an arbitrary OA(N,n,q, X g,X.. an,g) where for 1<i<n.
g; =s".s is a primc or prime power, N = s".the u;'s and r are positive
integers. Consider the columns of the array as factors and denote these factors
by F,,F,......F, . For factor Fi(1<i<n) define columns. say £, - F

l“‘ .

cach of order x| with elements from GF(s) . We have 2“. columns in all
i=1
corresponding to n factors. The following theorem is helpful.

Theorem 4.1 : Let C bca rX 2, u; matrix given by
i=1

where A = [p,-‘ ,...,P,-w] 1< i < n. such that for every choice of
¢ matrices A+ A.- outof A}, A,,....A,, the "><2un, matrix ;i has
j=1 |

full column rank ove GF(s). Thm A=£&C leads to an

OAG 1.(8)" X ....(5)",g) » where € isan 7 », matrix whose rows arc all
possible r-tuples over GF(s).

Consider the matrix M, given in Section 3.
_l’nplu‘ 2T 2] IO SO PP PPN SRS Pdoﬂ
10 000213010223333122103103130321021023032
01 000132101013221322010121332022301101303
M, =100 1003032232201233213301010233021 12102012
00 010032111103331223101030223133210010212
| 00 00113033113203223102101 3303370332120102
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Any three columns of this matrix are linearly independent. Allocate first

two columns to the first factor F, (with 16 levels) while the remaining columns
correspond to the other 39 factors F; (with 4 levels), i = 2,3....,40. With g =2
the rank condition of theorem 4.1 is satisfied by the above matrix. Hence on
computing §M | , we get an 0A(4° 40,16 x (4)*°.2). Thus two non-isomorphic
asymmetric orthogonal arrays from symmetric orthogonal array are obtained.
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