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Uniform Experimental Designs and
their Applications in Industry™*

Kai-Tai Fang and Dennis K. J. Lin

The uniform experimental design is one kind of space filling designs that can be used for
computer experiments and also for industrial experiments when the underlying model
is unknown. The uniform design seeks its design points to be uniformly scattered on the
experimental domain. In this chapter we shall introduce the theory and method of the
uniform design and related data analysis and modelling methods. Applications of the
uniform design to industry and other areas are discussed.

1. Introduction

Consider the simple fact that where there is an effect, there is a cause. Engineers are
constantly faced with the problem of distinguishing between the effects that are caused
by particular factors and those are due to random error, or specifically building an
empirical model between the input (experimental) variables and the output (response)
variables.

Industrial management is becoming increasingly aware of the benefits of running
statistically designed experiments. Statistical designs, developed by Sir R. A. Fisher
in the 1920s, largely originated from agricultural problems. Designing experiments for
industrial problems and designing experiments for agricultural problems are similar in
their basic concerns. There are, however, many differences (see Lin, 2000). Many new
types of designs have been proposed in the recent years for solving industrial problems.
A comprehensive introduction to these designs can be found in Handbook of Statistics,
Vol. 13 (edited by Ghosh and Rao, 1996). This chapter introduces an important class of
designs, called Uniform Design.

Most experimental designs, like orthogonal and optimal designs, assume that the
underlying model is known with some unknown parameters such as main effects,
interactions, regression coefficients and choose a design such that estimation of the
parameters has the highest efficiency. However, the experimenter in many experiments
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does not know the underlying model. A space filling design becomes the best choice in
this case. In computer experiments, the underlying model is known, but too complicated.
In this case we can treat the model as a black box or unknown. Both cases need a space
filling design. The uniform design (UD) is one of space filling designs and it seeks
experimental points to be uniformly scattered on the domain. The UD was proposed
by Fang and Wang (Fang, 1980; Wang and Fang, 1981) and has been popularly used
since 1980. The UD has several advantages. It can explore relationships between the
response and the factors with a reasonable number of runs and is shown to be robust to
the underlying model specifications. For practical ease, most uniform designs have been
constructed and tabulated for the practitioners. In the past decade there were a lot of UD
publications in theory and applications, for example, Fang and Wang (1994), Fang and
Hickernell (1995), Hickernell (1999), Fang and Mukerjee (2000), Xie and Fang (2000),
Fang and Lin (2000), Fang, Lin, Winker and Zhang (2000), Hickernell and Liu (2002),
Fang and Ma (2000) and Fang (2002).

This chapter is organized as follows. Section 2 gives a background for understanding
the uniform design. In Section 3, we describe how to implement the uniform design in
practice, illustrated by a real life example. It is hoped that the practitioner will know how
to implement uniform design from reading this section. Section 4 discusses how to apply
the uniform design in other environments, such as mixed level problems, categorical
factors and mixture experiments. The construction methods of uniform designs are
introduced in Section 5. The related theory and algorithms are reviewed and discussed.
Most uniform design tables are available on the website at http://www.math.
hkbu.edu.hk/UniformDesign, called as UD-web for short. Section 6 focuses
on the important problem of computer experiments. The role of uniform design in
computer experiments is investigated. It is found that the uniformity is also an important
criterion in other type of experimental designs. Section 7 discusses the connections
between uniformity and other popular design criteria, such as isomorphism, resolution,
aberration, orthogonality, and confounding. The applications of uniform design in
construction of supersaturated designs and in modern quality engineering are given at
the end.

2. Preliminaries

Suppose that there are s factors in a factorial experiment; each factor has g levels.
The total number of level-combinations is then ¢°. This is too large to be implemented
even when s and g are moderate. Therefore, two-level and three-level factorial designs
are commonly used. If the higher-order interactions of the factors can be ignofed, a
fractional factorial design with a smaller run size can be used. Among all types of
fractional factorial designs, orthogonal array is probably the most efficient and popular
one.

In many experiments one wishes to explore relationship between the response and
factors and to predict the response at any point in the experimental domain. Regression
models can be used for fitting the experimental data resulted from a factorial plan. When
the relationship between the response and factors is nonlinear or when the experimental
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domain is large, two-level designs are shown to be insufficient. Often the experimenter
does not know the model between the response (y) and the factors (x1, ..., x;, say) in
the process. One wishes that the design is robust against different model assumptions.
Suppose that the response and the factors in an experiment have a regression model

y=g(x1,...,x5) +&, 2.1)

where the function g is unknown and ¢ is the random error. When the function g is
a polynomial (of first-order or second-order, say), the corresponding model (2.1) is
called a response surface model (see, for example, Box and Draper, 1987; Myers and
Montgomery, 1995; Draper and Lin, 1996).

When the underlying mathematical function g in (2.1) is complex and nonlinear, one
can use an approximately linear model to replace the original model (2.1)

m
Y= g, ....x) +h(x1,...,x) +e, 2.2)
i=1

where all the functions g;’s are known and the function 4 denotes the departure of the
model (2.2) from the true one (2.1). A robust design is useful in this case (Hickernell,
1999). In fact, the experimenter may not know all the g;’s due to lack of knowledge
about the process. In this case the model (2.1) is called a nonparametric regression
model, for which the best design should be a space-filling design (Doehlert, 1970;
Hickernell, 1999; Xie and Fang, 2000). As we shall see that the uniform design is
a good choice. Computer models are often used in science and engineering fields to
describe complicated physical phenomena which is governed by a set of equations,
including linear, nonlinear, ordinary, and partial differential equations. The equations
are often too difficult to be solved simultaneously, but can be simulated by the computer
modelling program. We can express the relationship between the input (x1, ..., x;) and
the output y as

y=fx1, ..., x5), 2.3)

where the function f has no analytic expression. One may wish to do simulation on
a computer to simulate the behavior of the device/process and to find an approximate
model that is much simpler than the true one (cf. Fig. 1). These programs, due to the
number and complexity of the equations, require special designs. Designing computer

T ey
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Fig. 1. Computer experiments.
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experiments has received a great deal of attention in the recent literature. See, for
example, Bates, Buck, Riccomagno and Wynn (1996) and Koehler and Owen (1996).
The later gave a comprehensive review on designs of computer experiments. The
uniform design was in fact motivated by three system engineering projects in 1978 (see
Fang, 1980; Wang and Fang, 1981). In the past two decades, the uniform design has been
successfully applied in other areas, such as industry, system engineering, pharmaceutics,
and natural sciences.

3. Implementation of the uniform design in industrial experiments

The uniform design employs many terminologies form the factorial design such as level,
level-combination, etc., but the underlying model is (2.1) for industrial experiment and
is (2.3) for computer experiments. Uniform designs have been tabulated. Each uniform
design table has a notation U, (¢*), where ‘U’ stands for UD, n for the number of runs, s
for the number of factors and g for the number of levels. For implementing the uniform
design in industrial experiments the following steps are necessary:

1. Choose factors and experimental domain as well as determine suitable number of
levels for each factor.

2. Choose a suitable UD table to accommodate the number of factors and levels. This
can be easily done by visiting the UD-web.

3. From the uniform design table, randomly determine the run order of experiments and
conduct the experiments.

4. Find a suitable model to fit the data. Regression analysis, neural networks, wavelets,
multivariate splines, sliced inverse regression and principal Hessian direction are
useful in modelling.

5. Knowledge discovery from the built model. Find the ‘best’ combination of the factor-
values that maximizes/minimizes the response and verify the prediction with further
follow-up experiments.

We next illustrate the procedure of implementing uniform design, step by step.
A chemical experiment is conducted in order to find the best setup to increase the
yield. Three factors are under consideration: the ratio of raw materials (X1), the amount
of pyridine (X3), and the time length of the reaction (X3). The response variable
is designated as the yield (Y). Unfortunately, the experimenter does not know the
underlying relationship between y and (X1, X2, X3).

The experimental domain is chosen to be [1,3.4] x [10, 28] x [0.5, 3.5] and each
factor takes 7 levels in this domain as follows:

X1, the ratio of raw materials (in %): 1.0, 1.4, 1.8, 2.2, 2.6, 3.0, 3.4;
X, the amount of pyridine (in ml): 10, 13, 16, 19, 22, 25, 28;
X3, the time length of reaction (in hours): 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5.

This experiment could be arranged with a UD table of the form U, (7°), meaning
an n-run uniform design for three factors, each at seven levels (see next section for
the formal definition). It turns out that the experimenter chose U7(7°) design that
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Table 1
Uy (73) and related design

No. 1 2 3 x x x3 Y

1 I 5 4 10 22 20 06146
2 2 2 2 14 13 10 0.3506
3 3 7 6 18 28 30 07537
4 4 3 7 22 16 35 08195
5 S5 6 1 26 25 05 0.0970
6 6 1 5 30 10 25 07114
7 7 4 3 34 19 15 04186

is listed in the left portion of Table 1. The seven levels marked by 1,2,...,7 are
transformed into the real levels of the factors. Randomize the order of these 7 level-
combinations, implement the experiments, and record the corresponding yield Y (see
Table 1). Specifically, the heading of (1, 2, 3) in Table 1 represents the uniform design
table for three factors in seven runs. Such a table can be easily found from the UD-web.
The heading of (xi, x2, x3) in Table 1 represents the actual experimental values for these
three factors. The very last column Y gives the responses of the experimental results.

The major goal of the data analysis is to establish a suitable model. The best result
among the seven responses is y4 = 81.95% at X; = 2.2, X, = 16 and X3 = 3.5. This
can be served as a benchmark. We wish to know whether there is any level-combination
to produce a better yield. The simplest model is the first-order regression:

E(Y)=PBo+ Bix1 + Baxa + B3xs.

Based on the data in Table 1 and by model selection techniques in regression analysis,
the resulting model turns out to be

E(Y)=0.0713+0.2333x3

with R? = 93.96% and s% = 0.381. This model is not satisfactory to the engineers.
Therefore, a more complicated second-order centered quadratic regression is consid-
ered,
E(Y) = fo+ B1(x1 — X1) + Ba(x2 — %2) + B3(x3 — X3) + P11 (x1 — %1)2
+ Bra(x2 — 2)% + B33(x3 — £3)% + Brax — ¥1)(x2 — %2)
+ B13(x1 — X1)(x3 — X3) + Paz(x2 — X2) (x3 — X3).
In this data set, X1 = 2.2, X2 = 19 and X3 = 2.0. Once again, by using model selection
techniques, the final model is
E(Y) = 0.595 4 0.232(x3 — 2) — 0.054(x3 — 2)*
+0.0547(x; — 2.2)(x3 — 2) 3.1
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with R? = 99.83% and s = 0.00023. The corresponding ANOVA table is given in
Table 2.

Statistical diagnostics such as residual plots, partial residual plots, and normal
plots indicate that Model (3.1) is acceptable. Note that Model (3.1) does not include
factor X». This indicates that factor X; has less influence on ¥ within the experimental
domain. Furthermore, contours of ¥ against (x;, x3) in Figure 2 show that (i) there are
interactions between factors X and X3; and (ii) the maximum value of the response is
located at the boundary of the domain.

Table 2
ANOVA table (SAS output)

Sum of Mean .
Source DF Squares Square F Value Prob>F
Model 3 0.40488 0.13496 595.722 0.0001
Error 3 0.00068 0.00023
C Total 6 0.40556
Root MSE 0.01505 R-square 0.9983 C.V. 2.79813
Dep Mean 0.53791 Adj R-sq 0.9966
Parameter Estimates
Parameter Standard T for HO:
Variable DF Estimate Error Parameter = 0 Prob > |T|
INTERCEPT 1 0.595071 0.00871685 68.267 0.0001
x3—2 1 0.231759 0.00569920 40.665 0.0001
(x3 —2)2 1 —0.054033 0.00670981 —8.053 0.0040
(x1 —2.2)(x3 ~2) 1 0.054669 0.01196354 4.570 0.0197
3.5 -
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Fig. 2. Contours of ¥ against x; and xp.
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For searching the ‘best” combination of the factor-value we maximize ¥ with respect
to x1 and x3 under the model (3.1) over the domain D = {Gr1,x3): 1< %1 <34, 05<
x3 < 3.5}, that is to find (x7, x3) such that

Y(x},x3) = max Y (x1, x2),

where ?(x;,xz) is given by (3.1). By any optimization algorithm, it is easily found
that x;* =3.4,x5 =3.5 and the corresponding response ?(3.4, 3.5) =91.87% is the
maximum. However, this is only a statistical prediction and further verification with
confirmatory experiment is needed.

The simplest way for additional experiments is to run a few experiments at x; =
3.4,x3=3.5 and x = 19. As factor X, does not appear in the model, we take its
average value 19. The experimenter ran three such additional experiments and found
the corresponding responses as 91.05%, 92.11% and 91.53%, respectively. The mean
of these three responses is 91.56% that is close to the prediction 91.87%. Thus, one can
conclude the best combination is x; = 3.4, xp = 19, x3 = 3.5 indeed.

Since the best combination is on the boundary, it is wise to expand the experimental
domain. For example, an additional 2-factor experiment with levels

x1:3.0,3.4,3,8,4.2; x3:3.0,3.5,4.0,4.5
using the UD table U(42) is recommended for such an additional experiment.

Besides the polynomial regressioni model, there are many other methods for
modelling such as wavelets, B-spline function, spatial modelling techniques and Kriging
(see Koehler and Owen, 1996; Sacks, Welch, Mitchell and Wynn, 1989 for details). We
shall discuss the B-spline function and related modelling techniques in Section 6.

4. Uniform design in other environments

Suppose that there are s factors in an experiment and the experimental domain is a
hyper-rectangle. The UD arranges experimental points to be uniformly scattered on the
domain. Finding the most uniform design is a very difficult optimization problem, i.e.,
a NP hard problem. Therefore, a reasonable structure for UDs is needed. The so-called
U-type design gives a good structure. A detailed discussion will be given in Section 5.2.
Suppose that there are s factors each having ¢ levels in an experiment. There are q°
level-combinations.

DEFINITION 1. A U-type design denoted by U(n;¢*) is a matrix of n rows and s
columns with entries {1, ..., ¢} such that q entries in each column appear equally often.

A U-type design U (n; ¢°) can be utilized as a design with » runs and s factors each
having g levels. Obviously, the number of levels ¢ should be a divisor of n. Note that a
U-type table may have a poor uniformity. Let U (n; ¢°) be the set of all U-type designs
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U(n; ¢*) and M be a measure of uniformity over I (n: q°) such that the smaller value
of M, the better the uniformity of the design. See Section 5 for a formal definition on
uniformity measure M.

DEFINITION 2. A design U € U(n; q°) is called a uniform design under the measure
M if

MU)= min MV 4.1

)=, min _M(V) @.1)

and is denoted by U, (¢°).

The Uniform design is often displayed as a table, called a UD table. As examples,
Tables 3 and 4 give two uniform designs Uy (73) and U12(12%, respectively. A number
of UD tables can be found on the UD-web. Note that given (n, g, 5), the corresponding
uniform design is not unique. Two U-type design are called equivalent if one can be
obtained from another by permuting rows and columns.

Table 3

U7(73)

No. 1 2 3
1 1 5 4
2 2 2 2
3 3 7 6
4 4 3 7
5 5 6 1
6 6 1 5
7 7 4 3
Table 4

U2(12%)

z
[
©
w
FN

1 1 10 4 7
2 2 5 11 3
3 3 1 7 9
4 4 6 1 5
5 5 11 10 11
6 6 9 8 1
7 7 4 5 12
8 8 2 3 2
9 9 7 12 8
10 10 12 6 4
11 11 8 2 10
12 12 3 9 6
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4.1. Experiment with mixed levels

The number of levels for different factors may not be the same, due to the need of the
experiment or due to limitation of the experimental environment. The uniform design is
also available for such a situation with mixed levels (see Fang, 1994). We next extend
the definition of the uniform design to the case of mixed levels.

DEFINITION 3. A U-type design denoted by U(n; ¢, ..., gs) is a n x s matrix with
elements {1,...,4;} at the jth columns such that {1,...,q;} appear in this column
equally often. When some ¢ j are equal, we denote it by U (n; qlr1 X -o0 X gy™y with
rn+:--+ry=s.

Obviously, all q;(j =1,...,s) should be a divisor of n. Let Un; g1 x -+~ x g) be
the set of all U-type designs U (n; 91 X ... X gs). Similar to Definition 2, we have

DEFINITION 4. A design U e Un;qi,...,qs) is called a uniform design under the
measure M if

MU) = i MV
G VGU(n?;llgqus) V)

and is denoted by U, (g1 x - -+ x gs).

For example, the Ug(32 x 2) design in Table 5 can be used for conducting an
experiment with two 3-level factors and one 2-level factor.

There are situations where one cannot find an existing UD table to suitably fit the
underlying experiment. In this case, the pseudo-level technique can be helpful. We
explain the pseudo-level technique via the following example. Suppose that there are
two 4-level factors and two 2-level factors in an experiment and one can not find any
UD table in the literature. There are, however, many Uy, (4) tables available. The left
portion of Table 6 lists Us (44). Suppose that the first two columns of Ug (44) are used
for the two 4-level factors. We then merge the original levels in columns 3 and 4 by
(1,2) =1 and (3,4) = 2. By this process a U-type design U (8; 42 x 22) is generated
(see the right-hand portion of Table 6). The new UD table with mixed levels may have
a good uniformity. More discussion can be found in Section 5.3.

Table 5

Ug(32 x 2)

No. 1 2 3
1 1 1 1
2 2 1 2
3 3 2 1
4 1 2 2
5 2 3 1
6 3 3 2
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Table 6

Ug(4? x 2%)

No. 2 3 4 1 2 3 4
1 1 2 1 2 1 2 1 1
2 1 4 2 3 1 4 1 2
3 2 1 3 4 2 1 2 2
4 2 3 4 1 2 3 2 1
5 3 1 2 1 3 1 1 1
6 3 3 1 4 3 3 1 2
7 4 2 4 34 2 2 2
8 4 4 3 2 4 4 2 1
Table 7

Upp(123 % 3)

No 1 2 3 4

1 1 10 4 2
2 2 5 11 1

3 3 1 7 3
4 4 6 1 2

5 5 1 10 3
6 6 9 8 1

7 7 4 5 3

8 8 2 3 1

9 9 7 12 2
10 10 12 6 1
11 11 8 2 3
12 12 3 9 2

4.2. Experiment with categorical factors

The factors in factorial experiments can be quantitative or qualitative. The qualitative
factors are also known as categorical or indicator factors. The uniform design can deal
with categorical factors as well. The generalized linear model can be used for the data
analysis and modelling.

Suppose that there are 3 quantitative factors X1, X5, X3 each having 12 levels and
one qualitative factor ‘catalyst’ X4 with 3 catalysts ¢y, 2 and c3. There is no existing
UD table U;2(123 x 3). By the pseudo-level technique introduced in Section 4.1 we
can construct a UD table U2(12% x 3) from U12(12%) as listed in Table 4. We have
to choose one column of Uy2(12%) to merge its 12 levels into 3 levels. There are four
choices. The best of which is given in Table 7. Obviously, the factor ‘catalyst’ is put in
the last column with 3 levels ¢y, ¢; and c3 and the three quantitative factors are put in
the first three columns of the table.

Fori=1,2,let z; = 1 if X4 =¢; else z; = 0. The z; and z; are called dummy
variables that are used to describe which catalyst appear in the model. The simplest
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linear model for this experimental data is

E(Y)=fo+ Bix1 + fax2 + B3x3 + yiz1 + V222 4.2)
that also can be written as

Bo+y1+ Bixi + Paxa + Paxs, if Xg=cy,
E(Y)=13 Bo+ y2+ Bix1 + Baxz + B3x3, if Xa=cy,
Bo + Bix1 + Paxz + B3xs, if X4=c3.

A quadratic model (or its centered version) would then be

E(Y) = fo+ P1x1 + Baxa + Baxs + Buixi + Parxh
+ B33x? + Bioxixz + Piaxixs + B23x2x3 + y121 + Y222

and the model selection techniques in regression analysis can then be applied.

4.3. Experiments with mixtures

Many products are formed by mixtures of several ingredients, for example, building
construction concrete consists of sand, water and one or more types of cement. Designs
for deciding how to mix the ingredients are called experimental designs with mixtures
that have played an important role in various fields such as chemical engineering, rubber
industry, material and pharmaceutical engineering. A design of n runs for mixtures of s
ingredients is a set of n points in the domain

Tx={(x1,...,x3): xj 20, j=1,...,s, x1+~~-+xs=1}. 4.3)

Cornell (1990) and references therein give a comprehensive review on designs of
experiments with mixtures. Wang and Fang (1990), however, proposed the uniform
design for experiments with mixtures that seeks experimental points to be uniformly
scattered in the domain 7. They employed the transformation method for construction
of such uniform designs. Let U = (uy;) be a uniform design Un(ns‘l) on C5°1,
Calculate ¢x; = (ug; — 0.5)/n and

i—1

Xki = (1 e Clt!(s_i)) HCIIC‘]/'(S_j)’ i= 1, R 1,

)

Jj=1
s—1
1/(s=j)
xksznck]( Do k=1,...,n.
Jj=1
Then {xx = (x1,...,Xks), k=1, ...,n} is a uniform design on T;. However, in most

experiments with mixtures some constraints have to be placed on the ingredients. For
example, in making a cake, water and flour should be the major ingredients while sugar
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and milk have a small percentage. The constraints may be 0 <a; <x; <b; <1, i=
I...,s,or0<a<x<b<1wherea= (@i,...,a5), b= (by,...,bs) and 0 and 1 are
vectors of 0’s and 1’s, respectively. In this case the experimental domain becomes

Ty(a,b) ={x: 0<a<x<b< 1} (4.4)

The domain T;(a, b) is not empty if and only if

aan:ai <1 <ib,‘§b.
i=1 i=1

Wang and Fang (1996) applied the transformation method for construction of uniform
designs on T (a, b), but their method can not give a good design when some d; = b; —a;
are very small. Later Fang and Yang (2000) employed the conditional method to propose
an alternative method that can construct uniform designs for all cases.

5. Construction of uniform designs

In this section, we discuss measures of uniformity, the construction methods and
algorithms for UD. The uniform design seeks its design points to be uniformly scattered
on the domain. Suppose that there are s factors in an experiment. Without loss of
generality we can assume that the experimental domain is the unit cube C* = [0,17°
(after making a suitable linear transformation). The aim is to choose a set of 7
experiment points P = {x1,...,x,} C C* that is uniformly scattered on C*. Let M be
a measure of uniformity of 7 such that the smaller M corresponds to better uniformity.
Let Z(n, s) be the set of sets of n points on C%. A set P* € Z (n, 5) is called a uniform
design if it has the minimum M-value over Z(n, s), i.e.,

M(P*) = 'Pelgi(g,s) M(P). (5.1

The following three subjects are the key for the construction of UDs:

(1) define a suitable measure of uniformity;
(2) reduce the complexity of the computation of searching UDs;
(3) apply a powerful optimization algorithm to find a UD.

5.1. Measure of uniformity

Let P ={xy,...,x,} be a set of n points in the s-dimensional unit cube C* = [0,1)%.
Many different measures of uniformity of P have been defined (cf. Fang and Wang,
1994; Hickernell, 1998a, 1998b; Hickernell, Liu and Yam, 2000). A reasonable measure
should be invariant under reordering the runs and relabeling factors. The most popular
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measure of uniformity in quasi-Monte-Carlo methods is the star L ,-discrepancy (or
L p-discrepancy for short) (see Hua and Wang, 1981; Niederreiter, 1992)

f Iw —_ Vol({O, x))
Cs n

2 yUp
dx} , (5.2)

D= |

where [0, x) denotes the interval [0, x1) x --- x [0, x;), N(P, [0, x)) is the number of
points of P falling in [0, x), and Vol(A) is the volume of A. The Lyo-discrepancy is
called star discrepancy (or discrepancy for short) and can be expressed as

D(P) = max ﬁ“’_’EQ"_D -

xeCs

Vol([0, x))

. (5.3)

Let F(x) be the uniform distribution on C* and Fp‘(x) be the empirical distribution
function of P, i.e.,

1 n
Fp(x)=~3 Itx; <x),
~

where I{A} =1 if A occurs, otherwise 0. The star discrepancy is the norm
| Fp(x) — F(x)| = max | Fp(x) — F(x)|
xeCs

that is the Kolmogorov—Smirnov statistics in goodness-of-fit test. The star discrepancy
has played an important role in high-dimensional integration, but it is hard to calculate
(Winker and Fang, 1997). Suppose we want to numerically calculate an integral

I(f)=/ fO, o xg)dxy - dxg = f(x)dx
Cs . Cs

that can be approximated by
1 n
Py =~ ; f @),

where Py = {x1,...,x,} is a set of n points on C*. The error upper bound of this
approximation is given by the Koksma—Hlawka inequality

() = T(Pw)| < V(H)ID(Py), (5.4)

where V() is the variation of the integrand (Niederreiter, 1992, Theorem 2.1 1). The
upper bound suggests to find a set with minimum discrepancy. If the set P, is chosen
by the Monte-Carlo method, i.e., x1, ..., x, are i.i.d. each being uniformly distributed
on C*, then D(P,) = Op(71-’7) as n —>» o0. However, the quasi-Monte-Carlo methods
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can find sequences P, such that D(P,) = O(%(log(n))s ) as n — oo. The virtue of
quasi-Monte-Carlo methods produces applications of quasi-Monte-Carlo methods to
numerical analysis and statistics (see Hua and Wang, 1981; Fang and Wang, 1994)
including experimental design.

The discrepancy was proposed by Weyl (1916). One disadvantage of the discrepancy
is that it is expensive to compute. Warnock (1972) gave an analytic formula for
calculating the Ly-discrepancy

21—s n
(Da(P))? =37 —

s
H (1 _xlgl)
k=11=1

n s

425 3 [Tt - maxces,xj0), 55)

k=1 j=1i=1

where xp = (xg1, ..., xks). Obviously, the Ly-discrepancy is much easier to be
calculated numerically. Fang, Lin, Winker and Zhang 2000) found that both discrepancy
and L,-discrepancy are not suitable for searching UDs. The discrepancy is not sensitive
enough while the Lj-discrepancy ignores differences 15/(—7)-’5@—)2 — Vol([0, x))|? on
any low-dimensional subspace. Therefore, they adopt three modified L,-discrepancies
proposed by Hickernell (1998a) for searching UDs: the symmetric Lj-discrepancy
(SD), the centered L;-discrepancy (CD) and the modified Ly-discrepancy (MD). These
discrepancies are defined by

(P =X [ |

uFP

N(Pu, Js,
-T"—) ~ Vol(J,)|* du, (5.6)

where u is a nonempty subset of the set of coordinate indices § = {1,...,s}, |u| denotes
the cardinality of u, C* is the |u|-dimensional unit cube involving the coordinates in u,
P, is the projection of P on C¥, J, is a rectangle uniquely determined by x and is
chosen with the geometric consideration, and Jx, is the projection of J, on C*. The
centered Lj-discrepancy (CD for short) is considered by an appealing property that
it becomes invariant under reordering the runs, relabeling factors and reflections of
the points about any plane passing through the center of the unit cube and parallel
to its faces. The latter is equivalent to the invariance of replacing the ith coordinate

xiby 1 —x; forsomei=1,...,s. For the CD, Hickernell (1998a) gave an analytical
expression similar to (5.5) as follows:

2 (1BY 2G4 1 1
(CD(P))” = (E) - Y11 (1 + 5% =051 = > xy —0.5|2)

k=1 j=1

1 n n 5 1 1
ta ZZH[I + 5 —0.5] + 5l = 0.5]

k=1 j=1i=1

1
— 5 i —xjil]- 5.7
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From the definition (5.6), the CD considers the uniformity not only of P over C¥,
but also of all the projection uniformity of P: over C*. On the other hand, the L,-
discrepancy concerns with only the uniformity over C*. The UD tables in the UD-
web are all constructed under the CD. Ma (1997a, 1997b) proposed another symmetric
version of the Loo-discrepancy and discussed how to search UD under his discrepancy.

The wrap-around L;-discrepancy (WD for short), proposed also by Hickernell
(1998b), has other nice properties. Its analytical formula is given by

(WD(P))2 = (%) + ZI‘Z'ZZH B— = I = il (1 =[x —-xjil)].

k=1 j=1i=1
(5.8)

The above measures are defined only on C*. For a U-type design U € U(n; q¢°) we
make the transformation from U = (u;;) to a set of n points on C*, P, = {x1,...,X,}
where x;; = (u;j —0.5)/q. Let M be a measure of uniformity on C*. We can then define
MU)=M(Py).

In the past, UD tables were constructed under the star discrepancy (Fang, 1980; Wang
and Fang, 1981; Winker and Fang, 1998), under the centered L,-discrepancy (Fang, Ma
and Winker, 2001) and under wrap-around L,-discrepancy (Fang and Ma, 2001a).

5.2. Searching uniform designs

In this subsection we introduce how to find UDs under centered L,-discrepancy (CD).
We shall omit “under CD” for simplicity. For one factor experiments (s = 1), Fang, Ma
and Winker (2001) pointed out that the set of equidistant points is the unique UD on
[0, 1].

THEOREM 1. For one factor experiment, the unique UD on [0, 1] is

2 —1
{ M i=1,...,n}
2n

: 2 __ 1
with CD* = B

Clearly, the solution of (5.1) is not unique when s > 1. To search UDs for given n
and s is an NP hard problem, as n and s increase. Furthermore, even for moderate values
of n and s, it is an intractable problem to find a uniform design due to its complexity
of the computation. We thus have to reduce the set of candidate designs. The set of U-
type designs (cf. Definition 1) is one of such sets. The uniform design based on U-type
designs for given 7, is an approximation of the corresponding uniform design.

Figure 3 gives plots of UDs and UDs based on U-type designs (cf. Definition 2)
fors=2andn=2,3,...,9. The lower plots on Figure 3 are of uniform designs and
upper plots are of uniform designs based on U-type designs. The squared CD-value
of each design is put on the top of its plot. The uniform designs are obtained by the
Nelder-Mead simplex method built in MATLAB, which can be directly applied for
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Fig. 3. Plots of uniform designs and their approximations.

n < 6. The Nelder-Mead simplex method did not perform well for n > 7. Therefore,
for n =7,8,9, we choose good UD as the initial values in order to converge to a
low-discrepancy design. Comparing CD-value of two designs for n =2, ..., 9 we find
that the uniform designs based on U-type designs are very close to their corresponding
uniform designs. However, when r and s increase, designs obtained by the use of the
simplex method often exhibit poor uniformity, while designs based on U-type designs
have a low-discrepancy. We shall construct uniform designs based on U-type designs.

Due to complexity of the computation for searching UDs, there are several methods
such as the good lattice method, Latin square method, expending orthogonal design
method, and optimization searching that can provide a good approximation to the
uniform design. A good approximation uniform design is also called a nearly uniform
design (Fang and Hickernell, 1995). We next describe these methods in details.

A. Good lattice point method

The good lattice point (glp) method is an efficient quasi-Monte-Carlo method, proposed
by Korobov (1959), and discussed by many authors such as Hua and Wang (1981), Shaw
(1988) and Fang and Wang (1994).

ALGORITHM 1 OF CONSTRUCTION OF A U, (n®)

Step 1. Find the candidate set of positive integers
Hy = {h: h <n, the great common divisor of n and 4 is one}.

Step 2. For any s distinct elements of H,,, hi,ha, ..., hs, generate a n X s matrix
U = (uij) where u;; = ihj (modn) and the multiplication operation modulo n is
modified as 1 < u;; < n. Denote U by U(n,h), where h = (hy, ..., h) is called
generating vector of the U. Denote by G, , the set of all such matrices U (n, h).

Step 3. Find a generating vector &* with U (n, h*) € G, 5 such that it has the best
uniformity over the set G, 5. This U (n, h*) is a (nearly) uniform design U, (n*).

EXAMPLE 1. Forn =21 and s = 2, we have

Ha1={1,2,4,5,8,10, 11,13, 16, 17, 19, 20}.
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If the CD is chosen as the measure of uniformity, the design matrix U(21, h*) with
h* = (1,13) has the smallest CD-value over Gy1 7 and is a uniform design Us1(21%)
that is given as follows

12 3 45 67 8 9101112131415161718192021\’
135181021572012 417 9 114 61911 316 821/ -

When the number of H, is too small, the nearly uniform design obtained by the
above glp method may be far from the uniform design. In this case some modification
of the glp method can be applied. Instead of H,, we work on H,4 in Steps 1 and 2
and delete the last row of U(n + 1, hy, ..., hs) to form an n x s matrix, U say. All
such matrices U form a set, denoted by Gy . In Step 3, Gy,s is replaced by G . This
modification was suggested by Wang and Fang (1981) and Fang and Li (1995).

EXAMPLE 2. The number of elements in Hs = {1, 5} is 2. The nearly uniform design
Us(62) is not uniform from its plot. Besides, it is impossible to obtain Ug(6°), s > 2,
based on Hg. Note H7 = (1,2, 3,4, 5, 6. All nearly uniform designs Ug(6°), s < 6, can
be generated based on H;.

The cardinality of H, can be determined by the Euler function ¢(n). Let n =
py'---p;’ be the prime decomposition of n, where py, ..., p; are different primes
and ry, ..., r are positive integers. Then ¢ (n) =n(1 — %) (1= —1;). For example,
¢(n) =n—1if nis a prime, and ¢(n) < n/2 if n is even. The number of columns of
U-type designs generated by the glp method is limited to ¢ (n)/2 + 1 orp(n+1)/2+ 1
(cf. Fang and Wang, 1994, p. 208). The maximum number of factors is less than n/2 + 1
if the UD is generated by the glp method. Therefore, we need other methods that can
generating UD’s with more columns.

B. Latin square method

An n x n matrix with n symbols as its elements is called a Latin square of order n if
each symbol appears on each row as well as on each column once and only once. Any
Latin square of order n is a U-type design U (n; n") and any 5 columns of a Latin square
form a U-type design U (n; n®). Given n, a Latin square is always available. A leff cyclic
Latin square of order n is an n x n Latin square such that

Xip1=Lx;, i=1,...,n—1,

where x; is the ith row of the square and L is the left shift operator defined by
Liay,az,...,ap) = (az,a3,...,a,,a1).

For given n there are n! left cyclic Latin squares. We want to find a left cyclic Latin

square with the lowest discrepancy among all the n! left cyclic Latin squares. The
following algorithm was proposed by Fang, Shiu and Pan (1999).
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ALGORITHM 2 OF CONSTRUCTION OF A U, (n®)

Step 1. Find a Latin square, L = (l;;) = (I3, ..., 1,) that has the smallest discrepancy
among all n! left cyclic Latin squares of order n.

Step 2. Search s of n columns of the square, [;,,...,[; , to form a U-type design
U (n; n*) such that this design has the smallest discrepancy among all such U (n; n®)
designs. This design is a nearly uniform design U, (n*).

EXAMPLE 3. Forn =8 and s = 3 we find the cyclic Latin square

(1 2 5 4 7 3 8 6]
2547 3 861
547 38 61 2
4 7 3 8 6 1 25
73 861 2 5 4
3861 2 5 47
8§ 6 1 2 5 4 17 3

|6 1.2 5 4 7 3 8]

with the smallest CD-value 0.4358. For Ug(8°), columns of the design are chosen from
columns of the above Latin square

s = 2: columns 1 and 4 with CD-value 0.0696;

s = 3: columns 1, 2 and 6 with CD-value 0.1123;

s =4: columns 1, 2, 5 and 6 with CD-value 0.1601;

s = 5: columns 1, 2, 3, 6 and 7 with CD-value 0.2207.

Many known properties of cyclic Latin squares help in saving computing times
(Fang, Shiu and Pan, 1999).

C. Extending orthogonal design method
An orthogonal design, denote by L, (¢*), is a matrix of size n x s with ¢ symbols such
that each symbol in any column appears equally often and each pair of symbols in any

two columns appear equally often. There are some relationships between orthogonal
designs and uniform designs, such as

e Any orthogonal design, if it exists, can be obtained from a U-type design by the
pseudo-level technique.
o Any orthogonal design L,(g*) can be extended to a number of U-type designs. The

design with the smallest discrepancy among these U-type designs is a nearly uniform
design.

ALGORITHM 3 OF CONSTRUCTION OF A U, (n*). Suppose that L,(q°®) exists and let
r =n/q be the replicates of each level.

Step 1. For each column, replace » 1’s by a permutation of {1,...,r}, replace r 2’s
by a permutation of {r + 1,...,2r}; ... ; and replace r ¢’s by a permutation of
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{(g — Dr +1,...,qr}. This results a U-type design U(n; n®). Denote by O, ; 4 all
such U-type designs. .

Step 2. Find a U* € O, 5 4 such that it has the best uniformity over the set Oh,s,q- This
U* is a nearly uniform design U, (n*).

The above algorithm was proposed by Fang (1995). The reader can refer Fang and
Hickernell (1995) for discussion on the strength and weakness of these three methods.
For example, All (nearly) UDs U, (n®) with s < n can be generated by the Latin square
method, the glp method can not generate all these UDs U, (n*) with s > n/2 and the
extending orthogonal design method can produce only those (nearly) UDs U, (n®) where
L, (g*) exists for some g. All these methods can generate only U, (g*) for g = n. When
g < n we need to search UDs by some powerful optimization algorithms. Ma (1997¢)
proposed a method to construct uniform designs of form U,(g°) where n = q%. He
combined an orthogonal design L,(g*) and a uniform design U,(q®) to generate a
U, (n*). Uniform design tables with large number n can thus be obtained.

5.3. Searching uniform designs by optimization techniques

From Definition 2 it is clear that searching a UD for given (n, 5, ¢) is an optimization
problem. As the domain U(n; g*) is a finite set, all the classical optimization methods
do not work. In the past twenty years many powerful optimization algorithms have
been proposed. Among them simulated annealing, threshold accepting (TA) and genetic
optimization are popular ones. Winker and Fang (1998) used the TA algorithm for
searching UDs under the star discrepancy. Fang, Ma and Winker (2001) and Fang
and Ma (2001a) applied the TA algorithm for finding UDs under the centered L;-
discrepancy and wrap-around L;-discrepancy, respectively. This approach can also be
applied for searching UDs with mixed levels. All the UDs in the UD-web are obtained
by them. If the experimenter is urgent to use a UD that is not in the UD-web. It can be
randomly generated by a number of times and then the experimenter can choose the one
with the smallest CD-value.

5.4. Construction of uniform designs by combinatorial designs

There is a link between resolvable balanced incomplete block designs and U-type
designs (Liu and Fang, 2000; Fang, Ge, Liu and Qin, 2003a, 2003b). By this link a lot
of uniform designs U, (¢*),q < n and U, (qf‘ X qu) can be obtained from the theory of
combinatorial designs.

6. Computer experiments

The uniform design was motivated by three projects of computer experiments in 1978.
computer experiments. Hlustrated by a case study, here we introduce the use of UD
to computer experiments and modelling methods. The goal here is to seek a suitable
approximate model

y=8(x1,...,Xs) (6.1)
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which is close to the real one (2.3). For the modelling, many authors proposed a
number of methods. When the function g is a periodic, a Fourier regression model
is recommended. The spatial modelling technique of kriging (Koehler and Owen, 1996)
is based on a stationary Gaussian stochastic process and the Bayesian approach (Sacks,
Welch, Mitchell and Wynn, 1989; Morris, Mitchell and Ylvisaker, 1993) uses the prior
information. Like most Bayesian methods, the user may have difficulty in finding
an appropriate prior distribution. Fang and Wang (1994), on the other hand, prefer
polynomial regression models.

EXAMPLE 4. In the study of the flow rate of water from an upper aquifer to a lower
aquifer, the aquifers are separated by an impermeable rock layer but there is a borehole
through that layer connecting them. The model formulation is based on assumption of
no groundwater gradient, steady-state flow from the upper aquifer into the borehole
and from the borehole into the lower aquifer, and laminar, isothermal flow through
the borehole. The response variable y, the flow rate through the borehole in m3 /yr,
is determined by

2nT,[H, — Hj]

y= )
G+ wemorges + 1]

(6.2)

where the 8 input variables are as follows:

ry (m): radius of borehole

r(m): radius of influence

T, (m3/yr): transmissivity of upper aquifer
Ty(m>/yr): transmissivity of lower aquifer

H, (m): potentiometric head of upper aquifer
H;(m): potentiometric head of lower aquifer
L(m): length of borehole

Ky (m/yr): hydraulic conductivity of borehole

and the domain D is given by

ry € [0.05,0.15], r € [100, 500001,
T, € [63070, 115600], T, €[63.1,116],
H, €1990, 1110}, H; €700, 8201,
L €[1120, 1680], K, €[9855, 12045).

The input variables and the corresponding output are denoted by x = (x,..., x3)
and y(x), respectively. This example has been studied by Worley (1987), An and
Owen (2001) and Morris, Mitchell and Ylvisaker (1993). The latter used the Latin
hypercube design, maximin design, maximin Latin hypercube design and modified
maximin design. For comparing different models they used the mean square error
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(MSE) as the criterion, i.e.,
1 N 2
MSE =3 (y(x) = $(x0)", (6.3)
k=1
where xi,i = 1,..., N, are randomly chosen from the domain D and y(xy) is its

predicted value under the underlying model. The value of N is chosen to be greater
than 1000.

6.1. Design of experiment

From the effect of each variable to the output y from (6.2), we sort 8 input variables into
rw2L>2H,2H 2k 2T 2T, 27 6.4)

and put them into three groups: {Ry}, {Hy, H;, L, Ky} and {T}, T, r}. A justification of
this grouping will be given in Section 6.3. The number of levels of each variable in these
three groups is chosen as 16, 8, and 4, respectively. A uniform design table U3, (32%)
can be found on the UD-web. By the pseudo-level technique a Uz (16 x 84 x 43) table
can be generated and is in fact used for the study. The design and related output are
given in Table 8.

6.2. Quadratic regression model

As previously mentioned, several methods for the modelling have been proposed. For
this case study, Ho and Xu (2000) considered a centered quadratic model as follows.
From the professional knowledge it is suggests the use of a log transformation of log(r)
and log(ry). With the model selection techniques, a suitable submodel is obtained.
The residual plot of this submodel, however, indicates that some transformation for
y is also needed. They used log(y). By using the model selection techniques for the
transformed variables, we obtain a submodel that involves 25 terms. The ANOVA table
is given in Table 9. With 2000 random sampling in (6.3) we find its MSE = 0.293026
that is the same level with Morris, Mitchell and Ylvisaker (1993, p. 249), but they
need the derivatives at each experimental point. This model involves too many terms.
We thus delete the terms with minimum F-values. This is done by recalculating the
ANOVA table, deleting the term with minimum F-value, and continue this process
until all F-values are significantly large. The resulting model includes 9 terms whose
MSE = 0.268626. The ANOVA table is given in Table 10. The effect of variable r to
y is important to the Engineers (cf. Fig. 4), we thus add centerized log(r) term into the
model and the final model becomes

log(y) = 4.1560 + 1.9903(log(r,,) + 2.35443967732998)
—0.0007292 % (L — 1400) — 0.003554 % (H; — 760)
+0.0035068 % (H, — 1050)
+0.000090868 % (K, — 10950)
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Fig. 4. Contours of y = h(xy, Ky).

Table 11
ANOVA table (SAS output)
Analysis of Variance

Source DF Sum of Squares | Mean Square F Stat Prob > F
Model 10 13.1369 1.3137 ) 126225.959 0.0001
Error 21 0.0002 1.041E-05

C Total 31 13.1371
B Type III Tests

Source DF Sum of Squares | Mean Square F _Stat Prob > F
LOG_RW 1 10.2746 10.2746 | 987235.474 0.0001
L 1 0.3090 0.3090| 29694.9581 0.0001
HL 1 0.4615 0.4615| 44347.0990 0.0001
HU 1 0.2601 0.26011 24990.9369 0.0001
KW 1 0.0727 0.0727 6988.6817 0.0001
HUHL 1 0.0076 0.0076 725.7697 0.0001
L_2 1 0.0009 0.0009 81.9494 0.0001
HL_2 1 0.0013 0.0013 120.5167 0.0001
HU_2 1 0.0012 0.0012 111.9492 0.0001
LOG_R 1 7.671E-05 7.671E-05 7.3711 0.0130

whose ANOVA table is given in Table 11. This model has an MSE = 0.2578156. Ho
and Xu (2000) recommended this model as the final one.

6.3. B-spline function methods

The polynomial regression models discussed in the previous subsection are simple and
easy to learn. However, due to the multicollinearity among the variables, their squares
and cross products, the process of variable selection is unstable and presents some
difficulties to the user. The spline function has been well developed on modelling. Stone
(1994) and Stone et al. (1997) gave a comprehensive study on the use of polynomial
splines in multivariate function estimation. Following the idea, we introduce the
B-spline function method for modelling.

Leta=1 <t <--- <t = b be a fixed knot points on [a, b]. A function S(x)
defined on [a, b] is called a spline function of order m if § (x) is a continuously (m — 1)-
differentiable function and is a polynomial of order m in each interval [£j,2j+1). The
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B-spline basis on [a, b] of order p is defined by

1, 4 <x<tiy1,
Bio® =1, els; " (6.6)

X =1t
Bi,p(x) = “"‘"'—‘“Bi,p~l(x)
ti+p — 1
Litp+1 —X

Biyip1(x), p=12.... 6.7)
Litp+1 — tig1

The k-derivative of B; ,(x) can be iteratively calculated by

(k—1) k—1)
B<k)(x) _ p[Bi,p—l(x) _ Bi+1,p—1(x)
il Litp =t ligptl =ty

], k=1,2,.... (6.8)

When k =0 set B) (x) = B, (x).
Let B;, , be a B-spline basis. Then a B-spline function of order p is expressed as

k-1

c(x) = Z ¢i B p(x).

i=—m

Any continuous function f(x) on [a,b] can be approximated by a c(x) where ¢;’s are
estimated via the following least squares regression:

n k-1 2
minZ[f(xi)— Z CiBi,p(Xi):l ,

i=1 i=—m
where x;,i = 1,..., n, are n points on [a, b].
Let f(x1, ..., xs) be a continuous function on D. Without loss of generality, assume

D =C*=[0,1]°. A simple B-spline basis on C* is constructed by tensor products of
B; p as follows

5
B, px1, ..., x5) = [ | Bij.plx)),
2

where I ={i1, ..., is}. The function f(xi,...,x;) can then be approximated by

f(x;,...,xs)=ZC1P1,p(x1,...,xs).
1

In this study, p is taken as 3 and knot points are chosen as 0, 0,0,1/m,2/m,..., (m—
1)/m,1,1,1 where O and 1 are repeated p = 3 times and m is a positive integer.
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Let yx = f(xt) and x4, ..., x, are n points on C*. The least squares estimate of C;
minimizes Y ;_;(3°; C1 P, p(xk) — yx)*. However, such a solution is undesirable for
most statistical applications (see Fan and Gijbels, 1996, Section 2.6.2). A smoothing
spline solution is to minimize

n 2
Q=C‘)Z(ZC1PI(xk)"}’k)
k=1 1
s 2
+(1—w)2[ aﬁ,(}:czPI(x)) d,
1

i,j=1"10.1F

where o is a weight, and 3,-% ; denotes to take derivative with respect to x; and x;. The

smallest w and m are chosen such that | f (x;) — f(}?)l <gk=1,...,n,whereeisa
pre-assigned accuracy.

Let f (x1,...,xs) be a B-spline function approximation to the function g(]il yeees Xs).
For given x3, ..., x5, f can be considered as a function of x;. Denote by fiax(x1]x2,
..., Xxg) and fmin(xllxz, ..., Xs) the largest and smallest value of f(xl, ..., Xs) on
0<x; <1, and set

G =/ 1[fmax(x1|xz,...,xs)_fmin(XHXQ,...,xs)]dxz...dxs.
cs-

G can be viewed as a measure of contribution of x; to the function g. Similarly, we
can define G», ..., G;. For the flow rate of water example, we find

G, =139.5162, G, =329192, Gp, =32.5932,
Gu =315487, G, =15.7172, G =0.0287,
Gr, =0.0004, » =0.0003

that gives a justification of variable grouping and level of each variable choosing. Fol-
lowing Morris, Mitchell and Ylvisaker’s (1993) procedure, we study the function (6.2)
as a function of r, and Ky, on [0.05, 0.15] x [1500, 15000], denoted by y = h(ry, Ky),
and fix remaining inputs at their respective lowest values. Contours of y are shown in
the left portion of Figure 4. Consider the function (6.2) with 8 input variables and the
B-spline basis of order two for ry, and of order one for the rest of the variables. With
iteration we find that m = 1 and w = 0.99997 and that the variables r, 7, and T; can be
deleted due to their less influence to y. The predictive mean square error MSE is 4.45.

6.4. Comparisons among different design and models

In this subsection we compare the performances of different designs: Latin hypercube
design, maximin design, maximin Latin hypercube design, modified maximin design
and uniform design, under different models. The first four designs are studied by Morris,
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Mitchell and Ylvisaker (1993). The Bayesian approach used by Morris, Mitchell and
Ylvisaker (1993) needs to calculate derivatives, at each experimental points and to find
maximum likelihood estimators of the parameters in the correlation functions of the
model.

For comparing four different designs, Morris, Mitchell and Ylvisaker (1993)
considered prediction errors at 400 random samples in D and at the 256 corner points
of D. They plot the prediction errors in two separate figures. Their plots are put on
the left of Figures 5 and 6. Following their comparisons, plots of prediction errors for
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Fig. 5. Prediction errors at 400 random samples for seven design/models.
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Fig. 6. Prediction errors at 256 corner points for seven design/models.
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uniform design with quadratic model (6.5) and B-spline model discussed in the previous
subsection are placed at the fifth and seventh items of Figures 5 and 6. Obviously, the
B-spline model has large errors for the 256 corner points. This bias may be resulted
from small number of levels for some input variables. Ho and Xu (2000) employed
the table Uso(30%) to design 30 level-combinations with the B-spline model mentioned
above for modelling. The corresponding prediction errors for two sets of points are plot
on the sixth and seventh items of Figures 5 and 6.
From the above discussion along with Figures S and 6, we conclude that

(1) The modelling methods based on polynomial regression or B-spline models do not
require derivatives of the underlying function. Therefore, these methods can apply
to the experiment where the underlying model is unknown. This is very common in
most industrial experiments.

(2) From Figures 5 and 6, the quadratic regression model (6.5) is the best and the
modified maximin design is the second. The latter needs to calculate derivatives
of the underlying function at experimental points, however.

(3) The B-spline model based on the U3p(30%) design is better than the B-spline model
based on the Us(16 x 8% x 4%) design. It shows that the B-spline modelling method
needs more levels of the input variables.

(4) Considering the squared MSE value, the three designs used by Worley (1987) have
MSE = 1.892 = 3.5721, 2.452 = 6.0025, and 2.37? = 5.6169, respectively. Morris,
Mitchell and Ylvisaker (1993) reported that their modelling method applied to
Worley’s design resulted in MSE = 0.612 = 0.3721. Unfortunately, the MSE values
for their four designs were not reported. The quadratic regression model (4.5) has
MSE = 0.2578 while the B-spline model based on Us»(16 x 8* x 4) design has
MSE = 4.45 and the B-spline model based on Uso(30%) design has MSE = 4.27.

Besides the designs mentioned before, combining the uniform design and the Latin
hypercube sampling can produce other designs for computer experiments. Zhang and
Wang (1996) and Ma (1999) proposed such designs.

7. The connections between uniformity and other designs

Most experimental designs, such as simple random design, random block design,
Latin square design, fractional factorial design, optimal design and robust design
are concerned with randomness, balance between factors and levels of each factor,
orthogonality, efficiency and robustness. From the previous sections, we see that the
uniformity has played a key role in computer experiments. In this section we shall show
that uniformity is also a useful criterion in many classical designs.

7.1. Uniformity and isomorphism

Let d(n,q,s) be a factorial design of n run and s factors each having g levels.
The orthogonal designs Ly (q*) defined in Section 3.2 are special cases of factorial
designs. Two factorial designs are called isomorphic if one can be obtained from
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the other by relabeling the factors, reordering the runs, or switching the levels of
factors. Two isomorphic designs are considered to be equivalent because they share the
same statistical properties as a classical ANOVA model. Therefore, it is important to
identify design-isomorphism. For identifying two d(n, g, s) designs, a complete search
compares n!(g!)*s! designs from the definition of isomorphism. For example, to see if
two factorial d(12,2, 11) designs are isomorphic requires 12!1112!! ~3.9158 x 10'°
comparisons. Several methods have been proposed to reduce the complexity of the
computation. This includes Draper and Mitchell (1968, 1970), Chen and Lin (1991)
and Clark and Dean (2001). Unfortunately, those methods are either insufficient or
computational infeasible. Therefore, Ma, Fang and Lin (2001) employed the uniformity
to detect non-isomorphic designs.

A factorial design d(n, g, s) corresponds to an n X s matrix where the (i, j)-element,
d;j, corresponds to the level of the jth factor in the ith trial. Let Py = (p;;) where p;; =
(dij — 0.5)/q and M be a measure of uniformity. We define M(d(n, q, 5)) = M (Py).
In particular, if we choose CD or WD (see (5.7) and (5.8)) we can easily calculate
CD(d(n, q,s)) and WD(d(n, g, 5)). For simplicity, we use the CD as the measure of
uniformity.

For a given factorial design D =d(n, q,s) and k (1 <k <), there are (}) d(n, q, k)
subdesigns. The CD-values of these subdesigns form a distribution, denoted by Fi (D),
that is called the k-marginal CD-value distribution of D. Ma, Fang and Lin (2001)
pointed out that two isomorphic d(n, 2, s) designs have the same CD-value as well as
the same Fj distribution for 1 < k < 5. Based on this, they proposed the following
algorithm, called NIU algorithm, for detecting non-isomorphic d(n, 2, s) designs. Let
Dj and D, be two d(n, 2, s) designs.

NIU ALGORITHM

Step 1. Compare CD(Dy) and CD(D»), if CD(D1) # CD(D;) we conclude D and D,
are not isomorphic and terminate the process, otherwise go to Step 2.

Step 2. For k=1,s — 1,2,5 — 2,...,[s/2],s — [5s/2] where [x] denotes the largest
integer that is smaller than x, compare Fy(Dj) and Fi(Dy), if Fi(Dy) # Fi(D2) we
conclude Dy and D; are not isomorphic and terminate the process, otherwise go to the
next k-value of this step.

For example, we apply this algorithm to two L3y765(23!) designs studied by Chen
and Lin (1991). The process indicates: two designs have the same CD = 4.279; all the
k-dimensional subdesigns have the same CD-value for k = 1, 30, 2, 29; but Fog(Dy) #
F23(D7). It turns out that two designs are not isomorphic by implementing only a
few steps of the algorithm. It shows that the NIU algorithm is powerful in detecting
nonisomorphic designs. The above idea and algorithm can be extended to detect
factorial designs with higher levels (see Ma, Fang and Lin, 2001) and to investigate
the design projection properties (see Lin and Draper, 1992).

There is a close relationship between Hadamard matrices and orthogonal designs
with 2-levels. A Hadamard matrix, H, of order n is an n X n matrix with elements 1
or —1, which satisfies H'H = nl. Two Hadamard matrices are called equivalent if one
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can be obtained from the other by some sequence of row and column permutations and
negations. To identify two Hadamard matrices to be equivalent is a NP hard problem
when n increases. The profile method (cf. Lin, Wallis and Zhu, 1993) has been used
for detecting inequivalent Hadamard matrices. This method is not sensitive enough.
However, a Hadamard matrix of order n can be regarded n points in {—1, 1}". Recently,
Fang and Ge (2003) proposed an algorithm to detect inequivalent Hadamard matrices
based on so-called symmetric Hamming distances. The criterion used there is more
sensitive than the profile and has a close relation with several measures of uniformity.
As an application we apply the new algorithm to verify the inequivalence of the known
60 inequivalent Hadamard matrices of order 24 and to show that there are at least 382
pairwise inequivalent Hadamard matrices of order 36. The latter is a new discovery.

7.2. Uniformity and aberration

Fractional factorial designs are probably the most popular experimental designs. A ¢g* 7
fractional factorial design D, which has s factors of g levels and n = ¢°~7 runs, is
uniquely determined by p independent defining words. There are many useful criteria
for comparing fractional factorial designs, such as resolution (Box, Hunter and Hunter,
1978), minimum aberration (Fries and Hunter, 1980) and estimation capacity (Cheng
and Mukerjee, 1998). See Dey and Mukerjee (1999) for a comprehensive review. In this
subsection we discuss connections between the uniformity and the aberration.

A word consists of letters which are names of factors denoted by Fi, ..., Fy. The
number of letters in a word is called the word-length and the group formed by the p
defining words is the defining contrast subgroup. The vector W = (A (D), ..., As(D))
is called the word-length pattern, where A;(D) denotes the number of words of length
i in the defining contrast subgroup of D. The resolution of D is the smallest ¢t with
positive A;(D) in its word length pattern. A resolution III design is a design in which
no main effects are aliased with any other main effect, but main effects are aliased
with 2-factor interactions and 2-factor interactions may be aliased with each other.
A resolution IV design is a design in which no main effect is aliased with any other main
effect or with any 2-factor interaction, but 2-factor interactions are aliased with each
other. For example, a 23~ design with defining relation I = ABC is of resolution III;
a 241 design with defining relation I = ABC D is of resolution IV; and a 25! design
with defining relation / = ABCDE is of resolution V. Obviously, designs with high
level resolution have better estimation ability.

Two designs with the same resolution may have different performance in estimation.
The word-length pattern can still distinguish designs that have the same level of
resolution. Given two regular fractions of a ¢* 7 factorial, D; and D;, we say that
D1 has less aberration than D; if there exists an integer &k (1 < k < s) such that

Ai(D1)=A1(D7), ..., Ar-1(D1)=Ar-1(Dy), Ar(D1) < Ax(Dy).

A design has minimum aberration if there is no other design that has smaller aberration
than this design. For given g, s, p one searches for the minimum aberration ¢*~? design.
The minimum aberration has been considered as a popular criterion for comparing
fractional factorial designs.
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Recently, Fang and Mukerjee (2000) found a connection between the two apparently
unrelated areas, the uniformity and the aberration, in regular fractions of two-level
factorials. They proved the following

THEOREM 2.

et~ )+ G |54

where D is a regular fraction of a 2° factorial involving n = 2°"P runs.

From this relation we can see that the minimum aberration and the CD are almost
equivalent for regular factorial 2°~7, but it is true that the CD criterion can still
distinguish minimum aberration designs. Fang and Ma (2002) extended this connection
to regular fraction 3°~! designs and found that there exists essential difficulties to
find more general results under the CD. Alternatively, Fang, Ma and Mukerjee (2002)
employed the wrap-around L;-discrepancy as the measure of uniformity. They gave
analytic connection between the WD and the aberration for any regular factorials 2°~7
and 3°7 as follow.

THEOREM 3. Let D be a regular fractional factorial design ¢°™* (g =2 or 3). Its
square WD-value can be expressed in terms of the word length pattern

(3) T P+ (3) - (3) ifg=2,
@[ +23 054 (ﬁ)jAj(D)] -3, ifg=3. ‘

Such a connection provides a way for searching minimum aberration designs by
uniformity that can significantly reduce complexity of the computation.

(WD(D))* =

7.3. Uniformity and orthogonality

The orthogonal design requires a good balance between levels of each factor and
between level-combinations of any two factors, in other words, it requires one and two
dimensional projection uniformity. The uniform design concerns with one dimension
projection and s-dimensional uniformity. These two kinds of designs should have some
relationships, some of which have been mentioned in Section 3.2.

Fang and Winker (1998) found that many uniform designs with a small number
of runs, such as Us(2%), Ug(27), Upn(2!), U16(21), Us(3%), U12(3 x 2%), U16(4°),
U4 x 21%), U1(2 x 37) and U25(56), are also orthogonal designs. This fact shows
that many existing orthogonal designs are also uniform designs under the centered
L;-discrepancy and can be founded by a computer search. They conjectured that any
orthogonal design is a uniform design under a certain discrepancy. Ma, Fang and Lin
(2003) proved that the conjecture is true for complete designs and for 25~! factorials
if the centered Lj-discrepancy is chosen as the measure of uniformity. A design is
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called complete (or full) if all the level-combinations of the factors appear equally often.
Recently, Fang and Ma (2001a, 2001b) proved that the conjecture is true for complete
designs if the wrap-around L-discrepancy (5.8) is used as the measure of uniformity.

7.4. Uniformity and confounding

Two isomorphic factorial designs have been considered to be equivalent in the sense
that they have the same statistical performance in ANOVA model. However, two
isomorphic designs may have different uniformity. For example, two Lg(3*) in Table 12,
denoted by D; and D, are isomorphic to each other, but their CD-values are 0.050059
and 0.0493645, respectively. Suppose that there are three factors A, B, and C each
having three levels in an experiment. We can choose any 3 columns of D;/D; for the
factors. Denote by dy and d; be designs formed by the first three columns of D; and
D3, respectively. Denote the linear and quadratic main effects of A by A; and Ag,
respectively (similarly, for the notations By, By, Cy, and Cy). The interaction A x B
between A and B, if it exists, can be split into 4 terms A;B;, A;B,, AgB;, and A, B,
(Box and Draper, 1987, pp. 236-239). When there are interactions A x B, A x C and
B x C in the experiment, it is impossible to separate the true interactions from the main
effects. For the use of d3, the confounded situations are given by the alias statements:

A1 =0.5B,Cy +0.5B,C,
Ay =1.5B,C; —0.5B,C,,
By =0.5A,C4 +0.5A,Cy,
By = 1.54,C; —0.54,C,,
C1=0.5A1B; +0.5A,By,
C,=15A1B —0.5A,B,.

On the other hand, with the use of d}, the alias statements are

A;=—0.75B,C; — 0.25B/C, +0.25B,C; — 0.25B,C,,
Ag =0.75B,C; — 0.75B/Cy +0.75B,C; +0.25B,C,,
B = —0.75A,C; — 0.25A/Cy +0.254,C1 — 0.25A,C,,
By =0.75A1C; —0.75A1Cq +0.754,C; +0.254,C,,
Cr=—0.75AB, +0.25A;By +0.25A,B; +0.25A,B,,
Cy=—0.75A1B; —0.75A;B; — 0.75A, B, +0.25A, B,.
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Table 12
Two Lg(3%) tables
No. D 1 D2
1 1 1 1 1 1 1 1 2
2 1 2 2 2 1 2 3 1
3 1 3 3 3 1 3 2 3
4 2 1 2 3 2 1 3 3
5 2 2 3 1 2 2 2 2
6 2 3 1 2 2 3 1 1
7 3 1 3 2 3 1 2 1
8 3 2 1 3 3 2 1 3
9 3 3 2 1 3 3 3 2

If the higher-order interactions A; By, Ag B, A¢By, ..., B, C,4 can be ignored, the alias
statements for dp become

Ag =15B,Cy,
dy: { B; =1.5A,C,
Cy=1.5A,B;.

In this case we can estimate all the linear effects A;, B; and C; without any confounding.
Now, the alias formulas for d; become

A;j=-0.75B,C;, A,=0.75B,C,,
dy: { Bi=-0.75A,C;, B, =0.75A,C,
C;=-0.75A:B;, C4=-0.75A;B;.

In this case the main effects are confounded with the interactions. Obviously, the design
d; is better than dy in the sense of confounding. In fact, the design D, was obtained
by Fang, Lin, Winker and Zhang (2000) as a uniform design Us(3%). There are four
choices of choosing three columns from Dy/D,. We can show that there is only one
choice from D; that has the same confounding situation to d; and the rest three choices
have the same confounding situation to d;. On the other hand, all the four choices from
D; have the same confounding situation to dp. We thus conclude that D, is better than
Dj in the sense of confounding. From this example, we propose the following concept.

DEFINITION 5. For given (n,q,s) an OD L,(q°) is called an uniformly orthogonal
design and is denoted by U L,(g*) if it has the smallest CD-value over all such OD’s.

Obviously, one might choose other measures of uniformity to replace the CD in
Definition 5. Several uniformly orthogonal designs for g; > 2 are obtained in Fang and
Winker (1998). Properties of these designs are yet to be studied. Hickernell and Liu
(2002) used the reproducing kernel approach to define a new discrepancy, called the
discrete discrepancy (DD for short). They show that the uniform designs limit aliasing.
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The DD played an important role for construction uniform designs via combinatorial
designs (Fang, Ge, Liu and Qin, 2003b).

7.5. Uniformity in supersaturated designs

Supersaturated designs are fractional factorials in which the number of estimated (main
or interaction) effects is greater than the number of runs. In industrial and scientific
experiments, especially in their preliminary stages, very often there are a large number
of factors to be studied and the run size is limited because of expensive costs. However,
in many situations only a few factors are believed to have significant effects. Under this
assumption of effect sparsity, supersaturated designs can be effectively used to identify
the dominant factors. Most studies have focused on 2-level supersaturated designs,
including Lin (1993, 1995), Wu (1993), Nguyen (1996), Li and Wu (1997), Chen and
Lin (1998), Cheng (1997), Yamada and Lin (1997), Deng, Lin and Wang (1999), Liu
and Zhang (2000), Liu and Hickernell (2002). For multi-level supersaturated designs,
see, Yamada and Lin (1999) and Yamada et al. (1999) on 3-level designs.

It is clear that all supersaturated designs can not be completely orthogonal among
columns of the design. The block orthogonality (meaning that columns of the design
are grouped as blocks and columns in each block are orthogonal) has been considered
by many authors. Fang, Lin and Ma (2003b) proposed a way that collapses a uniform
design to an orthogonal array for construction of multi-level supersaturated designs.

There are many criteria, such as Ave(s?) or E(s?), Ave(]s]), Smax, and ave( x2) for
construction of supersaturated designs in the literature. These criteria are based on
correlations among the design columns. Ma, Fang and Liski (2000) defined a criterion,
called the (¢, 6) criterion, where ¢ and 6 are two kinds of functions with some given
properties. An important (¢, §) criterion is the Dy ¢ criterion there. It is defined as

Dyo= Y. féj/(Z), a1

1<i<jgm

where

B i 9 . n \2
=3y (nff.i) - ————) : (7.2)

u=1v=1 9i4j
and n{{3 is the number of (u, v)-pairs in (x', x/), and n/(giq ;) is the average frequency
of level-combinations in each pair of columns i and j. It is obvious that Dy g = 0 for
an orthogonal array. Fang, Lin and Liu (2003) proved that the E(s2) and avex? criteria
are in fact special cases of the Dy ¢ criterion, and they showed the equivalence between
Dy ¢ optimality and uniformity of any supersaturated design. They also proposed a
way for construction of supersaturated designs with mixed levels. More supersaturated

designs were obtained by the combinatorial approach (see Fang, Ge and Liu, 2003,
Fang, Ge, Liu and Qin, 2003b).
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7.6. Uniform design in quality engineering

Quality engineering has received a great deal of attention in the last two decades.
Taguchi’s method has been widely used in design of quality engineering (see Taguchi,
1986). The parameter design plays an important role in modern quality engineering.
The orthogonal design tables are commonly used there. The parameters (experimental
variables) are arranged in the inner (array) table, while the noise variables are
accommodated in the outer (array) table. Since the roles of inner and outer arrays are
very different, Wang, Lin and Fang (1995) has proposed the use of uniform design for
the outer array.

Denote inner and outer tables by L, (g*) and L,,(p"), respectively. Then the total
number of runs is N = nm. Even when both n and m are moderate, the number of runs
becomes too many for the experimenter. Lo, Zhang and Han (2000) suggested to use
two uniform design tables replacing two orthogonal design tables for the inner and outer
tables. They gave three case studies, among which the Wheatstone Bridge is a good
representative example. Both inner and outer tables were chosen to be Lig(23 x 311).
As a result the total number of runs is 36 x 36 = 1269. Lo, Zhang and Han (2000)
used Uy3(13%) and U 12(1219) for the inner and outer tables with a total number of runs
12 x 13 = 156, by which they found a result mote efficient than the results by 1269 runs.
This indicates that there is a great potential of applications of uniform designs to quality
engineering.

7.7. Uniform design in chemistry and chemical engineering

There are high potentials for the applications of the uniform design in chemistry
and chemical engineering, because chemistry is a field of science which heavily
depends on experiments. Lee et al. (1997) applied the uniform design to capillary
electrophoresis. The capillary electrophoresis is an useful analytical instrument in
chemistry, biochemistry and medicine, because of its high resolution, short analysis time
and little necessary sample amount. The artificial neural networks (ANN) are useful
for dealing with non-linear problems. Zhang et al. (1998) studied nonlinear systems in
chemistry and chemical engineering. and have applied the UD to ANN. They found
that the UD provides better estimates than other designs and are robust against model
assumptions. Atkinson et al. (1998) discussed the possibility of the use of D-optimal
designs to the kinetics of reversible chemical reaction. Xu, Liang and Fang (2000)
gave comparisons among D-optimal, orthogonal, and uniform designs for this chemical
reaction and found that the uniform design is the robust. Comparisons on UD with other
types of designs can also be found in Simpson, Lin and Chen (2001). Ling, Fang and Xu
(2001) gave a comprehensive review on applications of UD in chemistry and chemical

engineering.
8. Summary and discussion

The uniform experimental design is one kind of space filling designs. It seeks its
design points to be uniformly scattered on the experimental domain. In this chapter,
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we have introduced the fundamental idea of the uniform design and have tabulated
most uniform design tables on the website at http://www.math.hkbu.edu.
hk/UniformDesign for the practitioners. Some industrial applications of uniform
design are given. In particular, the applications to computer experiments are discussed
in details. Note that uniform design requires all design points distributed uniformly in
all dimensions, while the popular Latin hypercube sampling requires all design points
uniformly distributed in each dimension.

The theoretical aspects of the uniform design were also given: from the measures of
uniformity to the theoretical properties and construction methods of uniform design.
Furthermore, it is shown at the end of the chapter that the uniformity criteria is
intimately connected with many other design criteria, such as orthogonality, aberration,
design isomorphism, estimation capacity, model robustness, and supersaturated design.
Thus, minimizing uniformity will automatically optimize other design criteria in many
situations. This clearly demonstrates the superiority of uniform design. Due to limited
space we do not introduce statistical models for uniform designs. The interesting reader
can refer to Hickernell (1999), Xie and Fang (2000) and Hickernell and Liu (2002).
They show that the uniform design is the best in a certain sense.

The uniform design can be utilized as

a factorial design with model unknown,

a space filling design for computer experiments,

a robust design against the model specification, and
a design of experiments with mixtures.

Advantages of uniform designs include

more choices for the users,

many designs tables to be provided,

both factorial and computer experiments can be applied, and
less information of the underlying model is required.

The use of UD is considered to be relatively novel endeavor. We hope that this
chapter will provide the practitioners and researchers a new class of design useful for
their work. As previously mentioned, there are many interesting theoretical research
problems in this area, we welcome more people to join us for the future study.
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