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Industrial Experimentation for Screening

Dennis K. J. Lin

1. Introduction

Industrial managers are becoming increasingly aware of the benefits of running
statistically designed experiments. Statistical experimental designs, first developed by
Sir R. A. Fisher in the 1920’s, largely originated from agricultural problems. Designing
experiments for industrial problems and for agricultural problems are similar in their
basic concerns. There are, however, many differences. The differences listed in Table 1
are based upon the overall characteristics of all problems. Exceptions can be found in
some particular cases, of course.

o Industrial problems tend to contain a much larger number of factors under investiga-
tion and usually involve a much smaller number of runs in total.

o Industrial results are more reproducible; that is, industrial problems contain a much
smaller replicated variation (pure error) than that of agricultural problems.

o Industrial experimenters are obliged to run their experimental points in sequence and
naturally plan their follow-up experiments guided by previous results. In contrast,
agricultural problems harvest all results at one time. Doubts and complications
can be resolved in industry by immediate follow-up experiments. Confirmatory
experimentation is readily available for industrial problems and has become a routine
procedure to assess validity of assumptions.

e The concept of blocking arose naturally in agriculture, but often is not obvious for
industrial problems. Usually, industrial practitioners need certain specialized training

.to recognize and handle blocking variables.

e Missing values seem to occur more often in agriculture (mainly due to natural losses)
than industry. Usually, such problems can be avoided for industrial problems by well-
designed experiments. '

The design method considered in this chapter suggests some screening methods for
industrial problems involving a large number of potential relevant factors. It may not be
an appropriate method for some agricultural problems.

Consider the simple fact that when there is an effect, there is a cause. Quality engi-
neers are constantly faced with distinguishing between factors which have substantial
effects (causal or “active” factors) and those which do not have a substantial effects
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Table 1
Differences between agricultural and industrial experiments

Subject Agriculture Industry
Number of factors Small Large
Number of runs Large Small
Reproducibility Less likely More likely
Time taken Long Short
Blocking Nature Not obvious
Missing values Often Seldom

(inert of “null” factors). The null factors are then adjusted appropriately to lower the
cost; while the active factors are adjusted appropriately to yield better quality. To distin-
guish between them, a large number of factors can often be listed as possible sources of
potential effects. Preliminary investigations (e.g., using subject-matter knowledge) may
quickly remove some of these “candidate factors”. It is not unusual, however, to find
that more than twenty sources of effects exist, and among those factors only a small
portion are actually active. The goal here is to apply the Pareto principle of separat-
ing the vital few effects from the trivial many. A problem frequently encountered in this
area is how to reduce the total number of experiments in such a screening structure. This
is particularly important in situations where the cost of an individual run is expensive
(e.g., regarding money or time). With powerful statistical software readily available for
data analysis, there is no doubt that data collection is the most important part of such

problems.
We initially consider an experimental situation in which a response y depends upon
k factors x1, .. ., xx with a first order relationship of the form

y=Po+pixi+ -+ fxk+e=XB+e¢,

where y is an n x 1 vector of observations, the design matrix X is n x (k + 1) whose
jthrow is of the form (1, x1j, x25, ..., %kj), J =1, 2,...,n, Bisthe (k+1) x 1 vector
of coefficients to be estimated, and ¢ is the noise vector. In a two-level factorial design,
each x; can be coded as %1 (or simply =). The design is then determined by then x k
matrix of elements 1. The ith column gives the sequence of factor levels for factor x;;
each row constitutes a run. When k = n — 1, the design is called a saturated design and
the design matrix X is an n x n square matrix. Note that n = k + 1 is the minimal number
of points (rows) required to estimate all coefficients of interest (the B;’s). Typically,
many possible factors are suggested for investigation, but it is often anticipated that
only a “small” subset of these will be “active”. Assume there are n experimental
runs and k factors under study, of which p are active. Let A = {j1, j2,..., jp} and
N = {jp+1,---, jx} denote indexes of active and inert factors, respectively, so that
AUN =1{1,...,k} = S. In the multiple hypothesis-testing framework, we have null
and alternative pairs H;: f; =0 and H]?: Bj # 0 with H; true for j € N and H]? true
for j € A.
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In this chapter, we discuss screening designs that are useful for finding the g; for
j € A. The chapter is organized as follows. Section 2 introduces some popular designs
for screening purposes. These are minimal-point or near minimal point designs. This
includes the 2;?" series designs, Plackett and Burman designs, alphabetic optimality
designs, T-optimal design, regular simplex, p-efficient designs, and uniform designs.
Section 3 discusses the usefulness of supersaturated designs. A supersaturated design
is essentially a fractional factorial design in which the number of factors exceeds
the number of runs. Section 4 provides some additional designs which are useful for
computer experiments. The common equal variance assumption Var(g) = o2 is made
in Sections 2-4. Section 5 discusses the impact of dispersion effects (when the equal
variance assumption does not hold) when analyzing fractional factorial designs.

2. Screening designs

Screening designs are typically used in the initial stages of an experimental investiga-
tion. Because of their relative simplicity, the 27 fractional factorial designs are popu-
lar in practice. A fractional two-level design is one that employs only a fractional of the
complete 2 runs. Many such designs use a 277 fraction of the whole 2% runs and have
been designated 2¥~ 7 fractional factorials. Strictly speaking, however, any selection of
the 2% runs forms a fractional design, but not necessarily a 2k=P fraction. Two-level
factorial and fractional factorial designs have been used for many years, certainly since
Yates (1935). A large compilation of 2k—P designs was made by the National Bureau of
Standard (1957), for example.

An important characteristic of a 2k=P design is its resolution, a concept recognized
by Bose (1947) and Rao (1947) and defined by Box and Hunter (1961) as follows:
“A design of resolution R is one in which no p factor effect is confounded with any other
effect containing less than R — p factors.” Therefore, a resolution III design permits
the estimation of all main effects when (two- or higher-order) interaction effects are
negligible. Because of its simplicity and orthogonality, the two-level fractional factorial
design of resolution I, denoted by 2’{1;1’ , is probably the most popular screening design.
In general, it can study n factors in n — 1 runs, where n is power of two. This may be
feasible for many industrial experiments. These designs are available in many design
textbooks and statistical software packages.

In this section, we will introduce some other advanced screening designs. This
includes Plackett and Burman (PB) designs, p-efficient designs, regular simplex
designs, optimal designs, T-optimal designs, and uniform designs. The 2’{1;” design is
only available when the run size n is a power of two. The Plackett and Burman design
which can be viewed as a special class of Hadamard matrices, however, is available
for any n that is a multiple of four. Compared to the regular 2’{pr design, the Plackett
and Burman design has a much more complicated alias structure. The regular simplex
design and the T-optimal design are both orthogonal designs, but give up the two-level
property. On the other hand, the p-efficient design keeps the two-level property, but
does not have perfect orthogonality. The optimal design requires prior knowledge of
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the underlying model, and the uniform design is constructed based on the uniformity of
the design points in the design space.

2.1. Plackett and Burman design

Plackett and Burman (1946) provided a series of two-level fractional factorial designs
for examining n — 1 factors in n runs, where n is a multiple of four and n < 100.
They omitted the case n = 92 which was later provided by Baumert, Golomb and Hall
(1962). When only main effects exist, these designs estimate all of them. Moreover,
they are available for all run sizes that are a multiple of four (versus a power of two as
in a 2k=P design). PB designs are thus extremely useful in screening situations.

Construction of Plackett and Burman designs
A 12-run Plackett and Burman design can be obtained as follows:

1. Write down the set of signs + + — + + + — — — + —, provided by Plackett and
Burman (1946).

2. Permute the signs in 11 rows total, by taking the sign from the right hand side and
moving it to the left-hand side.

3. Add a 12th row of all minus signs.

i

+ + -+ + + - - - 4+ -
+ -+ + + - - - + - +

-+ 4+ + - - - + - + +

+ + - - -+ - + 4+ -

+ + - - - 4+ - 4+ + - +

+ - - -+ - 4+ + - + +
PBo=|_ _ _ 4 - 4+ 4 - + + +
- - 4+ -+ + -+ + + -

+ -+ + - + + + - -

+ -+ + -+ + + - - -

-+ + -+ + + - - - +

For n < 24, all of the Plackett and Burman designs can be obtained by such a cyclic
permutation. The signs for the first rows are:

n=8+++—+——

n=12++—+++———+-—
n=16++++—+—++-—+-———
n=204+——++++—t—t————F+—

n=244++++—t—t+t-——FFt——F—t————

For n a power of two (e.g., n = 8 and 16), we obtain a standard 2k=P design. Note
that Plackett and Burman designs can be viewed as a special class of Orthogonal Array.
A complete list of OAs is given in Hedayat, Sloane and Stufken (1999) and can be found
at the website http: //www.research.att.com/"njas/oadir/.
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Table 2
Projection of a 12-run PB design into ¢ dimensions

q Design Description

2 2.1 22 %322 design with 3 replicates)
3.1 24 %23 23 design plus 23-1 design)
4.1 Add one more runs to form a 2}"\7 ! design

Add five more runs to form a 2% design
5 5.1 Add two more runs to form a 2%?2 design
Add six more runs to form a 2?,"1 design
52 Add two more runs to form a Zfﬁz design
Add eight more runs to form a 2%7 ! design

Add ten more runs to form a 2%,'1 design

Projection properties

When an n-run screening design is employed, it is expected that only a subset of
factors be important. This permits the use of fractionated designs with complicated alias
structures. The alias structure of PB designs can be found in Lin and Draper (1993).
After the initial analysis, the whole design is then projected into a lower-dimensional
space which contains only the g apparently important factors. The projection properties
of PB design are worth mentioning.

To see what the projection of the 12-run design is in any g of the 11 factor
dimensions, we select g columns and examine the design that results by ignoring the
other 11 — g columns. Table 2 summarizes the situation of n = 12 runs and ¢ < S5.
An important aspect of this table is that, for ¢ < 4, only one projected design type is
obtained apart from variations caused by changes of signs in the columns. For details
and projection in larger PB designs, see Lin and Draper (1992, 1995).

2.2. Optimal design

The problem of selecting a suitable design is a formidable one (see Box and Draper,
1975). Many design criteria have been proposed for choosing the design matrix X, or
for comparing design matrices. Essentially, most of them deal with the eigenvalues of
the matrix X’'X, A1, A2, ..., At. The major alphabetical optimality criteria are:

D-optimality: maximize | X' X || = Ay X Ay X --- X Ag.

A-optimality: minimize trace(X'X)~! = 3%_ a7l

E-optimality: maximize the smallest eigenvalue of the X’ X matrix.

G-optimality: minimize the maximum prediction variance over the operation region.
V-optimality: minimize the average prediction variance over the operation region.

More (generalized) design optimalities can be found in Kiefer (1959), or more recently
Pukelsheim (1993). In essence, given the underlying model and the optimality criterion,
any modern optimization technique can be used to generate an optimal design for the
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practitioner. However, the resulting design may not have desirable design properties,
such as orthogonality, few levels in each factor, symmetry, etc., as in a an-p design.

The problem of finding a D-optimal design has been very thoroughly explored
mathematically; two early articles are by Hotelling (1944) and by Mood (1946). For
two-level saturated D-optimal designs, the problem becomes finding an n x n matrix
with all its elements being either 1 or —1 such that its determinant is maximized. Such a
“det-max” matrix problem has received a great deal of attention in the literature. Many
of the resulting designs are available in software. If the underlying first-order design is
believed to be true and if the optimality criterion is appropriate, these optimal designs
can be very helpful.

The practical value of saturated D-optimal designs, apart from Plackett and Burman
(1946) designs, is worthy of further investigation. First, these designs do not contain
an equal number of high-level and low-level values. This can be quite disturbing
to experimenters. The nonequal occurrence property implies that the factor is being
partially confounded with the constant term (the column with all +’s), which is usually
significantly different from zero. Second, unlike orthogonal designs, these designs lack
similarity relationships among all the columns. For example, the correlations between
every pair of columns are not necessarily the same. This raises questions about which
factors to assign to which columns and whether it matters. This leads to the study of
p-efficient and T-optimal cyclic designs, as will be discussed below.

2.3. p-efficient design

For screening situations, Lin (1993a, 1993b) argued that the focus should be on the
potential projective models, rather than the full model. This section discusses some
practical concerns in choosing a design and presents some first-order saturated designs
having two desirable properties: (near-) equal occurrence and (near-) orthogonality.
These saturated designs are shown to be reasonably efficient for estimating the
parameters of projective submodels, and thus are called p-efficient designs.

Much theoretical work has been done in this area to select designs that meet certain
optimization criteria. Note that a typical preliminary investigation contains a large
number of potentially relevant factors, but often only a few are believed to have actual
effects. Once these actual effects are identified, the initial design is then projected into
a much smaller dimension. In such a screening situation, considering the optimality
properties based upon the full model may be irrelevant.

An optimal (D-optimal, for example) design for the full model is not necessarily
optimal for the submodel that contains only the active factors. Since we do not know
in advance which factors will be important, it is reasonable to have designs that are
balanced in all factors. This naturally leads to the desirability of the (near-) equal
occurrence and (near-) orthogonality properties as explained below.

(1) (Near-) equal occurrence. For each factor, both high- and low-level values are
usually of equal interest, and each experimental result, y;, should have equal
influence. This leads to the equal occurrence property — an equal number of high-
level and low-level points for each factor in a design. When # is odd, however, the
equal occurrence property is unattainable. We thus seek a design to be as near to
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equal occurrence as possible by specifying that the numbers of +’s and —’s should
differ by no more than one. )

Without loss of generality, for odd n, we assume that there are (n + 1)/2 +’s
and (n — 1)/2 ~’s. Denote the largest correlation with the constant term among all
factors by ¢ as a measure of equal occurrence. A large value for ¢ is undesirable.
The designs given here have ¢ = 0 for even n and ¢ = 1/n for odd n.

(2) (Near-) orthogonality. Orthogonality was considered as an important design princi-
ple by R. A. Fisher and F. Yates back in the 1920’s. The degree of nonorthogonality
between factors x; and x; can be measured by s;; = ZZ:l XiuXju (sij = 0 implies
orthogonality). Even if circumstances are such that exact orthogonality is unattain-
able, it is still preferable to make the design as nearly orthogonal as possible. Denote
the largest |s;;| among all pairs of factors for a given design by s (s > 0). We thus
desire a design to have a minimum value for s. Under the equal occurrence assump-
tion, it is shown that s;; = n (mod 4), namely that the smallest s = |s;;| possible
are 0, 1,2, and 1 for n =0, 1,2, and 3 (mod 4) respectively. If two designs have
the same value of s, we prefer the one in which the frequency of such s is smaller.
Thus, we minimize the the average of 52, denoted by ave(sz). For a specific design,
ave(s?) is computed by Y"s? fi /("5 "), where f; is the frequency of s; of all (")
pairs of columns. This criterion was first proposed by Booth and Cox (1962) in the
context of supersaturated designs (see Section 3). We see that when n = 0 (mod 4),
the Plackett and Burman designs are optimal in the sense of meeting both of these
requirements.

Now, consider a design’s projective property, i.e., consider the submodel that
contains only the ¢ < k = (n — 1) active factors. The projective design in any p of the k
factor dimensions will always preserve the original (near-) equal occurrence property
and (near-) orthogonality, no matter which ¢ factors are designated as the survivor
columns. Moreover, these designs have high d-efficiency in terms of the reduced model,
when p is small, e.g., ¢ < 5. Because of this property, we call them p-efficient designs.

Consider the case n = 7 to investigate six factors, as an example. Table 3 gives the
D-optimal and the p-efficient designs. Suppose two factors are found to be important
(the first two columns, say). The D-optimal design for the full model (see Williamson,
1946) could then project into (+ — + — + + +)’ and (+ + + — — — —)’ whose

Table 3
The d-optimal and the p-efficient designs for n =7

No. d-optimal design p-efficient design

X1 X X3 X4 X5 Xg Xy X9 X3 X4 X5 xXq6

1 1 1 1 1 1 1 -1 -1 -1 -1
1 1 -1 -1 1 -1 -1 1 1 -1 -1
1 -1 -1 -1 -1 -1 -1 -1 -1 1 1
-1 -1 1 1 -1 -1 1 -1 1 -1 1
-1 1 -1 1 -1 -1 1 1 -1 1 -1
-1 1 1 -1 -1 1 -1 -1 1 1 -1
-1 -1 -1 -1 1 1 -1 1 -1 -1 1

N B W -
|
_—
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731
X ;ubX sub = [3 7 1:| is no longer D-optimal for the submodel. On the other hand,
117

the p-efficient design results in X ;ubX sub = 81 — J which is optimal in many senses
(including D-optimality), no matter which two columns are selected. Furthermore, the
first design column for the D-optimal design consists of two —’s and five +’s. Thus, the
experimenters may be confused as to which level to be assigned as +. For larger n, the
problem is even more severe.

The fact that saturated designs are often used in screening situations where it is
expected that there only will be a few important factors leads to the practical value of
these designs. The p-efficient designs discussed here are attractive because their (near-)
equal occurrence property and (near-) orthogonality are preserved when projecting
into ¢ < k dimensions. Further, for estimating from a submodel, it is shown that
these designs are more efficient than D-optimal designs. Even for the full model, the
D-optimal designs are not substantially more efficient than the p-efficient designs.

D-optimality has an appealing property of invariance under a nonsingular linear
transformation, a property clearly possessed by the p-efficient design. This is not true
for most of the other optimalities (including A-, E-, G-, L-, and R-optimality; see Kiefer,
1959, p. 294). We note that blindly following a single optimality criterion is dangerous,
although the p-efficient designs should perform well in general because of their better
balance property. The p-efficient designs for n < 30 are given in Lin (1993b).

2.4. Regular simplex design

Orthogonality is probably one of the most important properties for designed experi-
ments. For extreme economy of experimentation, a class of orthogonal design was pro-
posed by Box (1952), called regular simplex design. It was shown in Box (1952) that
the n = k + 1 design points must be distributed over a k-dimensional sphere, centered
at the origin, radius (n — 1)!/2, in the x-space, in such a way that the angle subtended
at the origin by any pair of points is the same and has cosine (—1/(n — 1)). Thus the
design consists of the vertices of a regular k-dimensional simplex. One particular type
of orientation is given in Table 4.

Table 4
Regular simplex design for & factors

u Xiu X2u Xku
1 -1 -1 -1
2 1 -1 -1
3 0 2 —1
4 0 0 -1
n 0 0 k
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For example, the design for k =3 is

-1 -1 -1
1 -1 -1
0o 2 -1
0 0 3

After standardizing (so that the length of each design column is one), the design
becomes

-2 -v2]3 -1/v3
V2 =273 -1/3
0 2273 —1/3
0 0 V3

2.5. T-optimal design

Although orthogonality may be one of the most important features in selecting a design,
it is not always possible under certain constraints. For example, in the case of a two-
level design, the Plackett and Burman type orthogonal design is only available when n
is a multiple of four. On the other hand, some first-order orthogonal designs, such as
regular simplex designs (Box, 1952), are presented in an asymmetric manner, which
may create practical problems. For example, allocating factors to design columns or
determining the experimental regions which suitably fit the coded variables are not
trivial matters. Lin and Chang (2001) thus consider the first-order orthogonal design
with cyclic structure. The cyclic structure has been adapted to generate symmetry
among all design columns. Here, “symmetry” refers to identical experimental range
and the common structure of all design columns.

Consider the first-order polynomial model in & variables as in Section 1: Y =
XB+¢e=p80+ Bix1+ faxa + --- + Brxr + €, where Y is the response variable and
x;’s are the independent variables. A cyclic design in k variables with its first row being
[x1, x2, . .., xx] can be constructed by cyclically permuting the values in the first row to
create k — 1 more rows and then adding a row of all —1’s as the final row. Thus, the
design matrix X for a cyclic design in k variables can be written in the general form as

Cx;1 x2 x3 -+ x|

X2 X3 X4 -+ Xi

X3 X4 X5 X2
X =

X X1 X2 o Xpel

[ e

A first-order design is orthogonal if the inner product of any two columns of the X
matrix equals zero.



42 D.K. J Lin

Table 5
T-optimal designs for k < 10

k (X1, %2, ..., Xk) Tightness d-efficiency
1 (1.00) 2.0000 1.0000

2 (1.37,-0.37) 2.3666 0.7990

3 (—1.00, 1.00, 1.00) 2.000 1.000

4 (0.81,—1.43,0.81,0.81) 2.2361 0.8365

5 (-0.79,0.20, —1.00, 1.29, 1.29) 2.2923 0.7966

6 (—1.06,0.61, —1.06, —0.08, 1.30.1.30) 2.3595 0.7532

7 (1.00, —1.00, —1.00, 1.00, 1.00, 1.00, —1.00) 2.000 1.000

8 (—1.01,0.40, —1.01, 0.44, —0.58, —0.43, 1.60, 1.60) 2.605 0.6251

9 (-1.12,-0.07, -1.12, —0.07, 1.24, —1.12,0.77, 1.24, 1.24) 2.3621 0.7412

Lin and Chang (2001) showed a cyclic orthogonal design exists for any positive
integer k and it is not unique. Furthermore it is shown that the determinant of X'X is
a constant (k + 1)¥*!. For a fair comparison on design efficiency, the design columns
need to be rescaled into [—1, 1] range. It turns out that the D-optimal cyclic orthogonal
design essentially involves minimizing the tightness of experimental range, namely
the difference of x(41) — x(1). Cyclic orthogonal designs with minimal tightness are
called T-optimal designs. The resulting designs for & < 10 is given in Table 5. Here, the
tightness is defined as max(x;) —min(x;) = X(t+1) — X1y, and the d-efficiency is defined
as

X'X 1/n
d-efficiency = L—u———

Clearly, D-optimal designs will yield the highest d-efficiency values, this being the
reason for their name. Under our setting, the d-efficiency is equal to 1 only for Plackett
and Burman designs; usually it is less than 1.

Take k = 6 as an example. From the table we have the first column

(~1.06,0.61, —1.06, —0.08, 1.30, 1.30)".
The resulting design is thus

-1.06 061 -1.06 -0.08 130 1.30
061 -1.06 -0.08 130 130 -1.06
-1.06 -008 130 130 -1.06 0.61
-0.08 130 130 ~-1.06 0.61 -1.06
130 130 —-1.06 0.61 —-1.06 —0.08
1.30 -1.06 061 -1.06 —-0.08 1.30
-1 -1 -1 -1 -1 -1
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Table 6
The Uy2(123 x 3) uniform design
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Table 7
A summarized comparions on selected screening designs

Section Design Run Level Remarks

2.0 Zﬁfp 2t 2 Orthogonal & symmetry

2.1 P&B 4t 2 Orthogonal & symmetry

22 Optimal any many Nonorthogonal & asymmetry
23 p-eff k+1 2 Nonorthogonal & symmetry
2.4 Simplex k+1 many Orthogonal & asymmetry
2.5 T-opt k+1 many Orthogonal & symmetry

2.6 Uniform any any Symmetry

2.6. Uniform design

When the relationship between the response and factors is nonlinear or when the experi-
mental domain is large, two-level designs are known to be insufficient. A powerful class
of screening designs for more than two-level factors is Uniform Design. The uniform ex-
perimental design is one of (high level) fractional factorial design which seeks its design
points to be uniformly scattered on the experimental domain. The detailed discussion on
the uniformity criterion, the construction methods, the resulting designs, as well as the
applications to the real life problems can be found in Fang and Lin (Chapter 4). Table 6
gives an example of the U 12(]23 x 3) design which can be used to investigate three
factors at 12 levels and one factor at 3 levels. Most uniform design tables are available
at the website http: //www.math.hkbu.edu.hk/UniformDesign.

2.7. Summary of screening designs

All the screening designs discussed above are summarized below for a brief compari-
son. The experimenter shall choose an appropriate design, based upon his own needs.
The term “any” indicates that the experimenter can choose any value, while the term
“many” indicates that the number of levels are determined by the design, typically more
than two levels. ‘
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3. Supersaturated designs

In order to obtain an unbiased estimate of the main effect of each factor, the number
of experiments must exceed (or at least be equal to) the number of factors plus one
(for estimating the grand average). When these two are equal, the design is called
saturated and represents the minimum effort required to estimate all main effects. The
standard advice given to users in such a screening process is to use the saturated design,
which is “optimal” based upon certain theoretical optimality criteria. However, the
nonsignificant effects are not of interest. Estimating all main effects may be wasteful
if the goal is simply to detect those few active factors. If the number of active factors is
indeed small, the use of a slightly biased estimate will still allow one to accomplish the
identification of the active factors but significantly reduce the amount of experimental
work. Developing such screening designs has long been a well-recognized problem,
certainly since Satterthwaite (1959).

When all factors can be reasonably arranged into several groups, the so-called group
screening designs can be used (see, for example, Watson, 1961). Only those factors in
groups that are found to have large effects are studied further. The basic assumptions
(such as the directions of possible effects are known, etc.), in fact, depend heavily
upon the grouping scheme. Some recent developments in group screening can be found
in Lewis and Dean (2001) and Dean and Lewis (2002). While such methods may
be appropriate in certain situations (e.g., blood tests), we are interested in systematic
supersaturated designs factorial designs (mostly two-level) that can examine k factors
in N < k + 1 experiments in which no grouping scheme needs to be made. Recent work
in this area includes, for example, Lin (1991, 1993a, 1993b, 1994, 1995), Wu (1993),
Deng and Lin (1994), Nguyen (1996), Deng, Lin and Wang (1996a, 1996b), Tang and
Wu (1997), Yamada and Lin (1997, 1999), Chen and Lin (1998), Cheng (1997) and
Fang, Lin and Ma (2000). Some results on supersaturated design with more than two
levels (as well as mixed levels) will be addressed in Section 3.5.

3.1. Supersaturated designs using Hadamard matrices

Recently, Lin (1993a) proposed a class of special supersaturated designs which can
be easily constructed via half-fractions of the Hadamard matrices. These designs can
examine k = N — 2 factors with n = N /2 runs, where N is the order of the Hadamard
matrix used. The Plackett and Burman (1946) designs, which can be viewed as a special
class of Hadamard matrices, are used to illustrate the basic construction method.

Table 8 shows the original 12-run Plackett and Burman design. If we take column
11 as the branching column, then the runs (rows) can be split into two groups: Group
I with the sign of 41 in column 11 (rows 2, 3, 5, 6, 7, and 11), and Group II with
the sign of —1 in column 11 (rows 1, 4, 8, 9, 10, and 12). Deleting column 11 from
Group I causes columns 1-10 to form a supersaturated design to examine N — 2 = 10
factors in N/2 = 6 runs (Runs 1-6, as indicated in Table 9). It can be shown that if
Group Il is used, the resulting supersaturated design is an equivalent one. In general, a
Plackett and Burman (1946) design matrix can be split into two half-fractions according
to a specific branching column whose signs equal +1 or —1. Specifically, take only
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Table 8
A supersaturated design derived from the Hadamard matrix of order 12

R # 1 2 3 4 5 6 7 8 9 10 11
1 + + - + + + - - - + -
1 2 + - + + + - - - + - +
2 3 ~ + + + - - - + - + +
4 + + + - - - + - + + -
3 5 + + - - - + - + + - +
4 6 + - - - + - + + - + +
5 7 - - - + - + + - + + +
8 -~ - + - + + - + + + -
9 - + - + + - + + + - -
10 + - + + - + + + - - -
6 11 - + + - + + + - - - +
12 - - - - - - - - - -
Table 9
The resulting supersaturated design for (n, k) = (6, 10)
No. X1 X2 x3 X4 x5 X6 x7 xg X9 X10
1 + ~ + + + - - - + -
2 - + + + - - - + - +
3 + + - - - + - + + -
4 + - - - + - + + - +
5 - - - + - + + - + +
6 - + + - + + + - - -

the rows which have 41 in the branching column. Then, the N — 2 columns other
than the branching column will form a supersaturated design for N — 2 factors in N /2
runs. Judged by various design criteria, including E(s%) proposed by Booth and Cox
(1962), these designs have been shown to be superior to other existing supersaturated
designs.

The construction methods here are simple. However, knowing in advance that
Hadamard matrices entertain many “good” mathematical properties, the optimality
properties of these supersaturated designs deserve further investigation. For example,
the half-fraction Hadamard matrix of order n = N/2 = 4t is closely related to a
balanced incomplete block design with (v,b,r,k) = (2t — 1,4t — 2,2t — 2,1 — 1)
and A = ¢ — 1. Consequently, the E(s2) value (see next section) for a supersaturated
design from a half-fraction Hadamard matrix is n?(n — 3) /1@2n — 3)(n — 1)] which
can be shown to be the minimum within the class of designs with same size.
Potentially promising theoretical results seem possible for the construction of a half-
fraction Hadamard matrix. Theoretical implications deserve detailed scrutiny and will
be discussed below. For more details regarding this issue, please consult with Cheng
(1997) and Nguyen (1996).
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Note that the interaction columns of Hadamard matrices are only partially con-
founded with other main effect columns. Wu (1993) makes use of such a property and
proposes a supersaturated design that consists of all main-effect and two-factor interac-
tion columns from any given Hadamard matrix of order N. The resulting design has N
runs and can accommodate up to N (N — 1)/2 factors. When there are k < N(N — 1)/2
factors to be studied, choosing columns becomes an important issue to be addressed.

3.2. Capacity considerations

As mentioned, when a supersaturated design is used, the abandonment of perfect
orthogonality is inevitable. The designs given in Lin (1993a) based on half-fractions
of Hadamard matrices have a very nice mathematical structure but can only be used to
examine N — 2 factors in N /2 runs, where N is the order of the Hadamard matrix used.
Moreover, these designs do not control the value of the maximal pairwise correlation r,
and in fact, large values of r occur in some cases.

Consider a two-level k-factor design in n observations with maximal pairwise
correlation r. Given any two of the quantities (n, k, r), Lin (1995) presents the possible
values that can be achieved for the third quantity. Moreover, designs given in Lin (1995)
may be adequate to allow examination of many prespecified two-factor interactions.

Table 10 shows the maximum number of factors, kyax, that can be accommodated
when both n (even) and r are specified for 3 < n < 25 and 0 < r < 1/3. We see that for
r < 1/3, many factors can be accommodated. For fixed n, as the value of r increases,
kmax also increases. That is, the larger the nonorthogonality, the more factors can be
accommodated. In fact, kmax increases rapidly in this setting. Certainly the more factors
accommodated, the more complicated are the biased estimation relationships that occur,
leading to more difficulty in data analysis. On the other hand, for fixed r, the value of
kmax increases rapidly as n increases. For r < 1/3, one can accommodate at most 111
factors in 18 runs or 66 factors in 12 runs; for r < 1/4, one can accommodate 42 factors
in 16 runs; for r < 1/5, one can accommodate 34 factors in 20 runs. Provided that these
maximal correlations are acceptable, this can be an efficient design strategy.

Table 10
Maximal number of factors found, kmax, as a function of n and nr, for
evenn<24andr <1/3

Number of runs Maximum (|c}c;|)
(n) 0 2 4 6 8
4 3
6 — 10
8 7 -
10 — 12
12 11 — 66
14 - 13 ~ 113
16 15 - 42 —
18 - 17 — 111
20 19 - 34
22 - 20 - 92 -
24 23 —_ 33 - 276
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3.3. Data analysis methods

Several methods have been proposed in the literature to analyze the k effects, given
only the n (<k) observations, mainly from the random balance design contents (see, for
example, Satterthwaite, 1959). These methods can also be applied here. Quick methods
such as these provide an appealing, straightforward comparison among factors, but it is
questionable how much available information can be extracted using them. Combining
several of these methods provides a more satisfying result. In addition, three data
analysis methods for data resulting from a supersaturated design are discussed in Lin
(1995): (1) normal plotting, (2) stepwise selection, and (3) ridge regression.

When studying so many columns in only a few runs, the probability of a false-
positive reading (Type I error) is a major risk. An alternative to the forward selection
procedure to control these false-positive rates has been investigated. Recall that we have
null and alternative pairs H;: f; =0 and HJ?: B;j #0 with H; true for j € N and H JC
true for j € A (see Section 1). Forward selection proceeds by identifying the maximum
F-statistics at successive stages. Let F;s) denote the F-statistic for testing H; at stage s.
Consequently, define

jr= arg max F}'),
jeS—{j1sji-1}

where F{") = SSR(j|ju, .-, js—1)/MSE(j, ju, ..., js-1). Letting max F{" = F®, the
forward selection procedure is defined by selecting variables ji, ..., js, where F() g
o and FUHD > o If FOD > @, then no variables are selected.

The Type I (false positive) error rate may be controlled using the adjusted p-value
method of Westfall and Young (1993). Algorithmically, at stage j, if p) > «, then
stop; otherwise, enter X ; and continue. This procedure controls the Type I error rate
exactly at level & under the complete null hypothesis since P(Rejects at least one H; |
all H; true) = P(F(U < fél) ) = «. In addition, if the first s variables are forced and the
test is used to evaluate the significance of the next entering variable (of the remaining
k — s), the procedure is again exact under the complete null hypothesis of no effects
among the k — s remaining variables. The exactness disappears with simulated p-values,
but the errors can be made very small, particularly with control variates. The analysis of
data from supersaturated designs along this direction can be found in Westfall, Young
and Lin (1993).

Beattie, Fong and Lin (2002) detail a two-stage Bayesian model selection strat-
egy combining recent methodologies: the Stochastic Search Variable Selection (SSVS)
method of George and McCulloch (1993, 1997) and the Intrinsic Bayes Factor (IBF)
method of Berger and Pericchi (1996). This strategy is able to keep all possible models
under consideration, provides a direct comparison between any two competing models,
and provides a level of robustness akin to Bayesian analyses incorporating noninforma-
tive priors. The two-stage procedure is able to keep all possible models under consid-
eration while providing a level of robustness akin to Bayesian analyses incorporating
noninformative priors. Note that Bayesian methods are able to supplement observa-
tional information using prior information on the parameters. This allows straightfor-
ward computation of posterior probabilities, a more intuitive concept than the p-value.
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Recent development of the Gibbs sampling algorithm (Gelfand and Smith, 1990) and
other Markov chain Monte-Carlo techniques (see, for example, Gilks et al., 1996), in
tandem with computational advances, have brought many Bayesian ideas mainstream.
However, the use of these methods in analyzing supersaturated designs may require a
departure from noninformative priors to guarantee the existence of a proper posterior
distribution, thus leaving room for controversy on the objectivity of the results.

Li and Lin (2002) proposed a variable selection procedure for identifying active
factors in supersaturated design, via nonconvex penalized least square approach. With
a proper choice of the regularization parameter, it is shown that the resulting estimator
is root n consistent and possesses an oracle property. This is believed to be the most
reliable data analysis method for supersaturated design. For details, see Li and Lin
(2002, 2003).

3.4. Theoretical construction methods

Deng, Lin and Wang (1994) proposed a supersaturated design of the form X, =
[H, RHC], where H is a normalized Hadamard matrix, R is an orthogonal matrix,
and C is an n X (n — ¢) matrix representing the operation of column selection. Besides
the fact that some new designs with nice properties can be obtained this way, the X
matrix covers many existing supersaturated designs. This includes the supersaturated
designs proposed by Lin (1993a), Wu (1993) and Tang and Wu (1997). It can be shown
that
X'x __( nl, H’RHC)_“(nI,, WC)
¢CCCT\C'HR'H nl,.. )] \CW al,..)’

where W = H'RH = (w;j) = (h;Rh ) and k; is the jth column of H. It can be further
shown that:

THEOREM 1. Let H be a Hadamard matrix of order n and B = (b1, ...,b;) bean xr
matrix with all entries +1 and V = H'B = (v;j) = h;b;. Then

(1) foranyfixed 1< j<r,n?=3Y1, vlzj
(2) Inparticular, let B= RH and W = H'RH = (w;;). We have

%W is an n X n orthogonal matrix,

2 __\n 2 __\\n 2
nt= 2=t Wij = 2 j=1Wij»
w;j is always a multiple of 4, and

if H' is column balanced, then £n =3 [_, wij = Y__; wij.

e & o o

COROLARRY. For any R and C such that (1) R'R = I and (2) rank(C) =n — c, then
the X, matrix has the same E (s2) values.

This implies that the popular E(s?) criterion used in supersaturated designs is
invariant for any choice of R and C. Therefore, it is not effective for comparing
supersaturated designs. In fact, following the argument in Tang and Wu (1997),
the designs given here will always have the minimum E(s2) values within the
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supersaturated design of this type. One important feature of the goodness of a
supersaturated screening design is its projection property (as discussed in Section 3.5
and in Lin, 1993b). We thus consider the r-rank property as defined below.

DEFINITION. Let X be a equal occurrence design matrix. The resolution rank (or
r-rank, for short) of X is defined as f = d — 1, where d is the minimum number of
subset columns that are linearly dependent.

The following results are provided by Deng, Lin and Wang (1994).

(1) If no column in any supersaturated design X is fully aliased, then the r-rank of X is
at least 3.

(2) nRhj = Z?:l wijh;.

(3) Let W = H'D(h;)H, where D(h;) is the diagonal matrix associated with Ay,
namely, the /th column vector of H, and n = 4t¢, then

o If¢ is odd, then there can be exactly three O’s in each row, or each column, of W.
The rest of w;; can only be of the form £8k + 4, for some nonnegative integer k.

e If ¢ is even, then every entry w;; in W can be of the form 48k, for some
nonnegative integer k.

These results are only the first step. Extension of these results to a more general class
of supersaturated designs in the form Sxg = (R{HC{, ..., Rx HC) are promising.

Recently, a series of “optimal” supersaturated designs via combinatorial design
theory has been obtained by Fang, Ge, Liu and Qin (2001). A website for all
supersaturated design obtained will be established in the near future.

3.5. Optimality criteria

When a supersaturated design is employed, as previously mentioned, the abandonment
of orthogonality is inevitable. It is well known that lack of orthogonality results in
lower efficiency; therefore we seek a design that is as “near orthogonal” as possible.
One way to measure the degree of nonorthogonality between two columns, ¢; and ¢j,
is to consider their cross-product, 5;; = cjc;. A larger |s;;| implies less orthogonality.
As discussed in Section 2.5, denote the largest |s;j| among all pairs of columns for a
given design by s, and we desire a minimum value for s (s = 0 implies orthogonality).
The quantity s can be viewed as the degree of orthogonality that the experimenter is
willing to give up with small s indicating a better design. This is intimately connected
with the expectation of s2, E(s?), defined in Section 2.2. Intuitively, E (sz) gives the
increment in variance of estimation arising from non-orthogonality. It is, however, a
measurement for pairwise relationships only. More general criteria have been obtained
in Wu (1993) and Deng, Wang and Lin (1994, 1996b). Deng and Lin (1994) outline
eight criteria useful for supersaturated designs: s = maxcjc;j; E (s%); p (Lin, 1995);
Dy, Ay, Ey (Wu, 1993); B-criterion (Deng, Lin and Wang, 1996a, 1996b); and r-rank
(Deng, Lin and Wang, 1999). Further theoretical justification is currently under study.
Optimal designs in light of these approaches deserve further investigations. In addition,
the notion of multi-factor (non-)orthogonality is closely related to multicollinearity in
linear model theory.
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For 3-level supersaturated designs, Yamada and Lin (1999) defined a measure of
dependency between two design columns x; and x ; by

€]

(xhxj)"'

Z ( (U) _ n/9)2

u,v=1

where n( 7 is the number of (u, v)-pairs in (x;, x;). Then they defined a criterion for
the whole design X by

ave x? = Z Xz(xi,xj)/(i)

1<i<j<k

and also showed a lower bound of

5. 2n2k—n+1)
ave x >W(n—l)(k—1)' )

Recently, Fang, Lin and Liu (2000) proposed a new criterion for supersaturated
design, suitable for any mixed level design. For any two design columns x; and x j,
define

5 pl) _ " 2 3
fNop=2_2. ©)

u=1v=1 qqu

where n(” ) is the number of (u, v)-pairs in (x;, x j), and n/(g;q;) stands for the average
frequency of level-combinations in each pair of columns x; and x ;. A new criterion
E(fnop) is defined as the following,

E(fyon)= Y f, WW“Z) @

1<i<j<m

1t is obvious that E(fyop) = 0 for an orthogonal array. Let Ay = Z?’___l L=}
where 14 is the indicator function of A, i.e., g is the number of coincidences between
the two columns xj and x;. It is obvious that Ay = m. The following theorem defines
the E(fyop) criterion and gives its lower bound (in terms of Ag’s). The formal
definition of U-type design U(n, g1, . . ., gm) can be found in Chapter 4.

THEOREM 2. For any design matrix X eU(n, q1, ..., qm), we have

k=1 M
m(m —1)
n(Y T n/qj —m)?
m(m—1D{n—1)

E(fvop) = +Cm,q1,...,qm) (5)

+C(”,QI:---7‘Im), (6)
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where

T AL mo2
C<"’ql~~qm>=m”.'i’1—m<m_n(Z’17+ > —-—)

i=1 qi i j=l, i qiqj

depends on X only through n,q, ...,qm, and the lower bound of E(fyop) can be
achieved if and only if A = (Z;L] n/qj —m)/(n — 1) is a positive integer and all the
Ai1’s for k # 1 are equal to M.

For any two factors x; and x; of the design X, the equal occurrence of —1
and 1 implies that fg:l]OD = sizj/4, where f)\',]Osz hIF— l(n(”) — n/4)2. This, in
turn, implies that f,ffOD is essentially the same measure as sl.zj for two-level designs.

Furthermore, xz(x,',x j) = flf,jOinq j/n, for three-level columns. The next theorem
follows immediately.

THEOREM 3. For any design matrix X € U(n; q1,...,qm), the three design criteria
E(fyop), E (s2) and ave x? satisfy the following relations:

E(fNOD)=g—avex2, when gi =3,i=1,...,m, and o)

1
E(fnop) = ZE(SZ), wheng; =2,i=1,....m
with two levels — 1 and 1. 8)

Furthermore, the lower bound of E(fyop) includes those lower bounds of E(s*) and
of ave x? as special cases.

This theorem sets up the equivalence between the three criteria for supersaturated
designs, E (s2), ave x2 and E( Jfnop)- It also provides a justification for usmg E(fnop)
as a design criterion for supersaturated designs. Unlike the E (s%) and ave x? criteria,
the E(fyop) criterion can be used for mixed level designs.

3.6. Computer algorithmic construction methods

More and more researchers are benefiting from using computer power to construct
designs for specific needs. Unlike some cases from the optimal design perspective (such
as D-optimal design), computer construction of supersaturated designs is not currently
well-developed. Lin (1991) introduced the first computer algorithm to construct
supersaturated designs. Lin (1995) examines the maximal number of factors that can
be accommodated in such a design when r and r are given.

Al Church at GenCorp Company utilized the projection properties in Draper and Lin
(1992) to develop a software package named “DOEOQ” to generate designs for mixed-
level discrete variables. Such a program has been used by several sites in GenCorp.
A program named “DOESS” is one of the results and is currently in a test stage.
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Dr. Nam-Ky Nguyen (CSIRO, Australia) also independently works on this subject. He
uses an exchange procedure to construct supersaturated designs and near-orthogonal
arrays. A commercial product called “Gendex” is available for public sale, as a result.
Algorithmic approaches to constructing supersaturated designs seem to be a hot topic
in the recent year. For example, Li and Wu (1997) develop a so-called columnwise-
pairwise exchange algorithm. Such an algorithm seems to perform well for constructing
supersaturated designs by various criteria.

3.7. Some recent advances on supersaturated design

Marginally oversaturated designs

A special class of supersaturated design, called marginally over saturated design
(MOSD), in which the number of variables under investigation (k) is only slightly
larger than the number of experimental runs (n), is presented in Deng, Lin and
Wang (1996a, 1996b). The construction method builds on two major theorems which
provide an efficient way to evaluate the resolution rank criterion. They provided such
designs for n = 8, 12, 16, and 20. Recall that the resolution rank (r) is defined as
r = max{c: for any (x;1,...,xic) of X, x;1, ..., x;. are linearly independent}.

THEOREM 4. Let X = [H,v], w= H'v, where H is a Hadamard matrix of order n.
Let Ry be the number of nonzero entries in w. Then

r =Ry,
where r is the resolution rank of X.

THEOREM 5. Let X = [H,vy,v2] and w; = H'vy, wy = H'vy, where H is a
Hadamard matrix of dimension n. Let

Ry = min[S(w1), S(wy)]
and
Ry =min[S(biw; + bawy)] +1,

where S(u) represents the number of nonzero elements in the vector u and by, by can
take on all possible values. Then

r = min[Ry, Ro],

where r is the resolution rank of X.

Industrial experimentation for screening 53

For example, with n = 12, the MSOD is given as follows, where (1, x¢,...,x11)
form a 12-run Hadamard matrix and v; and w3 are the optimal added columns from
Theorems above.

1 x;1 x2 x3 X4 Xs X¢ X7 Xg X9 Xjo Xii U3 ¥
T S A T e
+ + -+ + + - - - 4+ - 4+ + +
+ - + + + - - - 4+ - + + + +
+ 4+ + + - - - + - 4+ 4+ - + +
+ 4+ + - - - 4+ - 4+ 4+ - o+ o+ +
+ + - - - + - 4+ 4+ - + + - +
+ - - - + - 4+ + - + + + + -
+ - - + - + + - 4+ 4+ + - - +
+ - + - + + - 4+ + 4+ - - -
+ + - + + - + 4+ + - - = = -
+ - + + - + + 4+ - - - 4 -
+ —_— — — — — . — — —_ — — — —

Three-level supersaturated designs
Given a two-level orthogonal array C of size (n, m), Yamada and Lin (1999) provided
a series of three-level supersaturated designs of the form (N, K) = (3n, 4m) as follows.

P'2(C) $2(C) $3(C) ¢P(C)
D=|¢B(1C) ¢(C) ¢3(C) ¢*(C) |, )
P3C) ¢B(C) ¢2(C) ¢(C)

where ¢??() is an operator which transforms the elements from —1 to a and from 1 to b
on the matrix/vector in (). Such a design can study K = 4m factorsin N = 3n runs. It
is clearly a three-level supersaturated design. It is also shown in Yamada and Lin (1999)
that such designs have a relatively small value of ave x? as previously defined.

Multi-level supersaturated designs

Fang, Lin and Ma (2000) obtained a new class of multi-level supersaturated design
by collapsing a U-type uniform design to an orthogonal array. This can be illustrated
by the following example. Suppose that we extend the orthogonal design L = Lo(3%
and a generating U-type design U = U(9, 92) to a S-design So(3%) by the collapsing
method.

11 0000 0000(]0000
27 o111 01 11]2021
33 0222 0222]0222
49 1012 10122210
veL=|55|e|l1 120|=x=|1120]1120],
66 120 1 12011201
72 {2021 202110111
88 [2102 21022102
94| 221 0] 2210101 2]
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where the operation @ is defined such that the ith block of X if essentially the matrix L
by taking the row order of column i in matrix U. Namely, the first block (the first four
columns) of X is the original L and the second block (the last four columns) are formed
by rearranging row vectors of L according to the order defined by the second column
of U. The crucial step of this collapsing method is how to choose the best U-type design
U(n, n") in the sense of minimizing any specific criterion (see Fang, Lin and Ma, 2000).

3.8. Summary of supersaturated designs

Using supersaturated designs involves more risk than using designs with more runs.
However, their use is far superior to other experimentation approaches such as subjective
selection of factors or changing factors one-at-a-time. The latter can be shown to have
unresolvable confounding patterns, though such confounding patterns are important for
data analysis and follow-up experiments.

Supersaturated designs are very useful in early stages of the experimental investiga-
tion of complicated systems and processes involving many factors. They are not used
for a terminal experiment. Knowledge of the confounding patterns makes possible the
interpretation of the results and provides the understanding of how to plan the follow-up
experiments.

The success of a supersaturated design depends heavily on the “effect sparsity”
assumption. Consequently, the projection properties play an important role in designing
a supersaturated experiment. Combining several data analysis methods to analyze
the data resulting from a supersaturated design is always recommended. Besides the
stepwise selection procedure, PLS (partial least squares), adjusted p-value nonconvex
penalized least square and Bayesian approaches are promising procedures used to
identify active factors.

Another particularly suitable use for these designs is in testing “robustness,” where
the objective is not to identify important factors, but to vary all possible factors so that
the response will remain within the specifications.

4. Computer experiments

4.1. Introduction

Computer models are often used to describe complicated physical phenomena encoun-
tered in science and engineering. These phenomena are often governed by a set of equa-
tions, including linear, nonlinear, ordinary, and partial differential equations. The equa-
tions are often too difficult to be solved simultaneously by any person, but can be by a
computer modeling program. These programs, due to the number and complexity of the
equations, may have long running times, making their use difficult for comprehensive
scientific investigation.

The SOLA-PTS algorithm described in Daly and Torrey (1984), for example, has
been developed at the Los Alamos National Laboratory for modeling the rapid cooling
of a nuclear reactor wall as a result of cold water injected into the reactor’s downcomer
for containment during a nuclear accident. The authors’ three-pronged goal is to study
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the response of the reactor, to study the turbulent mixture of the cold water and the warm
fluid already in the downcomer, and to predict the onset and growth of cracks in the
reactor wall as a result of the rapid cooling. This algorithm simultaneously solves eight
partial differential equations with eight inputs and takes approximately 90 minutes on
a Cray supercomputer to run. It solves a large number of differential equations, is very
computationally expensive in running time, and has a “black box” quality — one does
not know in advance which factors have large effects and one would like to examine the
response over a wide range of input combinations. This algorithm is typical of computer
models needing designed experiments.

One goal in this setting is to build an approximating program which, although not
as precise as the computer model, would run fast enough to study the phenomenon
in detail. Construction of an adequate approximating function (or program) to the
computer model requires the selection of design points (a designed experiment) at which
to approximate. Because the computer models are mostly deterministic, these computer
experiments require special designs. In physical experiments, if certain factors have no
effect on the response and are taken out of the approximation function (linear model),
then the replicated design points in the reduced design space can be used to estimate
the random error present in the system. However, with computer experiments, there is
no random error — only lack of fit. Standard factorial designs are inadequate here; in
the absence of certain main effects, replication cannot be used to estimate this error, but
instead produces redundancy. That is, they are hindered by their nonunique projections
to lower dimensions. This section presents a new and simple strategy for designs for
computer experiments, developed from the rotation of the standard factorial design to
yield a Latin hypercube.

4.2. Design criteria and related work

Selection of an appropriate designed experiment depends to an extent on the experi-
mental region, the model to be fit, and the method of analysis. The approach described
here assumes the following: the experimental region is cuboidal (each factor is bound
between values of interest), the true model is unknown to the experimenter and that he
will approximate it by a polynomial of some degree a priori unknown to him, and the
method of analysis will be ordinary least squares regression. Alternative methods are
available (see Haaland et al., 1994).

In order to assess design criteria for computer experiments, it is valuable to study
the progression of proposed designs. Koehler and Owen (1996) provide an overview of
past and current approaches (see also Draper and Lin, 1996). The two main geometric
designs are the standard (full or fractional) factorial designs and the Latin hypercube
designs, but also include other traditional designs for physical experiments, such as
central composite designs. Easterling (1989) points out that standard factorial designs
have many attractive properties for physical experiments: balance (factor levels used
an equal number of times), symmetry (permutation of design matrix columns yields
same design), orthogonality (separability of main effects), collapsibility (projects to
lower subspace as factorial design, sometimes redundantly), equally-spaced projections
to each dimension, and straightforward measurability of main effects.
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McKay, Beckman and Conover (1979) introduced the use of the Latin hypercube
(LH) in computer experiments. A n-point LH design matrix is constructed by randomly
permuting the integers {1, 2, ..., n} for each factor and rescaling to the experimental
region, so that the points project uniquely and equally-spaced to each dimension. The
unique projections of LHs allow for great flexibility in model fitting. Box and Draper
(1959) showed that when the true model is a polynomial of unknown degree, the best
design places its points evenly spaced over the design region. Thus, equally-spaced
projections are also of value. For these reasons, the LH has become the standard
for computer experiments. However, random LHs are susceptible to high correlations
between factors, even complete confounding, and to omitting regions of the design
space.

Computer-generated designs include those of Sacks, Schiller and Welch (1989) and
Sacks, Welch, Mitchell and Wynn (1989) that try to minimize the integrated mean
square error (IMSE) of prediction when prediction errors are taken as a realization of
a spatial stochastic process. Johnson, Moore and Ylvisaker (1990) proposed similar
designs to minimize the correlations between observations when responses are taken
as a realization of a spatial stochastic process. The latter authors’ called a design D* a
maximin distance design if

min d(x1,xp) =max min d(x, x2), 10
x1,X0€D* ( ) D x1,xeD ( 2) ( )

where d is a distance measure and miny, v,epd(x1,x2) is the minimum interpoint
distance (MID) of design D; that is, its points are moved as far apart from one another
as possible. '

Attempts have been made to bridge the gap between geometric designs and
computer-generated designs. Tang (1993) and Owen (1992) introduced orthogonal-
array based LHs to guarantee coverage of all regions for every subset of r factors.
Morris and Mitchell (1992) and Tang (1994) proposed LHs that attain the largest MID
among all LHs, called maximin Latin hypercubes. Owen (1994) attempted to control the
correlations between design matrix columns of random LHs. These methods are a step
forward in merging the good properties of Latin hypercubes with the optimization of
computer-generated designs. However, being themselves computer-generated designs
leaves susceptibilities to the aforementioned problems.

With this in mind, we seek a new design for computer experiments with these
properties: the unique and equally-spaced projections to each dimension and flexibility
in model selection provided by Latin hypercube design and the orthogonality and ease
of construction provided by standard factorial designs. In addition, these new designs
should perform reasonably well in terms of other criteria mentioned, such as MID
correlation and coverage of the design space.

4.3. Rotated factorial designs in two dimensions

The strategy taken here is to modify the standard factorial design by rotation so as
to yield a Latin hypercube. To see how this is done, first consider the standard 32
factorial design, represented by the 3 x 3 square of points in Figure 1, and how it can
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Fig. 1. Standard 32 factorial design before rotation.

be rotated to yield equally-spaced projections. The key to finding all such rotations is in
the relationship between points A-D. We focus on nontrivial angles between 0 and 45
degrees clockwise due to the symmetry of the rotation problem.

The matrix equation to rotate a set of points clockwise by an angle w about the origin
is

[0 x]x [cos(w) ——sin(w)]

sin{fw)  cos(w)

so that if (x1, x2) are the coordinates of a design point in the standard factorial design,
then the rotation moves the point to (xj cos(w) + xz sin(w), —x sin(w) + x2 cos(w)).
Notice first that as the points are rotated clockwise about the origin that A will have the
smallest x1-coordinate for any angle between 0° and 45°. (A 45° rotation will place
A directly on the x;-axis and A is the closest point to the origin.) Also notice that the
x1-projections of points with the same initial xj-coordinate (like A, B, and D) will be
equally spaced, by sin(w), regardless of the rotation angle. Likewise, the x;-projections
of points with the same initial xy-coordinate (like A and C) will be equally spaced,
by cos(w), regardless of the rotation angle. It suffices to find all angles that make the
x1-projections of points A-D equally spaced. For the x;-coordinates of A-D, see the
table below.

Point  xj-coordinate
cos(w) + sin{w)
cos(w) + 2sin(w)
2 cos(w) + sin(w)
cos(w) + 3sin(w)

oOw»

Between 0° and 45°, sin(w) < cos(w), so the point with the next smallest
xy-coordinate will always be B (although C will tie B when w = 45°) and the distance
between the smallest two xj-projections will always be sin(w). To achieve equally-
spaced x1-projections, the distance between all x1-projections must equal sin(w). We’ve
already seen that this is true when w = 45° (equivalently, tan~!(1)) and both C and B
have the second smallest xj-coordinate.
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Another possibility is that C will have the third smallest x1-coordinate, and that the
“x1-distance” between B and C will be sin(w). However, the “x1-distance” between B
and D is always sin(w). In this case, C and D will have the same x;-coordinate, hence

cos(w) = 2sin(w) = w = tan"!(1/2).

Continuing in this manner, consider the case where C has the fourth smallest
xi-coordinate — after A, B, and D — and the “x;-distance” between D and C is sin(w).
Then

cos(w) — 2sin(w) = sin(w) = w = tan'1(1/3).

Point C cannot have the fifth smallest x;-coordinate, so these three rotations are
the only ones (again, among nontrivial angles between 0° and 45°) that yield equally-
spaced xj-projections from the 3% design. It is easily verified that these also yield
equally-spaced x2-projections.

Figure 2 displays the standard 32 factorial design, shown in open circles, and the
designs that result from these rotations, shown in solid circles. Boxes are drawn around
the rotated designs to identify the design regions. In practice, one would then scale this
design (by subtraction and division) to the experimental region of interest. Along each
axis, we have provided dot plots of the projections from which it is plain to see the
equally-spaced property.

Among the rotated standard p? factorial designs with equally-spaced projections,
only those obtained from rotation angles of tan~!(1/p) contain no redundant projec-
tions. Therefore, we define a p?-point rotated full factorial design to be a rotated stan-
dard p? factorial design with unique, equally-spaced projections to each dimension
(which is a Latin hypercube). Among the rotated standard p? factorial designs with
equally-spaced projections, only those obtained from rotation angles of tan~1(1/p)
contain no redundant projections. Following the argument above, a general result for
factorial designs can be stated (see Beattie, 1999 for the proofs).

THEOREM 6. For nontrivial rotations between 0° and 45°, a rotated standard p*
Jactorial design will produce equally-spaced projections to each dimension if and only
if the rotation angle is tan~! (1/k), where k € {1, ..., p}.

THEOREM 7. Any two-dimensional rotated factorial design has uncorrelated regres-
sion effects estimates.

4.4. A sample construction example

To illustrate the basic idea of rotated design, we provide an example of rotating a 42 full
factorial design. We have developed software to construct the rotated factorial designs
presented in this paper. Users of S-Plus or C who are interested in obtaining this, please
send email to sbeattie@stat.psu.edu.
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Rotate by tan~!(1/4). This yields a 16-point rotated factorial design.

1 cos(tan™" (1/4)) + Lsin(tan™" (1/4))

D.K.J. Lin

—1sin(tan~1(1/4)) + 1 cos(tan~1(1/4)) ]
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the angle is adjusted to tan~!(2/(p — 1)). (Note that 12 is such a number, making the

rotation angle tan~1(2/3).)

[ 1cos(tan™!(2/3)) + 2 sin(tan~" (2/3))

—1sin(tan~1(2/3)) + 2 cos(tan~1(2/3)) ]

1cos(tan—1(1/4)) + 2sin(tan™! (1/4)) —Isin(tan™!(1/4)) + 2cos(tan™! (1/4)) i:ié ?‘Z?f
1cos(tan—" (1/4)) + 3sin(tan~1(1/4)) —1sin(tan~!(1/4)) + 3cos(tan™1(1/4)) 170 2.67
Lcos(tan™ ! (1/4)) + 4sin(tan™1 (1/4)) —1sin(tan™!(1/4)) + 4cos(tan™" (1/4)) 194 3.64
2cos(ta.n_1(1/4))+Isin(tan“l(l/4)) —28in(t&n“1(1/4))+lcos(tan“’(l/ét)) 2.18 0.49
2cos(tan—! (1/4)) -+ 2sin(tan~1(1/4)) —2sin(tan™}(1/4)) + 2 cos(tan™ L (1/4)) 243 1.46
2cos(tan~1(1/4)) + 3sin(tan~1(1/4)) —2sin(tan1(1/4)) + 3cos(tan™!(1/4)) 267 243
2cos(tan ! (1/4)) + 4sin(tan~1 (1/4)) —2sin(tan™!(1/4)) + 4 cos(tan~! (1/4)) 291 3.40
3cos(tan—1(1/4)) + Lsin(tan~1(1/4)) —3sin(tan~1(1/4)) + 1 cos(tan~1(1/4)) 3.15 024
3cos(tan~1(1/4)) + 2sin(tan~' (1/4)) —3sin(tan~!(1/4)) + 2cos(tan™'(1/4)) 3.40 121
3cos(tan~!(1/4)) + 3sin(tan~'(1/4)) —3sin(tan~1(1/4)) + 3 cos(tan~1(1/4)) 3.64 218
3cos(tan—! (1/4)) + 4sin(tan~1 (1/4)) —3sin(tan~1(1/4)) + 4 cos(tan™1(1/4)) 388 3.15
4cos(tan—1(1/4)) + Isin(tan™! (1/4)) —4sin(tan~1(1/4)) + 1 cos(tan~1(1/4)) 412 0.00
4cos(tan~(1/4)) + 2sin(tan—1 (1/4)) —4sin(tan~1(1/4)) + 2cos(tan~' (1/4)) 4.37 097
4cos(tan=1(1/4)) + 3sin(tan~1(1/4)) —4sin(tan™1(1/4)) + 3 cos(tan™" (1/4)) 4.61 194
| 4cos(tan™! (1/4)) +4sintan~! (1/4)) —4sin(tan~!(1/4)) +4 cos(tan™" (1/4)) | [ 4.85 2.91 ]

This can be rescaled to be a 16-point Latin hypercube by multiplying by 15/3.64
then subtracting 3.99 from the first column and adding 1.00 to the second column.

1 2 3 4 56 7 8 9 10 11 12 13 14 15 167
4 8 12 16 3 7 11 15 2 6 10 14 1 5 9 13}|°

(2) A 12-run Type U design.

Rotated full factorial designs have, by design, unique, equally-spaced projections to
each dimension. When points are removed, the resulting design will no longer have the
equally-spaced projection property, although it will have unique projections. We will
refer to designs created by applying a deletion process to a rotated full factorial design
as Type U rotated factorial designs, where U emphasizes these unique projections. To
construct a 12-point Type U design, remove the 4 most extreme design points (from the
prescaled matrix): the 1st, 4th, 13th, and 16th.

(3) A 12-run Type E design.

After the deletion process, these new designs can be given equally-spaced projections
by adjusting the angle of rotation, although this may have the simultaneous effect of
creating some redundant projections. We will refer to designs created by modifying the
rotation angle of a Type U design to yield the greatest number of unique, equally-spaced
projections as Type E rotated factorial designs, where E emphasizes the equally-spaced
projections. To get a 12-point Type E rotated factorial design, adjust the rotation angle
to tan~!(2/3). Figuring out the correct rotation angle is easy. If the original design
has p? points, then the angle is unadjusted if O points are removed and is adjusted to
tan~'(1/(p — 1)) if {2,4,...,2p — 2} points are removed or to tan~'(1/(p — 2)) if
{2p,2p +2,...,4p — 8} points are removed. However, there is one exception to this
rule: if the new design has an even number of points which exceed a square by 3, then

Leos(tan™!(2/3)) + 3sin(tan~1(2/3)) —1sin(tan~!(2/3)) + 3cos(tan~1(2/3)) ;23 i:;i
2cos(tan~1(2/3)) + Lsin(tan~1(2/3)) —2sin(tan~" (2/3)) + 1 cos(tan™}(2/3)) 222 —028
2cos(tan™!(2/3)) + 2sin(tan~1(2/3)) —2sin(tan~1(2/3)) + 2cos(tan™1(2/3)) 277 055
2cos(tan—1(2/3)) + 3sin(tan~1(2/3)) —2sin(tan™1(2/3)) + 3 cos(tan™ ! (2/3)) 333 1.39
2cos(tan~1(2/3)) +4sin(tan~1(2/3)) —2sin(tan~! (2/3)) + 4cos(tan™ ! (2/3)) 3.88 222
3cos(tan~1(2/3)) + 1sin(tan=1(2/3)) —3sin(tan~!(2/3)) + 1 cos(tan—1(2/3)) 3.05 —0.83
3cos(tan™!(2/3)) + 2sin(tan~1 (2/3)) —3sin(tan~1(2/3)) + 2 cos(tan~1(2/3)) 3.61  0.00
3cos(tan™!(2/3)) + 3sin(tan ™1 (2/3)) —3sin(tan—1(2/3)) + 3cos(tan1(2/3)) 4.16  0.83
3cos(tan~1(2/3)) + 4sin(tan 1 (2/3)) —3sin(tan™1(2/3)) + 4cos(tan™ 1 (2/3)) 471 1.66
4cos(tan!(2/3)) + 2sin(tan~} (2/3))  —4sin(tan~!(2/3)) + 2cos(tan~1 (2/3)) 444 —0.55
| 4cos(tan=!(2/3)) + 3sin(tan~1(2/3)) —4sin(tan=1(2/3)) + 3cos(tan~1(2/3)) | L499  0.28.

Once constructed, these designs can be rescaled to the experimental region. For
example, to convert the 12-point Type E design matrix to LH notation, multiply by
11/3.05 then subtract 6.00 from the first column and add 3.99 to the second column
8
4

8 11 3 12

1 2 345 6 7 9 10 11 127
6 9 1 7 10 2 5

4.5. High-dimensional rotation theory

Consider a standard full factorial design consisting of d factors, each with p levels. The
goal is to rotate this design to convert it into a LH design, so that the p? points create
unique and equally-spaced projections to each individual factor. For certain values
of d (notably when d is a power of 2) such a rotation exists, but not for general d.
The following proof proceeds in three parts: identification of the required form of
the rotation matrix, construction of the power-of-2 rotation matrix, and failure of the
transformation matrix to be a rotation matrix when d is not a power of two.

A p-level, d-factor standard full factorial design can be represented by a pt xd
matrix, D, with entries from {1, 2, ..., p} and all p¢ combinations represented.

11 1 o pp r]"
D==E
111 pp p 11 1 pp p
12 - p 12 p 12 p 12 p
amn

A rotation of this matrix is accomplished by post-multiplication by a d x d matrix R
with the property that RTR = I; where I is the d x d identity matrix. Let the
multiplication matrix R have entries denoted as ry; j, which is the entry from the i th row
and jth column. Lemma 1 below will not be concerned with whether the multiplication
matrix is indeed a rotation matrix, but with how such a matrix would yield unique and
equally-spaced projections to each dimension.
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LEMMA 1. The entries of each column of the transformation matrix R must be unique
from the set {p' |t =0,1,...,d — 1} in order to yield unique and equally-spaced
projections.

This lemma shows that every column of the transformation matrix must be a
permutation of the set {1, p,..., pd -1y (allowing sign changes to elements and
multiplication of entire columns by a constant). However, every rotation matrix R
satisfies RTR = kl4, so that the sum of squares for all columns of R must be equal.
Then, without lose of generality, every column of the transformation matrix must be a
permutation of the set {1, p, ..., p¢=1} (allowing only sign changes to elements).

It is obvious that the columns of the transformation matrix cannot be identical, for
otherwise the columns of the transformed matrix would be identical. The following
lemma shows that the ith entries for the d columns must be unique in magnitude in
order for the transformation to be a rotation.

LEMMA 2. For a rotation matrix R, the ith entries of the d columns are unique in
magnitude for all i.

Lemmas 1 and 2 proved that all the rows and columns of the transformation matrix
must be permutations of the set {1, p, ..., pd1y (up to sign changes). However, this is
not sufficient to guarantee that R will be a rotation matrix. Another requirement implied
by the rotation condition RTR =kl is that the columns of R must be orthogonal.
Any matrix satisfying the requirements of the lemmas and this last condition will rotate
factorial designs into Latin hypercubes. The remainder of this section shows how to
create these matrices for d that are powers of two and illustrates why other choices of
d, in general, have no such rotation matrix.

Let d be a power of 2. Let c =log, d. Let

Vi=lu wnl= [i; jr’{]. 12

Now, for ¢ > 1, let V, be defined inductively from V._; as follows:

c—1
Vo=| e =(P" Ve-r)” (13)
p¥ Ve (Ve-D)*

where the operator (-)* works on any matrix with an even number of rows by
multiplying the entries in the top half of the matrix by —1 and leaving those in the
bottom half unchanged.

THEOREM 8. The matrix V. is a rotation of the d-factor (d = 2°), p-level standard
full factorial design which yields unique and equally-spaced projections to each
dimension.
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Reviewing the two-dimensional result from Section 4.3, whend =2 = 2! the rotate
matrix with w = tan~!(1/p) can be re-expressed as

_ [cos(tan=!(1/p)) —sin(tan~'(1/p))
Y= sintan'(1/p))  cos(tan™1(1/p))

1 +1 —p
- ! (14)
which is the correctly scaled rotation matrix V) given in Eq. (12).
Other scaled rotation matrices for cases of interest (d = 4,8 corresponding to
c=2,3)are
+1 —p +p* -p’
2_1 3 2
4 +p +1 )4 14
Vs = 15
TV +2 - -1 4p (13)

+p® +p* +p  +1

and
[+l —p +p? =pP 4pt =P 48 —p'T]
+p 41 —p* —p* +p° +p* —p’ -p°
+p2 -p> -1 +p —pb +p +pt P
e =1 | 4p3 4p® 4p 4+l —p! —pS —p5 —p*
TN -1 | +pt —p° 4p¢ —pT -1 4p PP 4P
+p° 4pt —p’ —p —p -1 4P PP
+p5 —p —-p* 4+ +p2 P ~1 +p
L+p" +p° +p° 4Pt P 4P +p 4D
(16)
respectively.

The choice of rotation matrices for higher dimensions (d > 2) is not unique. Other
inductive definitions for V. in Eq. (13) are possible, namely

_ 20——1
A a”n
P Ve Ve-1

However, the point is still clear, such rotations do exist.

Owen (1994) showed why orthogonality of design matrix columns is important in the
estimation of Monte-Carlo integrals and attempted to control the column correlations
within Latin hypercubes. Theorem 9 will prove that all designs obtained by rotation
of standard factorial designs, specifically rotated full factorial designs, will also be
orthogonal. Let k be the sum of squares of the first column of X. As X is an
orthogonal matrix, XTX = kI;. So (XR)"(XR) = RTX"XR = R"kI;R = kR™R =
k1,4, a diagonal matrix. Therefore, the rotated design matrix X R is an orthogonal design.
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THEOREM 9. Let X be an orthogonal design matrix of n rows and d columns in which
the sums of squares for columns are equal. Let R be a d x d rotation matrix. The design
resulting from the matrix product X R is also an orthogonal design.

Since computation of Monte-Carlo integrals is, in effect, a computer experiment,
it is beneficial for designs for computer experiments to have uncorrelated regression
estimates of main effects. The following theorem shows this to be true for all designs
obtained by rotation of standard full factorial designs, specifically rotated factorial
designs.

THEOREM 10. Any p®-point rotated factorial design has uncorrelated regression
estimates of main effects.

Recall that Johnson et al. (1990) introduced the use of minimum interpoint distance
(MID) as an important design criterion (see Eq. (10)). It can be shown that the MID
using Euclidean distance for a p?-point rotated factorial design scaled to the unit hy-
pereube, [0, 1]%,is /1 + p? +---+ p*1/(p — 1) = /(p* - 1)/((p?> — D(p — D?).
Additionally, it can be shown this is the maximal MID for d = 2. A formal proof for
higher dimensions has not been obtained as yet.

Table 11 lists the MIDs for several of the four-dimensional RFDs requiring fewer
than 100 points and for the respective Latin hypercube designs of Morris and Mitchell

Table 11
MID comparisons of four-dimensional MmLH, RFD, and MmU designs

No. Maximin Rotated factorial Maximin

of Latin design U

Pts H-cube Type U Type E design
8 0.9258 + 0.8692 0.7071 (3) 0.7954 «
9 0.8101 ¥ 0.5762 1.0000 (3) 0.6960 <

10 0.7857 ¥ * * *

11 0.7416 + * * *

12 0.7216 + * * *

16 0.6218 © 0.6146 0.6146 (16) 0.5292 «

24 0.5325 © 0.3963 0.3963 (24) N/A

28 N/A 0.3951 0.4167 (7) *

36 N/A 0.3725 0.3725 (36) N/A

40 N/A 0.5192 0.5192 (40) N/A

41 04507 © 0.5062 0.5062 (41) *

54 N/A 0.3641 0.3641 (54) N/A

67 N/A 0.3825 0.3825 (67) *

68 N/A 0.3751 0.3751 (68) *

81 N/A 0.3579 0.3579 (81) N/A

*No design can be constructed as defined.
T Published in Morris and Mitchell (1992).

©Obtained via Morris and Mitchell (1992), but algorithm by the author.
“Obtained by author’s algorithm.
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(1992, denoted by MmLH) and maxmin U designs of Tang (1994, denoted by MmU).
MmLH designs (Latin hypercube designs of.Morris and Mitchell, 1992) and MmU
designs (maxmin U designs of Tang, 1994). Due to the computational requirements of
obtaining designs from other methods, some were results not available (N/A). It is clear
that the easily-constructed RFDs have similar (if not equal) MIDs to other computing
extensive constructed designs.

5. Dispersion effects in screening designs

When studying both location and dispersion effects in unreplicated fractional factor-
ial designs, a “standard” procedure is to identify location effects using ordinary least
squares analysis, fit a model, then identify dispersion effects by analyzing the residu-
als. Traditionally, the primary use of these designs has been in detecting and modeling
location effects (changes in the mean response). An assumption of constant variance is
usually made. In this section, we show that if the model in the above procedure does
not include all active location effects, then null dispersion effects may be mistakenly be
identified as active. We also derive an exact relationship between location and dispersion
effects.

5.1. An illustrative example

Montgomery (1990) analyzed data from an injection molding experiment where the
response to be optimized was shrinkage. The factors studied were mold temperature (A),
screw speed (B), holding time (C), gate size (D), cycle time (E), moisture content (F),
and holding pressure (G). The design is a 2;‘7 % fractional factorial. The generators of
this design are E = ABC, F = BCD, and G = ACD. The data are shown in Table 12.

Table 12
Design matrix and response for injection molding experiment

A B C D E F
ilji- 0 1 2 3 4 6 7 8 9 10 11 12 13 14 15 yy
1 1 - - - - 4+ 4+ + + + + - - - - 4+ 6
2 1+ - - - - - 4+ 4+ 4+ + + + - - 10
3 1 - 4+ - = - 4+ + - - 4+ + + - + - 3R
4 1+ 4+ - - 4+ - - - - 4+ - - 4+ + + 6
5 1 - - + - + - 4+ + - + - + 4+ - 4
6 1+ -+ - 4+ = = 4+ - - 4+ - 4+ 4+ I5
7 I - + 4+ - - - + + - - - + + - 4+ 2
8 I+ + + - + 4+ - + - - + - - - = €
9 I - - - 4+ + 4+ - + - - - 4+ + + - 8
10 I+ - — + - = + + - - 4+ - - + + 12
11 I - + - + - 4+ - - + - 4+ - + - + 34
12 I+ + — + + - + - + - - 4+ - = = €
13 I - — 4+ 4+ + - - - - 4+ 4+ + - - + 16
14 I+ - + + - 4+ + - - 4+ - - 4+ - - 5
15 1 — 4+ + + - - - 4 + + - - 4+ 37
16 I+ + 4+ + + + + + + + + + + + %2
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The least squares regression coefficients were obtained from fitting a saturated
model. Figure 3 is a half-normal probability plot of the estimated regression coefficients
(Bjs). Montgomery used a normal probability plot of the estimated effects and
determined that columns 1, 2, and 5 (A, B, and AB) produce active location effects.
He fit this location model, which we denote M1.

M1) ¥ =27.312546.9375A+ 17.8125B + 5.9375AB.

The estimated residuals under M1 are (—2.50, —0.50, —0.25, 2.00, —4.50, 4.50,
—6.25,2.00, —0.50, 1.50, 1.75, 2.00, 7.50, —5.50, 4.75, —6.00). As a measure of the
dispersion effect magnitude for column j, Montgomery calculates the statistic F j’.* =

In s]z + /sJZ; which is the natural logarithm of the ratio of the sample variances of the
residuals at the +1 and —1 levels of column j. Note that Box and Meyer (1986b) point
out this statistic is approximately normally distributed with mean 0 and variance 1.
Montgomery compared these statistics to an appropriate normal quantile to determine
significance. He also used a normal plot of these statistics. Using either the normal
quantile or the probability plot, it is evident that column 3 (C) has a dispersion effect
with

53 32.44
ML _1p 2270 — 9050,

T 266

F;}Ml =In

Thus, Montgomery (1990) concludes that factors A (mold temperature) and B (screw
speed) impact the mean shrinkage of the mold and that factor C (holding time) impacts
the variation in shrinkage. By studying the interaction between mold temperature and
screw speed, it is apparent that the low screw speed is better for reducing mean shrinkage
and that the setting of mold temperature is not crucial at this speed. To reduce the
variation in shrinkage, holding time should be set at its low level.

This logical procedure has been used by many and has become a standard practice.
However, the identification of dispersion effects is quite sensitive to the location model
that is fit. To illustrate, note that another reasonable interpretation of Figure 3 is that
columns 7 and 13 have active location effects in addition to columns 1, 2, and 5.
Due to the confounding associated with this design, column 13 represents not just
the factor G effect alone, but also the ACD interaction and other effects. The AD
interaction effect appears in column 7 and the interaction of columns 7 and 13 appears
in column 3.

We denote this model with five location effects (columns 1, 2, 5, 7, and 13) as M2.

M2) ¥ =27.3125+6.9375A+ 17.8125B 4 5.9375AB
—2.6875AD — 2.4375ACD.

The residuals from model M2 are (-—2.250, —0.750,0.000, 1.750, 0.625, —0.625,
-1.125, -3.125, —-0.750, 1.750, 1.500, 2.250, 2.375, —0.375, —0.375, —0.875). From
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this model we have the F J’.* statistic for column 3,

2

s 2.42
o =In oM 1n 202 = _0.06.
Faimz ns§~lM2 258

Here, it is apparent there is no dispersion effect associated with column 3 (factor C) as
the sample variance of residuals is quite similar at the —1 and +1 levels of column 3.

So we have two feasible models for mold shrinkage, M1 and M2. M1 shows two
factors important for determining the location (mean) of the response, and also includes
another factor that is important for controlling the variation in the response. M2 includes
four factors that affect the mean response and no dispersion factors. Which model is
more appropriate? Is one model better than the other? Some additional information may
be helpful.

The experiment actually included four center points (25, 29, 24, 27) in addition to the
fractional factorial. From these center points, we have an estimate of the variance of the
response, o2, of % = 4.92. M1 produces 62, = 20.73 and M2 produces 63, = 3.81.
The M2 estimate is in much better agreement with the center point estimate.

Therefore, a reasonable conclusion based on model M2 is that there are four
important factors: mold temperature, screw speed, holding time and gate size (D). If
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this experiment is truly a screening experiment, then fitting M1 would have eliminated
a potentially important factor, gate size.
So we have two distinctly different possibilities:

o Failing to include a pair of location effects created a spurious dispersion effect, or
o Failing to account for a dispersion effect created two location effects.

These spurious dispersion effects are not uncommon. We will show that the exclusion
of a pair of active location effects will create an apparent (spurious) dispersion effect
in the interaction of these two columns. Box and Meyer (1986a, 1986b) and Bergman
and Hynen (1997) both noted a relationship between location and dispersion effects.
We will derive the exact relationship. In the next section, we will provide a theoretical
explanation showing that failure to include two location effects in a model before
calculating residuals can produce a spurious dispersion effect.

5.2. Spurious dispersion effects

Assume some method is used to identify m active location effects in an unreplicated
fractional factorial design. A model is fit and residuals are estimated, but assume there
are two active location effects that are excluded from this model. Let the excluded active
location effects be in columns x; and x ;s and let x4 be the column associated with
the interaction of x; and x ;. Then x;jx;j» = xiq. Let ;§j and ﬁ i+ be the usual least
squares estimators of B; and 8, the regression coefficients associated with x ; and x j/
respectively. We will show that failure to include B; and B in the regression model
will create a difference in the expected value of the sample variances at the +1 and —1
levels of x4.

Define the following sets of rows using the convention P for ‘plus’ and M for
‘minus’:

M ={i: xig=—1}, P={i xjg=+1}.

A dispersion effect occurs when the variance of the response, independent of the
location effects (or equivalently, the variance of the residuals from a known location
model), is higher at one level of a column than the other. We can compare sample
variances of the residuals at the plus and minus levels of a column to determine if it has
a dispersion effect. Let

2 S \2 2 2 32
s§+ — iEEP(e,- —ép)° and s;_= — ieEM(ei —em)”,
where

Em=%Ze,' and ép:%Ze,’.

ieM ieP
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It is shown in the Appendix that the expected sample variance of the residuals when
xig=-1({eM)is

2
E[s;_]= E[n — D (e ém)z]

ieM

_n—l—m 2 n

o1 0 Y-8 (18)

and when x;4 =+1 (i € P),

2
E[si,]= E[;—_—z Z(ei - ép)z]

ieP
B L (19)
n—1 n—2"7 PSS
From (18) and (19) we have
4n
E[s;,]-E[s7_]= 5 Pibi (20)

Consider the following three scenarios involving 8; and 8;:

o If B; = Bj: = 0, then these two location effects are not active and E[sg_] =F [sg =
";1_"1”‘02 and E [sg J—E [sg_] = 0. Thus, any difference is just random error so
there will should be no spurious dispersion effect.

o If only one of the coefficients is nonzero, then (20) is still zero as mentioned in
Bergman and Hynén (1997), although both are biased upwards as estimates of o'2.

o If 8; and Bj: # 0, the residuals will have different expected variance at the —1 and
+1 levels of x4. Thus, excluding two location effects from a model and then studying
residuals can create a spurious dispersion effect.

Returning to the injection molding example, if we assume columns 7 and 13 produce
active location effects but were left out of the model, then we have

7T 4dn A 4
E[s3 ] = E[3_p] = — 2137/313
4
== ( )1(4:6) (—2.6875)(—2.4375) = 29.95.

Recalling that séz—|M1 = 2.66 and s32 M1 = 32.44, we have
2 2
S3+[Ml - S3—-[Ml = 29.79‘
So the observed difference in sample variances is almost the same as that caused by

not including 7 and B3 in the model. This indicates the dispersion effect detected by
fitting model M1 is spurious.
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5.3. Some theoretical results

McGrath and Lin (2001a) showed that (1) failing to include a pair of location effects
creates a spurious dispersion effect in its interaction column; and (2) two dispersion
effects create a dispersion effect in their interaction column. They also provide a way to
simultaneously analyze the location and dispersion effects. Furthermore, the following
results were given (see McGrath and Lin, 2001a).

e Let §; and B » be the OLS estimates for columns x ; and x j respectively in a 2¢~7
experiment. If the interaction of x j and x j is in column x4, Var(g;|x;g = —1) = 03_
and Var(g;lxig=1)= a} - then the correlation of ,3 ; and ﬁ 7 18

2 2
Ud-}- "-O'av_
P =3 oa @
og, tog_

e Let m be the number of active location effects in the model fit from a 2K—7
experiment. Let g = the number of alias pairs (x j, x ;) not in the model such that
xijxip = xig for i =1,...,n. Then s‘% 4 and sg_ are independent if and only if
g =(n—1-—m)/2 and x4 is in the effect matrix for the fitted model.

6. Discussion

This chapter introduced some recently developed designs suitable for industrial
experimentation. Apart from the introduction, it can be roughly split into four parts:
Part 1 (Section 2) discussed some useful screening designs for physical experiments.
Part 2 (Section 3) discussed the supersaturated design, a class of screening designs in
which the number of factors is large and the cost of experiment is high (and thus a
small number of runs is required). Specifically, the design is named because its number
of runs is smaller than the number of factors. Part 3 (Section 4) provides a class of
screening designs for computer experiments, and finally Part 4 (Section 5) discusses
the impact of dispersion effects in analyzing the screening designs, using 2k=P design
as an example. Most designs discussed here provide somewhat unique features to
the experimenters. Many are available through popular computer software packages.
Whenever appropriate, the related websites or emails are listed.
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