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A multivariate exponentially weighted
moving average control chart for monitoring
process variability

ARTHUR B. YEH1, DENNIS K. J. LIN2, HONGHONG ZHOU3 &
CHANDRAMOULISWARAN VENKATARAMANI4, 1Bowling Green State
University, Ohio, USA, 2Penn State University, Pennsylvania, USA, 3University of
Michigan, Michigan, USA and 4University of Pennsylvania, Pennsylvania, USA

 This paper introduces a new multivariate exponentially weighted moving
average (EWMA) control chart. The proposed control chart, called an EWMA V-chart,
is designed to detect small changes in the variability of correlated multivariate quality
characteristics. Through examples and simulations, it is demonstrated that the EWMA
V-chart is superior to the DS D-chart in detecting small changes in process variability.
Furthermore, a counterpart of the EWMA V-chart for monitoring process mean, called
the EWMA M-chart is proposed. In detecting small changes in process variability, the
combination of EWMA M-chart and EWMA V-chart is a better alternative to the
combination of MEWMA control chart (Lowry et al., 1992) and DS D-chart. Furthermore,
the EWMA M-chart and V-chart can be plotted in one single figure. As for monitoring
both process mean and process variability, the combined MEWMA and EWMA V-charts
provide the best control procedure.

1 Introduction

In many industrial applications, the quality of a product typically depends on several
correlated quality characteristics. For example, in a fabric-production process, the
quality of fibres produced depends on correlated variables, such as the weight of
textile fibres and a measure of breaking strength—called the single strand break
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factor—among other characteristics. Monitoring these two quality characteristics
independently by two univariate control charts can be misleading. The process
could be out-of-control when both variables are monitored simultaneously using a
multivariate control chart even though neither univariate control chart shows any
out-of-control signal. Since the work by Hotelling (1947), various multivariate
control chart techniques have been proposed to deal with the issue of simultaneous
monitoring of correlated variables. Extensive reviews of the literature on this topic
can be found in Alt (1984), Jackson (1985), Wierda (1994) and Lowry & Mont-
gomery (1995). However, it is only in the last two decades that we have seen
more industry-wide applications of multivariate control charts, due mainly to the
advancement in data-acquisition and computer technologies. The industrial usage
of multivariate control charts will continue to grow as new technologies become
more powerful and accessible.

Given a multivariate process of interest, the process mean is typically monitored
by the Hotelling-T2 chart, and the process variability is usually monitored by an
DS D-chart based on the determinant of the sample variance–covariance matrix. Both
the T2-chart and DS D-chart, however, are sensitive only to moderate to large
changes in population parameters, as in the univariate processes. Various types of
multivariate control charts have been proposed to improve upon the T2-chart,
especially in detecting small changes in process mean. Examples include several
multivariate cumulative sum (MCUSUM) control charts, which were studied in
Woodall & Ncube (1985), Healy (1987), Crosier (1988), Pignatiello and Runger
(1990) and Hawkins (1991), and the multivariate exponentially weighted moving
average (MEWMA) control chart proposed by Lowry et al. (1992). The MEWMA
control chart, in particular, is shown to provide flexibility in designing the control
chart and performs as well as various MCUSUM control charts in detecting small
changes in the process mean.

In this paper, we propose a new multivariate EWMA control chart specifically
designed to detect small changes in process variability. This new control chart,
called the EWMA V-chart, along with its counterpart for monitoring process mean,
called the EWMA M-chart, will be discussed in detail in Section 2. As will be
seen, if the process encounters a small change in process variability, the proposed
EWMA V-chart is more sensitive, in the sense of having a smaller average run
length (ARL), than the traditional DS D-chart in detecting such a change. Further-
more, under the same scenario, the MEWMA control chart tends to have a smaller
ARL than the DS D-chart. Therefore, when a small change in process variability
takes place, the combined MEWMA- and DS D-charts provide a mechanism that
could potentially lead to misleading diagnostics, while the combined EWMA M-
and V-charts provide better detection. In fact, the combined MEWMA and EWMA
V-charts provide the best control charting mechanism for monitoring changes both
in process mean and process variability.

The rest of the paper is organized as follows. Having discussed the EWMA V-
chart in Section 2, we present two examples in Section 3 in which the proposed
EWMA M- and V-charts are used to monitor the process. Some technical deriva-
tions are relegated to Appendix A. The combined MEWMA- and DS D-charts are
also applied to the examples and the results are compared with the ones obtained
using our proposed control charts. Section 4 is devoted to simulation studies and
performance comparison between EWMA M-chart, EWMA V-chart, MEWMA
chart and the DS D-chart. In Section 5, we conclude by addressing some relevant
issues and discussing some open problems.
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2 The multivariate EWMA V-chart

Let Xó(X1, X2, . . . , Xp)@ be a p-dimensional random variable that represents p corre-
lated quality characteristics obtained from a process of interest. We assume that
when the process is in control the distribution of X is Np(k0,&0), a p-dimensional
normal distribution with mean vector k0 and variance–covariance matrix &0, where
k0 and &0 are unknown. We also assume that k0 and &0 can be estimated from a set
of k training samples each with size n, and the process was in control when these k
training samples were taken. From the training samples, we compute X̄X̄ó&k

ió1X̄i /k
and S̄ó&k

ió1Si /k, where X̄ió&n
hó1Xih /n and Sió&n

hó1(XihñX̄i)(XihñX̄i)@/n are the
sample mean vector and sample variance–covariance matrix of the ith training
sample, ió1, 2, . . . k, respectively.

To monitor the quality of the process, we repeatedly take independent samples of
size n, Xt1, Xt2, . . . , Xtn, tP1. Let X̄t and St, tP1, be the sample mean vector and
sample variance–covariance matrix when the monitoring begins. Define for tP1,

vtóP�<
p

ió1
Fnñi,Nñkò1ñiO�<

p

ió1

Nñkò1ñ i
nñ i �î DnSt D

DNS̄ D�, (1)

where DnSt D (similarly DNS̄ D) denotes the determinant of the matrix nSt and
Nónîk. Here, Fnñi,Nñkò1ñi denotes an F distribution with nñ i and Nñkò1ñ i
degrees of freedom. Note that vt is the probability that the random variable
%p

ió1Fnñi,Nñkò1ñi is less than or equal to the observed statistic

�<
p

ió1

Nñkò1ñ i
nñ i �î�DnSt D

DNS̄ D�.

It is shown in Appendix A that when the process is in control, vt is distributed as
U(0, 1), a uniform distribution supported on (0, 1). The exact distribution of the
test statistic used in equation (1) is derived in Appendix A for the bivariate case
(pó2). As for pP3, an approximating distribution is also derived. This leads us
to define an EWMA control chart based on the vts. Specifically for tP1, let

Sv(t)ówî(vtñ0.5)ò(1ñw)îSv(tñ1), (2)

where 0\w\1 and Sv(0)ó0. Note that (vtñ0.5) is distributed asU(ñ0.5, 0.5),
therefore, Sv(t) is just an EWMA of a series of independently and identically
distributed (i.i.d.) U(ñ0.5, 0.5)s. It is easy to see that, for tP1 and a given w,

E(Sv(t))ó0 and Var(Sv(t))ó 1
12 � w

2ñw� (1ñ(1ñw)2t).

Also note that since Sv(t) is symmetric at 0, the two control limits and the centre
line can be chosen as the following:

UCLóLî� 1
12 � w

2ñw� (1ñ(1ñw)2t) (3)

CLó0 (4)
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T 1. Different L values for EWMA V-chart
with in-control ARLó200 and 400

w ARLó200 ARLó400

0.2 2.49 (200.16) 2.69 (399.96)
0.4 2.37 (197.98) 2.49 (399.95)
0.6 2.16 (200.24) 2.23 (401.45)
0.8 1.93 (200.59) 1.97 (399.21)

LCLóñLî� 1
12 � w

2ñw� (1ñ(1ñw)2t), (5)

where tó1, 2, . . . and L is chosen to control the in-control ARL.
We shall call the Sv(t)-based control chart the EWMA V-chart. It is designed

specifically to detect small changes in process variability. Note that when the
subgroup size varies, we can easily modify the test statistic used in equation (1) to
compute the corresponding vt, and consequently Sv(t) can be computed accord-
ingly. Listed in Table 1 are the values of L for two different in-control ARL values
200 and 400, and four different w values 0.2, 0.4, 0.6 and 0.8. The L values were
obtained based on Monte Carlo simulation, assuming that the in-control process
has a bivariate standard normal distribution, i.e. k0ó0 and &0óI, where I is a
2î2 identity matrix. The numbers that appear in the parentheses represent the
simulated in-control ARLs based on 20 000 simulations. The simulations were also
carried out under different sample sizes nó4, 6, 8 and 10. Sample size has little
effect on L, at least under the different ns chosen for our simulations.

The idea of using Sv(t) to monitor small changes in process variability can be
extended to the case of monitoring small changes in process mean. Define for tP1,

mtóP�Fp,Nñkñpò1O
(Nñkñpò1)

p(kò1)
(X̄tñX̄X̄ )@S̄ñ1(X̄tñX̄X̄ )�. (6)

If the process is in control, then mt is distributed as U(0, 1) (see, for example,
Anderson, 1984). Therefore, a counterpart of the EWMA V-chart can be defined
as, for tP1 and a given w,

Sm(t)ówî(mtñ0.5)ò(1ñw)îSm(tñ1), (7)

where 0\w\1 and Sm(0)ó0. We shall call the Sm(t)-based control chart the
EWMA M-chart, as it is specifically designed to detect small changes in process
mean.

Note that the other existing EWMA-type procedure for monitoring small changes
in a multivariate process mean is the MEWMA control chart proposed by Lowry
et al (1992). For a given sample size n and a given w, the MEWMA calculates
EWMAs of sample mean vectors as in, for tP1,

Ztów(X̄tñk0)ò(1ñw)Ztñ1

where Z0ó0. The MEWMA control chart gives an out-of-control signal as soon as

TtóZ@t;
ñ1

t
Zt[H
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where &tó{w[1ñ(1ñw)2t]/(2ñw)}(&0/n), and H is chosen to achieve a specified
in-control ARL. For a more detailed account of the MEWMA control chart, see
Lowry et al. (1992) and Prabhu & Runger (1997).

It should be noted that if the process is in control, then Sm(t) has the same
distribution as Sv(t). Therefore, the control limits (3) and (5) chosen for the
EWMA V-chart can also be applied to the EWMA M-chart, and the resulting in-
control ARLs for both control charts are the same. Furthermore, it is shown in
Yeh & Lin (2002) that, given X̄X̄ and S̄, Sm(t) and Sv(t) are also independent. Thus,
the combined EWMA M- and V-charts for a chosen L have an in-control ARL
equal to half the in-control ARL for the individual control chart. In this regard, the
combined EWMA M- and V-charts provide a unified approach to the monitoring of
multivariate processes, especially when small changes in process parameters are of
interest.

Remark 1

In our settings, we assume that k0 and &0 are unknown and can be estimated based
on k training samples each of size n, taken when the process was in control. For
the EWMA M-chart, to ensure that S̄[0 (positively definite), it is assumed that
k(nñ1)[p. If k0 and &0 are known, then s2

p instead of Fp,nîkñkñpò1 is used to obtain
mt in equation (6). In an earlier study, Lowry & Montgomery (1995) recommended
that for 2OpO5 and nO10, nîk should be in the range between 200 and 250,
and for larger p values such as 10 and 20, and nO10, nîk should be in the range
between 500 and 600. Thus, in the bivariate case for instance, a collection of 50
in-control training samples, each of size 5, is recommended to start the EWMA
M-chart. Note that the control limits of the EWMA M-chart will not be affected
by different choices of n and k since the exact distribution is used in equation (6)
to obtain the probability integral transformation mt.

The EWMA V-chart requires n[p to ensure that Si[0, ió1, 2, . . . , k, and
St[0, tP1. For pó2, if &0 is known, then s2

2nñ4 instead of F2nñ4,2(nîkñkñ1) will be
used to obtain vt in equation (1) (see Appendix A). This case is very similar to that
of the EWMA M-chart. Therefore, we recommended that nîk be in the range
between 200 and 250 for nO10. For instance, in the bivariate case, 50 training
samples and 20 to 25 training samples are recommended to start the EWMA V-
chart for sample sizes equal to 5 and 10, respectively. Similarly, since the exact
distribution is used in obtaining vt in equation (1), the control limits of the EWMA
V-chart will not be affected.

As for pP3, we derive a normal approximation to the distribution used in
equation (1) to obtain vt (see Appendix A). The approximation is essentially based
on the asymptotic distribution of a sum of p logarithmic chi-square distributions
with various degrees of freedom. In general, the normal approximation is reasonably
good for nP10 and becomes better for larger values of nîk and p (see, for
example, Bartlett & Kendall, 1946, and Gnanadesikan & Gupta, 1970). In the
context of establishing the EWMA V-chart, we recommend that at least 50 training
samples be used. Each sample should contain at least ten observations for 3OpO8,
and larger sample sizes are needed for larger ps. Note that the exact distribution
in equation (1) when pP3 tends to have heavier tails than the normal distribution,
which makes Sv(t) more likely to fall in the rejection regions.
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Remark 2

Unlike the univariate case where the variance is a scalar, the p-dimensional
variance–covariance matrix &0 has p(pò1)/2 potentially different parameters,
including p diagonal variances and p(pñ1)/2 off-diagonal covariances. Therefore,
it is sometimes desirable to summarize the variation expressed by &0 using a single
numerical measure. One such widely used measure is the generalized variance D&0 D,
defined as the determinant of the variance–covariance matrix. In addition, the
sample variance–covariance matrix DS D, used to estimate D&0 D, has very interesting
geometrical interpretations. For any given sample X1, X2, . . . , Xn in Rp, consider
the p-dimensional parallelotope (Anderson, 1984) whose p principal edges corre-
spond to the p rows of (X1ñX̄n, X2ñX̄n, . . . , XnñX̄n). The DS D is proportional to
the square of the volume of such a parallelotope. Furthermore, for any given
constant c, DS D is also proportional to the square of the volume of the ellipsoid
generated by {X éRp: (XñX̄n)@Sñ1(XñX̄n)Oc2}, which is the form of the confi-
dence region for the mean vector under the normality assumption.

3 Examples

3.1 A fabric-production example

The first example, taken from Mitra (1993), is related to a fabric-production
process. The two quality characteristics of interest are the single-strand and break
factor and the weight of textile fibres. Originally, 20 samples each of size 4 were
obtained from the process. The combined T2- and DS D-charts are shown in Fig. 1,
and no out-of-control signal is detected. From these 20 samples, we obtained

F. 1. The T2- and DS D-charts for the fabric-production example.
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X̄X̄ó�82.4625
20.1750�, S̄ó� 7.5215 ñ0.3542

ñ0.3542 3.2917�
Assuming that the in-control process has a bivariate normal distribution with
k0óX̄X̄ and &0óS̄, we generated 80 new samples each of size 4 from the distribution.
The first ten samples were generated from the in-control process, and starting from
sample 11, we applied a 50% increase to the standard deviation of the first variable,
the single-strand break factor, while keeping the mean unchanged. The variance–
covariance matrix of the new process starting from sample 11 is equal to

&newó� 16.9234 ñ0.5315
ñ0.5315 3.2917�

and in this case D&new Dó2.25îD&0 D.
The combined MEWMA- and DS D-charts are shown in Fig. 2. No out-of-control

signal is detected on the DS D-chart, while an out-of-control signal is detected at
sample 44 on the MEWMA chart. Therefore, one is more likely to conclude that
the process mean, but not the process variability, is out of control. The combined
EWMA M- and V-charts are shown in Fig. 3. An out-of-control signal is detected
at sample 30 on the EWMA V-chart, while an out-of-control signal also shows up
at sample 32 on the EWMA M-chart. Clearly, from Fig. 3, the process variability
is out of control. However, care should be exercised in interpreting the out-of-
control signal on the EWMA M-chart since the process variability is already out
of control. Note that in Fig. 3, we actually plotted

Sv(t)î� 12(2ñw)
w(1ñ(1ñw)2t)

F. 2. The MEWMA- and DS D-charts with a change in variability starting at sample 11.
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F. 3. The EWMA M- and V-charts with a change in variability starting at sample 11.

on the y-axis so that the UCL and LOL are 2.49 and ñ2.49 (see Table 1),
respectively. Also note that wó0.2 is used in both combined control charts.

Remark 3

Unlike in the univariate case, it is more difficult to interpret the EWMA V-chart
or the DS D-chart when an out-of-control signal is detected. If a sample point is
plotted outside of the control limits, it is primarily due to a change in the
determinant of the sample variance–covariance matrix (increase or decrease in the
determinant). However, this does not necessarily imply that there is an increase or
a decrease in process variability. It is worth mentioning that Johnson & Wichern
(1998) gave three sample variance–covariance matrices for bivariate data that all
have the same determinant and yet have very different correlations.

Remark 4

In order better to understand what specific changes in process variability have
taken place when an out-of-control signal shows up on the EWMA V-chart, one
might consider performing (after an out-of-control signal is detected) a series of
hierarchical likelihood ratio-based testing procedures proposed by Manly & Rayner
(1987) (also see section 8.3 of Wierda, 1994). These testing procedures are
designed to test, in a series of steps, whether (1) the out-of-control and in-control
variance–covariance matrices differ in correlations; (2) the out-of-control and
in-control variance–covarlance matrices differ only in variances; and (3) the out-
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of-control variance–covariance matrix is proportional to the in-control variance–
covariance matrix.

The testing proceeds as follows. If the result of test (1) is significant, it is
concluded that the correlations of the two variance–covariance matrices differ. If
the result of test (1) is not significant, proceed to test (2). If the result is significant,
it is concluded that the two variance–covariance matrices differ only in variances,
whereas the correlations are equal. If the result of test (2) is not significant, perform
test (3). If the result is significant, it is concluded that the two variance–covariance
matrices are proportional. If the result is not significant, it is then concluded that
the two matrices are equal.

3.2 A transmission assembly example

The second example, also taken from Mitra (1993), concerns the quality of a compo-
nent used in the assembly of a transmission mechanism. The two quality character-
istics of interest are tensile strength and diameter of the component. Twenty samples
each of size 4, were taken from the original process, and the combined T2- and
DS D-charts are shown in Fig. 4. No out-of-control signal is detected either on the
T2-chart or on the DS D-chart. We obtained, from these 20 samples,

X̄X̄ó�71.2625
19.3000� , S̄ó� 18.9042 ñ1.4792

ñ1.4792 2.6750�
Assuming that the in-control process has a bivariate normal distribution with
k0óX̄X̄ and &0óS̄ we generated another 80 samples each of size 4. We did not
change the parameters when the first 10 samples were generated. Starting from

F. 4. The T2- and DS D-charts for the transmission component example.
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F. 5. The MEWMA- and DS D-charts with a change in variability starting at sample 11.

sample 11, we increased the variance of the first variable, the tensile strength, by
approximately 25%, again while keeping the process mean unchanged. The
resulting variance–covariance for sample 11 and onward is

&newó� 23.5378 ñ1.6506
ñ1.6506 2.6750�

whose determinant is approximately 1.2451îD&0 D. Shown in Fig. 5 and 6, respec-
tively, are the combined MEWMA- and DS D-charts and the combined EWMA
M- and V-charts for the 80 samples generated.

As shown in Fig. 5, an out-of-control signal is detected at sample 67 on the
MEWMA chart, while no out-of-control signal appears on the DS D-chart. One is
more likely to be misled by the signal on the combined MEWMA- and DS D-charts.
On the other hand, as seen in Fig. 6, an out-of-control signal is detected at sample
42 on the EWMA V-chart, which should call for immediate action in determining
the causes of the change in process variability.

4 Numerical studies

4.1 The performance of the proposed control charts

In this section, we present the results of simulated ARLs for bivariate processes.
The in-control process is assumed to have a standard bivariate normal distribution,
and the in-control ARL is assumed to be 200. All results were obtained based on
5000 simulations. When a sample was generated from a given out-of-control
distribution, the sample was used to evaluate all the competing control charts
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F. 6. The EWMA M- and V-charts with a change in variability starting at sample 11.

considered in our simulation studies. The standard errors of the simulations were
all between 1% and 1.5% of the values of the simulated ARLs.

Assuming that &0óI, for given n and w, we simulated ARLs for different mean
vectors kó(k1,k2). These include 0.25p to 1.25p shifts in both variables, and
similar shifts in just the first variable. The simulations involved two sample sizes
nó4 and 8, and three different smoothing constants wó0.2, 0.4 and 0.6. The
results are summarized in Table 2. Take, for example, the case when nó4 and
wó0.2, the MEWMA control chart performs better than the EWMA M-chart for
all the cases considered. In general, both the EWMA M-chart and the MEWMA
control chart have better performance, as indicated by smaller ARLs, for larger
sample sizes and smaller w values.

Next, assuming that k0ó(0, 0), for given n and w, we simulated ARLs for
various combinations of standard deviations and correlation (p1,p2,o). The changes
considered here are a 10%, 25% and 50% increase in standard deviation of both
variables or just the first variable, and four different correlations oó0, ñ0.2, 0.5
and 0.8. We have chosen these out-of-control cases to represent a variety of
parameter changes in the process variability of a bivariate process, including small
to moderate increases in the standard deviation of one variable or both variables,
and low to high correlations. These changes also represent a variety of different
determinant values ranging from small to large determinant values. The simulations
involved different n and w values similar to those considered in mean shift cases.
The results are summarized in Table 3 for nó4 and wó0.2, and in Table 4 for
nó8 and wó0.2. Additional tables for (n, w)ó(4, 0.4), (4, 0.6), (8, 0.4) and
(8, 0.6) are included in Tables B1–B4 in Appendix B.

Note that in the case when &0 is known, the performance of the EWMA V-chart
depends on D&D /D&0 D, the ratio of the determinant of the out-of-control variance–
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T 2. Comparisons of ARL of EWMA M-chart and MEWMA
chart for mean shifts (pó2)

(k1,k2) EWMA M-chart MEWMA chart

(wó0.2) (nó4) (nó8) (nó4) (nó8)
(0.25,0.25) 80.43 33.13 16.81 9.05
(0.5,0.5) 12.82 5.72 5.04 2.84
(0.75,0.75) 5.10 3.33 2.59 1.59
(1.0,1.0) 3.49 3.03 1.69 1.15
(1.25,1.25) 3.09 3.01 1.31 1.02
(1.25,1.25) 107.55 79.54 26.99 17.38
(0.25,0) 33.70 12.59 9.08 4.87
(0.75,0) 10.79 5.11 4.39 2.57
(1.0,0) 5.72 3.50 2.83 1.72
(1.25,0) 4.01 3.09 2.03 1.30

(wó0.4)
(0.25,0.25) 88.36 39.30 22.75 10.93
(0.5,0.5) 13.93 5.79 5.97 2.90
(0.75,0.75) 4.73 3.16 2.52 1.60
(1.0,1.0) 3.37 2.43 1.82 1.16
(1.25,1.25) 2.65 2.07 1.34 1.02
(0.25,0) 136.33 87.63 41.58 22.36
(0.5,0) 38.91 14.48 12.70 5.57
(0.75,0) 11.94 5.24 5.27 2.63
(1.0,0) 5.81 3.38 3.11 1.73
(1.25,0) 3.93 2.69 2.06 1.30

(wó0.6)
(0.25,0.25) 93.66 44.23 29.50 14.93
(0.5,0.5) 16.08 5.95 6.82 3.21
(0.75,0.75) 5.16 2.72 2.96 1.62
(1.0,1.0) 2.97 2.11 1.79 1.16
(1.25,1.25) 2.28 2.04 1.32 1.02
(0.25,0) 149.39 95.68 52.48 30.70
(0.5,0) 44.76 16.08 14.53 6.83
(0.75,0) 13.44 5.05 5.94 2.85
(1.0,0) 5.96 2.98 3.29 1.78
(1.25,0) 3.64 2.29 2.18 1.31

covariance matrix & and the determinant of the in-control variance–covariance
matrix &0. These tables show that the EWMA V-chart significantly outperforms
the DS D-chart in almost all cases, except when D&D /D&0 D is large, in which case the
EWMA V-chart and the DS D-chart have very similar ARLs. Plotted in Fig. 7 are
the ARLs versus D&D /D&0 D for both the EWMA V-chart and the DS D-chart under
nó4 and 8. We also plotted in Fig. 8 the ARLs of the EWMA V-chart under
wó0.2, 0.4 and 0.6 when nó4. In general, for a given n, the EWMA V-chart
performs better when smaller values of w are used, and for a given w, larger sample
sizes lead to better performance of the EWMA V-chart. Furthermore, the EWMA
V-chart with a smaller w value is more effective in detecting smaller changes in
process variability.

The EWMA V-chart also outperforms the MEWMA chart in the majority of
cases considered, except when (i) there is a small increase in standard deviation in
just the first variable and (ii) the correlation is moderate and either both standard
deviations increase by a small percentage or only the standard deviation of the first
variable increases. However, in these exceptions, the possible diagnostics from the
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T 3. Comparisons of ARL for changes in variability (nó4, wó0.2, pó2)

(p1, p2, o) M-chart V-chart MEWMA DS D-chart D&D/ D&0 D

(1.10,1.00,0) 128.42 114.06 112.61 123.60 1.210
(1.10,1.10,0) 93.40 64.44 88.93 94.05 1.464
(1.25,1.00,0) 72.96 51.73 68.18 80.96 1.563
(1.50,1.00,0) 31.80 20.36 32.09 35.09 2.250
(1.25,1.25,0) 31.81 17.38 39.22 29.24 2.441
(1.50,1.00,0) 12.60 7.03 15.04 8.32 5.063

(1.10,1.00,0.5) 125.67 141.25 83.94 146.53 0.908
(1.10,1.10,0.5) 107.29 133.87 65.24 133.60 1.098
(1.25,1.00,0.5) 87.96 126.77 53.88 129.65 1.172
(1.50,1.00,0.5) 39.33 41.73 28.92 68.85 1.688
(1.25,1.25,0.5) 40.16 33.01 33.39 57.74 1.831

(1.50,1.50,ñ0.2) 14.57 9.31 14.69 12.47 3.797
(1.10,1.00,ñ0.2) 129.36 126.33 107.15 128.95 1.162
(1.10,1.10,ñ0.2) 96.72 73.58 82.99 98.89 1.406
(1.25,1.00,ñ0.2) 77.57 58.06 66.22 88.19 1.500
(1.50,1.00,ñ0.2) 53.29 22.03 30.89 38.60 2.160
(1.25,1.25,ñ0.2) 33.18 19.23 37.30 32.17 2.344
(1.50,1.50,ñ0.2) 12.70 7.22 15.06 8.74 4.860

(1.10,1.00,0.8) 92.32 24.95 60.77 139.17 0.436
(1.10,1.10,0.8) 96.37 39.38 47.79 141.92 0.527
(1.25,1.00,0.8) 90.48 46.63 41.11 145.85 0.563
(1.50,1.00,0.8) 52.14 125.12 24.29 148.43 0.810
(1.25,1.25,0.8) 56.55 138.84 27.16 148.54 0.879
(1.50,1.50,0.8) 21.04 32.57 13.43 57.91 1.823

MEWMA control chart could be misleading. Furthermore, if we examine the
combined MEWMA- and DS D-charts, the MEWMA control chart tends to have
smaller ARLs than the DS D-chart, except when there are moderate to large increases
in standard deviations of both variables. On the other hand, when there is a change
in process variability, the combined EWMA M- and V-charts provide a monitoring
mechanism for correctly identifying the actual changes taking place in the process,
except when D&D /D&0 D is close to 1. In fact, combining the MEWMA control chart
and the EWMA V-chart gives the best control charting procedure for monitoring
both process mean and process variability. From the results summarized in Tables
3 and 4, note also that both the MEWMA chart and the EWMA M-chart are
sensitive to changes in process variability. Therefore, in practical applications,
caution needs to be taken when interpreting the out-of-control signals shown on
these two control charts. When these two control charts are combined with control
charts for monitoring process variability (such as the EWMA V-chart), if out-of-
control signals show up on both charts, efforts should first be directed toward
identifying assignable causes for a possibly out-of-control process variability.

Remark 5

We have also carried out ARL simulations for detecting variability changes for the
cases when pó3 and 4, nó10, and wó0.2, 0.4 and 0.6. The in-control process
was assumed to have a standard multivariate normal distribution. The main results
comparing the ARL performance of the EWMA V-chart with that of the DS D-chart
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T 4. Comparisons of ARL for changes in variability (nó8, wó0.2, pó2)

(p1, p2, o) M-chart V-chart MEWMA DS D-chart D&D/ D&0 D

(1.10,1.00,0) 125.54 77.29 113.66 114.14 1.210
(1.10,1.10,0) 93.19 28.13 86.49 64.20 1.464
(1.25,1.00,0) 76.30 21.50 70.53 50.68 1.563
(1.50,1.00,0) 32.01 8.24 32.07 15.76 2.250
(1.25,1.25,0) 31.25 7.29 39.83 12.85 2.441
(1.50,1.50,0) 12.42 3.74 14.84 2.99 5.063

(1.10,1.00,0.5) 125.57 131.28 83.24 142.61 0.908
(1.10,1.10,0.5) 106.07 123.70 65.78 132.41 1.098
(1.25,1.00,0.5) 89.37 91.11 52.59 122.66 1.172
(1.50,1.00,0.5) 39.82 16.54 28.80 40.21 1.688
(1.25,1.25,0.5) 40.99 12.90 32.83 29.52 1.831
(1.50,1.50,0.5) 14.75 4.41 14.71 4.68 3.797

(1.10,1.00,ñ0.2) 125.55 98.78 107.81 124.76 1.162
(1.10,1.10,ñ0.2) 95.69 32.90 82.65 71.20 1.406
(1.25,1.00,ñ0.2) 78.03 25.27 66.49 57.94 1.500
(1.50,1.00,ñ0.2) 32.83 9.01 31.19 17.57 2.160
(1.25,1.25,ñ0.2) 32.99 7.73 38.74 14.25 2.344
(1.50,1.50,ñ0.2) 12.81 3.81 14.87 3.15 4.860

(1.10,1.00,0.8) 93.11 8.57 61.09 58.71 0.436
(1.10,1.10,0.8) 92.61 13.21 48.42 88.59 0.527
(1.25,1.00,0.8) 87.80 15.89 41.06 97.51 0.563
(1.50,1.00,0.8) 51.17 79.57 24.06 140.89 0.810
(1.25,1.25,0.8) 55.99 118.50 26.89 145.57 0.879
(1.50,1.50,0.8) 20.73 13.06 13.28 30.13 1.823

are summarized in Table 5 (pó3) and Table 6 (pó4). In Tables 5 and 6, we only
listed the parameters that have been changed. For instance, ‘p1,2ó1.25’ indicates
that the standard deviations of the first and second variables were both increased
by 25%, and ‘o12,13ó0.5’ indicates that the correlations between the first and
second, and between the first and third variables were both changed from 0 to 0.5.
These different parameter changes were selected to represent a variety of possible
changes to the variance–covariance matrix (e.g. changes in the standard deviations,
or changes in correlations or both), as well as a variety of determinants of the
corresponding variance–covariance matrices.

Tables 5 and 6 show that, similar to the bivariate case, the EWMA V-chart
outperforms the DS D-chart, except when D&D / D&0 D becomes large. Plotted on Fig. 9
(pó3) and Fig. 10 (pó4) are the ARLs versus D&D / D&0 D for the EWMA V-chart
(wó0.2, 0.4 and 0.6) and the DS D-chart. Additional simulation results for the
corresponding MEWMA control chart and the EWMA M-chart can be found in
Tables B5–B10 in Appendix B.

There are two advantages for making the probability integral transformation to
obtain mt and vt defined, respectively, in equation (6) and (1); one being that only
one set of control limits needs to be developed since Sm(t) and Sv(t) have the same
distribution when the process is in control. Another potentially appealing feature of
the EWMA M-chart and EWMA V-chart is that since Sm(t) and Sv(t) have the
same distribution, they can be combined into a single chart. Shown in Fig. 11 is the
single control chart produced by combining the EWMA M-chart and the EWMA V-
chart shown in Fig. 6. The Sm(t) is represented by ‘ò’ and the Sv(t) is represented
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F. 7. The ARLs of EWMA V-chart and DS D-chart versus D&D/ D&0 D (nó4 and 8, and pó2).

F. 8. The ARLs of EWMA V-chart versus D&D/ D&0 D (wó0.2, 0.4 and 0.6, nó8 and pó2).
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T 5. Comparisons of ARL for changes in variability, (nó10, pó3)

EWMA V-chart

Changes wó0.2 0.4 0.6 DS D-chart D&D/ D&0 D

p1ó1.1 89.68 106.38 120.21 153.68 1.210
p1ó1.25 26.07 32.77 39.31 72.28 1.563
p1ó1.5 9.80 11.02 12.60 24.71 2.250
p1,2ó1.1 33.80 43.44 51.99 89.39 1.464
p1,2ó1.25 8.34 9.33 10.29 19.51 2.441
p1,2ó1.5 4.06 4.04 3.74 4.38 5.063
p1,2,3ó1.1 17.45 21.05 24.81 48.57 1.772
p1,2,3ó1.25 4.86 4.98 5.00 7.17 3.815

o12ó0.5 58.32 77.34 93.40 184.01 0.750
o12óñ0.2 192.53 195.27 199.25 220.20 0.960
o12ó0.8 7.09 8.25 9.73 39.67 0.360
o12,13ó0.5 13.38 17.21 21.67 80.20 0.500
o12,13óñ0.2 167.29 178.61 186.24 220.35 0.920
o12,13,23óñ0.2 122.95 142.43 160.11 216.61 0.864

p1,2,3ó1.1 140.70 158.91 170.16 217.79 0.886
o12,13,23ó0.5
p1,2,3ó1.1 28.56 36.45 43.40 76.98 1.531
o12,13,23óñ0.2
p1,2,3ó1.1 3.84 3.99 3.87 11.30 0.184
o12,13,23ó0.8
p1,2,3ó1.25 13.94 16.82 19.56 38.68 1.907
o12,13,23ó0.5
p1,2,3ó1.25 5.62 5.97 6.00 9.67 3.296
o12,13,23óñ0.2
p1,2,3ó1.25 8.32 9.80 11.99 47.70 0.397
o12,13,23ó0.08
p1,2,3ó1.5 3.80 3.76 3.34 3.64 5.695
o12,13,23ó0.5
p1,2,3ó1.5 101.53 118.62 131.83 161.56 1.185
o12,13,23ó0.8

by ‘ñ’. In fact, as shown in Fig. 11, after proper probability integral trausformation,
all performance measures (such as T2 and DS D) lie in the range (0, 1). Consequently,
their corresponding EWMAs will have the same distribution. Therefore, one can
monitor more than two performance measures preferably using different colours on
a single control chart, if so desired. This approach could potentially lead to a
significant reduction in the number of control charts to be monitored if multiple
processes are being investigated. On the other hand, it would not be possible to
plot the MEWMA control chart and the EWMA V-chart on a single chart.

4.2 The inertia problem

Lowry et al. (1992) discussed the possible inertia problem that may occur and
which could delay the MEWMA control chart in signalling an out-of-control signal
(also see Lucas & Saccucci, 1990, and Crowder & Hamilton, 1992). The same
phenomenon could also happen in both the EWMA M-chart and the EWMA V-
chart. Here, we discuss how the inertia problem could be addressed in setting up
the EWMA V-chart. Consider an example in which the process variability is in
control, but at current time t the test statistic Sv(t) is negative. Suppose that at
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T 6. Comparisons of ARL for changes in variability (nó10, pó4)

EWMA V-chart

Changes wó0.2 0.4 0.6 DS D-chart D&D/ D&0 D

p1ó1.1 110.05 130.02 136.56 154.96 1.210
p1ó1.25 35.70 47.75 54.32 88.66 1.563
p1ó1.5 13.20 15.91 18.15 35.88 2.250
p1ó1.1 45.99 59.43 68.03 103.38 1.464
p1,2ó1.25 11.21 13.32 14.89 29.15 2.441
p1,2ó1.5 4.88 5.13 4.93 7.05 5.063
p1,2,3ó1.1 23.91 30.95 36.29 64.60 1.772
p1,2,3ó1.25 6.22 6.49 6.83 11.55 3.815
p1,2,3,4ó1.1 14.49 17.77 20.40 40.37 2.144
p1,2,3,4ó1.25 4.39 4.49 4.14 5.61 5.960

o12ó0.5 74.71 99.05 117.23 183.43 0.750
o12óñ0.2 190.87 199.81 206.02 203.98 0.960
o12ó0.8 9.32 11.66 14.76 52.31 0.360
o12,13ó0.5 17.84 25.56 33.05 94.06 0.500
o12,13óñ0.2 175.35 191.58 190.35 204.71 0.920
o12,13,14ó0.5 5.94 6.84 7.78 27.73 0.250
o12,13,14óñ0.2 154.06 176.50 177.46 202.015 0.880
o12,13,14,23ó0.5 7.74 9.11 11.24 41.05 0.313
o12,13,14,23óñ0.2 113.63 138.30 154.04 197.70 0.826
o12,13,14,23,24óñ0.2 81.39 108.37 124.10 187.33 0.768

p1,2,3,4ó1.1 45.62 63.77 78.83 156.64 0.670
o12,13,14,23,24,34ó0.5
p1,2,3,4ó1.1 44.61 56.95 64.32 100.81 1.482
o12,13,14,23,24,34óñ0.2
p1,2,3,4ó1.25 20.29 26.40 29.97 56.57 1.863
o12,13,14,23,24,34ó0.5
p1,2,3,4ó1.25 5.72 6.14 6.12 10.00 4.120
o12,13,14,23,24,34óñ0.2
p1,2,3,4ó1.25 4.35 4.61 4.70 14.11 0.162
o12,13,14,23,24,34ó0.8
p1,2,3,4ó1.5 53.53 75.28 91.66 165.51 0.697
o12,13,14,23,24,34ó0.8

time tò1 the process variability changes in the sense that the determinant of the
variance–covariance matrix increases. The fact that Sv(t) is negative right before
the change in process variability takes place may cause a delay in the EWMA V-
chart in signalling such a change in the process. On the other hand, the inertia
problem could also happen during process start-up, when the process variability is
out of control at the process start-up and the process parameter was not reset to
the target value prior to the process start-up.

The inertia problem can be remedied by setting the initial value Sv(0) to a small
constant k. This increases the sensitivity of the EWMA V-chart in reacting to
changes in process variability. Specifically, setting Sv(0) to a small positive constant
k will increase the sensitivity of the EWMA V-chart in detecting an increase in the
determinant of the variance–covariance matrix and, conversely, choosing a small
negative k will increase the sensitivity in detecting a decrease in the determinant.
The choice of k depends on the magnitude of change of interest in population
parameters. In the present paper, we are not able to provide specific guidance on
how k should be chosen. This is due to the fact that we are not able to convert the
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F. 9. The ARLs of EWMA V-chart versus D&D/ D&0 D (wó0.2, 0.4 and 0.6, nó10 and pó3).

F. 10. The ARLs of EWMA V-chart versus D&D/ D&0 D (wó0.2, 0.4 and 0.6, nó10 and pó4).
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F. 11. The combined single control chart of Sm(t) and Sv(t) for the transmission assembly example.

changes of interest in population parameters into the corresponding changes in the
transformed uniform distributions. As an alternative, we have run some simulations
to look into how different values of k affect the sensitivity of the EWMA V-chart,
as judged by the simulated ARL values. The results are summarized in Table 7.
The case when kó0 refers to the originally proposed EWMA V-chart as defined
in equation (2). In Table 7, we used the same combinations of (p1,p2,o) as in
Tables 3 and 4.

Note that when D&D / D&0 D\1 the EWMA V-chart with a positive k is expected to
have a poorer performance than the one without a head start value. Similarly, when
D&D / D&0 D[1 the EWMA V-chart with a negative k is expected to have a poorer
performance than the one with kó0. It is worth noting that even for small values
of k, the performance of the EWMA V-chart is reasonably improved when D&D /
D&0 D[1.5 for positive ks and also when D&D / D&0 D\0.8 for negative ks, and that
kó0.1 or ñ0.1 leads to a better performance of the EWMA V-chart.

In fact, the EWMA V-chart can be enhanced with an FIR feature to increase
the sensitivity in detecting either an increase or a decrease in the determinant of
the variance–covariance matrix. This is accomplished by simultaneously running
two EWMA V-charts, one with a positive head start and the other with a negative
head start. The simulated ARLs for the EWMA V-charts with kóô0.05 and
ô0.10 are summarized in Table 7. The ARLs of the EWMA V-chart with kó0,
kóô0.05 and kóô0.10 are plotted against D&D / D&0 D in Fig. 12. Running two
EWMA V-charts, each with a head start value increases the sensitivity of the chart
in detecting either an increase or a decrease in the determinant of the variance–
covariance matrix, except when 0.8OD&D / D&0 DO1.2. Larger k values lead to smaller
ARLs.
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T 7. Comparisons of ARL for EWMA V-chart with different head start values
(nó4, wó0.2, pó2)

kóñ0.10 kóñ0.05 kó0 kó0.05 kó0.10 kóô0.05 kóô0.10 D&D/ D&0 D

200.70 201.55 201.12 200.21 201.40 198.15 199.07 1.000
127.34 127.07 114.06 118.96 111.51 124.62 107.52 1.210
67.43 64.47 64.44 60.89 50.58 61.58 50.60 1.464
54.26 51.96 51.73 47.86 39.56 49.43 36.14 1.563
21.75 21.27 20.36 17.99 12.46 17.92 12.93 2.250
18.74 18.06 17.38 14.47 10.19 14.24 9.28 2.441
7.76 7.15 7.03 5.32 3.29 5.28 2.85 5.063

193.08 189.76 141.25 186.16 199.12 193.82 179.57 0.908
175.39 171.86 133.87 163.89 164.59 171.12 148.35 1.098
147.41 142.99 126.77 132.65 128.09 139.06 132.24 1.172
42.64 41.99 41.73 37.31 30.39 38.46 30.03 1.688
33.95 34.91 33.01 28.66 23.08 29.41 23.55 1.831
10.47 9.69 9.31 7.14 4.56 7.29 4.68 3.797

147.73 146.16 126.33 139.95 137.51 145.21 143.80 1.162
74.26 73.06 73.58 67.82 62.05 70.30 61.04 1.406
62.32 59.26 58.06 56.23 45.91 55.93 46.88 1.500
23.68 23.42 22.03 19.24 14.13 19.18 14.08 2.160
19.76 19.63 19.23 16.33 11.53 16.06 11.77 2.344
8.05 7.58 7.22 5.36 3.23 5.56 3.24 4.860

18.03 22.19 24.95 26.91 28.40 23.14 19.49 0.436
30.29 37.47 39.38 40.89 43.90 39.26 34.34 0.527
37.78 45.30 46.63 49.52 51.25 45.84 43.00 0.563

142.65 144.42 125.12 152.65 150.15 148.95 144.21 0.810
181.30 175.95 138.84 177.77 189.07 184.54 175.21 0.879
35.43 34.72 32.57 28.77 22.41 30.22 24.05 1.823

Note that an FIR feature will give the inertia problem caused at process start-
up a bigger boost. As for the other inertia problem caused at some later time t, the
help by an FIR feature in shortening the delay will depend on t. The boost becomes
smaller as t becomes larger.

5 Conclusion

We have introduced and studied a new multivariate EWMA control chart, the
EWMA V-chart, specifically designed to detect small changes in process variability.
The EWMA V-chart is constructed essentially by first transforming, via the
probability integral transformation, the test statistic used to test process variability
into a U(0, 1) random variable, and then calculating the EWMA of the transformed
U(0, 1)s. Examples and simulations have demonstrated that the EWMA V-chart is
more effective than the traditional DS D-chart in detecting small changes in process
variability. The same idea in setting up the EWMA V-chart is also extended to
defining the EWMA M-chart, the counterpart of the EWMA V-chart, for detecting
small changes in the process mean. The combined EWMA M- and V-charts
provide a faster and more accurate monitoring mechanism of signalling out-of-
control process variability, while the combined MEWMA- and DS D-charts are either
less sensitive or give misleading signals under the same process changes. The best
control procedure for monitoring both process mean and process variability is the
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F. 12. The ARLs of EWMA V-charts with different head start values (nó4, wó0.2 and pó2).

combined MEWMA and EWMA V-charts. Additionally, the inertia problem is
also addressed.

From a technical perspective, it would be worthwhile studying the theoretical
properties, such as the run length distribution, of the proposed EWMA V-chart,
possibly in the same way as Lucas & Saccucci (1990) studied the theoretical
properties of the univariate EWMA control chart. The Markov Chain method
proposed by Brook & Evans (1972) and used in Lucas & Saccucci (1990) could
possibly be used to derive the theoretical in-control run length distribution of the
EWMA V-chart. However, when the process variability is out-of-control, it may be
difficult to derive the corresponding run length distribution based on the Markov
Chain method. The difficulty is due to the fact that when the process variability is
out-of-control, the distribution of vt, as defined in equation (1), is no longer
U(0, 1). Furthermore, the magnitude of change in population variability cannot be
directly translated into a specific magnitude of change in vt, which is needed if the
Markov Chain method is to be used.

As explained earlier in Remark 2, in this paper the change in process variability
is defined to be the change in the determinant of the variance–covariance matrix,
the so-called generalized variance. Another multivariate control chart that can be
used to monitor more general changes in process variability is the likelihood-ratio
based S-chart (Alt, 1984). We are currently working on deriving a likelihood-ratio
based multivariate EWMA control chart for monitoring general changes in process
variability. The results of our investigation will be reported in a follow-up paper.

As pointed out by one referee, in the case when nó1, most of the existing control
charts for monitoring multivariate process variability, including the proposed EWMA
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V-chart, will not work. This is an important problem for future investigation, for
there are numerous industrial applications in which nó1. One possible approach
is to extend the exponentially weighted moving variance control chart (MacGregor
& Harris, 1993) to multivariate cases. This approach can be done essentially by
calculating the EWMA of the quadratic form (Xñk0)(Xñk0)@, tP1, and evaluat-
ing the EWMA by some statistics, such as the determinant or the trace of the
calculated EWMA. Another possible approach is to derive appropriate control
charting schemes based on the testing procedures proposed by Hawkins (1992).
Future research along these directions would be valuable. Moreover, since the
probability integral transformation is not limited to normal distribution, it would
be worthwhile studying whether the EWMA V-chart can be extended to other non-
normal multivariate processes.
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Appendix A: Some technical derivations

First note that, when the process is in-control, DnSt D in equation (1) is distributed
as (Anderson, 1984)

D&0 Dîs2
nñ1îs2

nñ2î . . .îs2
nñp

and DNS̄ D is distributed as

D&0 Dîs2
Nñkîs2

Nñkñ1î . . .îs2
Nñkñ(pñ1)

where the chi-square distributions with various degrees of freedom which appear
in the products are all independent. Furthermore, since St and S̄ are independent,

�<
p

ió1

Nñkò1ñ i
nñ i �ò DnSt D

DNS̄ D
~<

p

ió1
Fnñi,Nñkò1ñi

where Fnñ i, Nñkò1ñ i, ió1, 2, . . . , p, are independent. Therefore, for any given t, vt

defined in equation (1) is distributed as U(0, 1) since it is nothing but a probability
integral transformation.

For the special case when pó2, the exact distribution of DnSt D / DNS̄ D can be deter-
mined. It is based on a simple result (Anderson, 1984) which states that if s2

nñ1 and
s2

nñ2 are two independent chi-square distributions then s2
nñ1îs2

nñ2 is distributed as
(s2

2nñ4)2/4. Therefore, in the case when pó2, the statistic vt as defined in equation
(1) can be computed as

vtóP�F2nñ4,2(Nñkñ1)O
Nñkñ1

nñ2
î DnSt D1/2

DNS̄ D1/2�
In the case when pP3, as suggested in Gnanadesikan & Gupta (1970) and
in Anderson (1984), one can use the normal distribution to approximate the
distributions of

log
DSt D
D&0 D

and log
DS̄ D
D&0 D
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More specifically, following the results in Muirhead (1982), it can easily be shown
that both

�nñ1
2p

log
DSt D
D&0 D

and �Nñk
2p

log
DS̄ D
D&0 D

are asymptotically distributed as N(0, 1), the standard normal distribution. Further-
more, since St and S are independent, it follows that

� Nñk
2p(kò1)

log
DSt D
DS̄ D

(A1)

is asymptotically distributed as N(0, 1). Therefore, when pP3, we suggest that vt

as defined in equation (1) can be computed as

vtóP�ZO� Nñk
2p(kò1)

log
DSt D
DS̄ D�

It should be noted that when normal approximation is used, vt is distributed as
U(0, 1) asymptotically. For small n, the exact distribution of equation (A1) tends
to have heavier tails than does N(0, 1). This in turn makes the statistic Sv(t) tend
to fall more likely in the rejection regions as determined based on U(0, 1).

Appendix B. Additional tables

T B1. Comparisons of ARL for changes in variability (nó4, wó0.4, pó2)

(p1, p2, o) M-chart V-chart MEWMA DS D-chart D&D/ D&0 D

(1.10,1.00,0) 125.15 118.79 108.67 122.81 1.210
(1.10,1.10,0) 85.71 63.99 73.91 80.07 1.464
(1.25,1.00,0) 79.57 60.74 81.60 76.33 1.563
(1.50,1.00,0) 34.37 23.67 26.54 35.85 2.250
(1.25,1.25,0) 36.39 19.71 33.63 30.21 2.441
(1.50,1.50,0) 13.43 7.26 12.63 8.2 2 5.063

(1.10,1.00,0.5) 117.21 140.06 73.67 147.69 0.908
(1.10,1.10,0.5) 97.16 137.18 58.01 136.68 1.098
(1.25,1.00,0.5) 84.15 123.11 53.53 139.65 1.172
(1.50,1.00,0.5) 38.58 47.51 22.90 67.80 1.688
(1.25,1.25,0.5) 40.90 37.75 26.72 55.39 1.831
(1.50,1.50,0.5) 15.63 9.90 11.94 12.82 3.797

(1.10,1.00,ñ0.2) 124.95 125.81 104.76 130.42 1.162
(1.10,1.10,ñ0.2) 97.86 80.08 75.85 101.34 1.406
(1.25,1.00,ñ0.2) 78.89 67.52 58.65 87.56 1.500
(1.50,1.00,ñ0.2) 35.34 25.31 25.10 39.36 2.160
(1.25,1.25,ñ0.2) 36.49 21.60 37.78 31.94 2.344
(1.50,1.50,ñ0.2) 13.57 7.56 12.46 8.58 4.860

(1.10,1.00,0.8) 82.82 37.54 49.74 137.74 0.436
(1.10,1.10,0.8) 82.24 57.30 39.32 141.45 0.527
(1.25,1.00,0.8) 75.11 65.73 33.55 147.16 0.563
(1.50,1.00,0.8) 44.92 132.67 19.45 148.27 0.810
(1.25,1.25,0.8) 49.38 139.07 21.77 148.86 0.879
(1.50,1.50,0.8) 19.97 38.63 10.69 57.53 1.823



MEWMA control chart for monitoring process variability 531

T B2. Comparisons of ARL for changes in variability (nó4, wó0.6, pó2)

(p1, p2, o) M-chart V-chart MEWMA DS D-chart D&D/ D&0 D

(1.10,1.00,0) 129.97 123.93 80.33 126.38 1.210
(1.10,1.10,0) 92.24 72.39 51.70 81.02 1.464
(1.25,1.00,0) 83.83 64.47 43.14 79.63 1.563
(1.50,1.00,0) 37.07 26.92 19.43 35.15 2.250
(1.25,1.25,0) 38.86 22.37 24.41 29.52 2.441
(1.50,1.50,0) 14.09 7.39 9.36 8.16 5.063

(1.10,1.00,0.5) 117.10 148.96 53.16 146.71 0.908
(1.10,1.10,0.5) 96.09 138.51 40.37 135.95 1.098
(1.25,1.00,0.5) 80.69 127.75 32.51 126.61 1.172
(1.50,1.00,0.5) 38.80 55.94 16.69 69.13 1.688
(1.25,1.25,0.5) 43.21 43.42 20.56 57.02 1.831
(1.50,1.50,0.5) 16.53 10.39 8.91 12.70 3.797

(1.10,1.00,ñ0.2) 124.92 131.47 73.03 133.28 1.162
(1.10,1.10,ñ0.2) 99.78 91.01 52.42 100.18 1.406
(1.25,1.00,ñ0.2) 83.60 76.07 40.95 86.50 1.500
(1.50,1.00,ñ0.2) 36.30 28.83 19.15 38.99 2.160
(1.25,1.25,ñ0.2) 40.04 24.20 23.60 31.69 2.344
(1.50,1.50,ñ0.2) 14.13 7.70 9.37 8.68 4.860

(1.10,1.00,0.8) 83.33 53.53 37.01 138.90 0.436
(1.10,1.10,0.8) 76.51 79.08 29.02 145.65 0.527
(1.25,1.00,0.8) 68.22 93.92 24.45 145.46 0.563
(1.50,1.00,0.8) 40.66 141.25 14.49 144.93 0.810
(1.25,1.25,0.8) 44.54 141.94 16.21 147.37 0.879
(1.50,1.50,0.8) 19.10 43.42 8.15 58.10 1.823

T B3. Comparisons of ARL for changes in variability (nó8, wó0.4, pó2)

(p1, p2, o) M-chart V-chart MEWMA DS D-chart D&D/ D&0 D

(1.10,1.00,0) 126.13 88.04 109.19 116.69 1.210
(1.10,1.10,0) 98.21 33.91 82.94 63.90 1.464
(1.25,1.00,0) 79.06 26.34 61.92 51.90 1.563
(1.50,1.00,0) 34.65 9.01 26.76 15.58 2.250
(1.25,1.25,0) 35.71 7.79 33.39 12.68 2.441
(1.50,1.50,0) 13.32 3.57 12.39 2.93 5.063

(1.10,1.00,0.5) 118.75 136.95 74.64 144.65 0.908
(1.10,1.10,0.5) 98.01 128.70 56.28 134.32 1.098
(1.25,1.00,0.5) 85.68 103.99 45.44 118.86 1.172
(1.50,1.00,0.5) 39.86 19.72 23.56 39.77 1.688
(1.25,1.25,0.5) 42.69 15.03 27.20 29.85 1.831
(1.50,1.50,0.5) 15.59 4.44 12.30 4.70 3.797

(1.10,1.00,ñ0.2) 125.59 105.85 103.66 122.26 1.162
(1.10,1.10,ñ0.2) 96.84 41.26 75.60 74.55 1.406
(1.25,1.00,ñ0.2) 81.29 30.56 57.55 58.23 1.500
(1.50,1.00,ñ0.2) 35.72 9.89 25.69 17.62 2.160
(1.25,1.25,ñ0.2) 37.40 8.27 33.03 13.81 2.344
(1.50,1.50,ñ0.2) 13.72 3.67 12.39 3.14 4.860

(1.10,1.00,0.8) 86.63 10.43 50.85 57.88 0.436
(1.10,1.10,0.8) 82.05 17.46 39.14 86.94 0.527
(1.25,1.00,0.8) 75.76 21.61 33.01 95.12 0.563
(1.50,1.00,0.8) 45.83 99.96 19.16 144.91 0.810
(1.25,1.25,0.8) 49.22 129.42 20.75 142.83 0.879
(1.50,1.50,0.8) 20.30 15.14 10.78 30.80 1.823
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T B4. Comparisons of ARL for changes in variability (nó8, wó06, pó2)

(p1, p2, o) M-chart V-chart MEWMA DS D-chart D&D/ D&0 D

(1.10,1.00,0) 127.94 97.62 80.54 112.08 1.210
(1.10,1.10,0) 103.43 40.72 58.06 63.02 1.464
(1.25,1.00,0) 83.13 30.49 43.31 50.04 1.563
(1.50,1.00,0) 36.44 9.88 19.91 15.87 2.250
(1.25,1.25,0) 39.31 8.07 23.72 12.76 2.441
(1.50,1.50,0) 13.97 3.21 9.38 2.89 5.063

(1.10,1.00,0.5) 118.98 144.93 53.03 148.39 0.908
(1.10,1.10,0.5) 97.63 129.74 40.14 133.24 1.098
(1.25,1.00,0.5) 81.69 112.20 32.02 121.63 1.172
(1.50,1.00,0.5) 38.49 22.59 16.89 38.79 1.688
(1.25,1.25,0.5) 42.93 17.34 19.63 29.65 1.831
(1.50,1.50,0.5) 15.94 4.11 9.22 4.59 3.797

(1.10,1.00,ñ0.2) 127.89 115.38 73.85 124.67 1.162
(1.10,1.10,ñ0.2) 101.20 48.64 53.48 73.63 1.406
(1.25,1.00,ñ0.2) 84.58 36.79 40.86 58.56 1.500
(1.50,1.00,ñ0.2) 36.19 10.81 18.98 17.82 2.160
(1.25,1.25,ñ0.2) 39.28 8.87 22.97 14.15 2.344
(1.50,1.50,ñ0.2) 14.41 3.32 9.39 3.16 4.860

(1.10,1.00,0.8) 83.64 13.18 36.37 56.63 0.436
(1.10,1.10,0.8) 76.82 23.04 29.49 86.96 0.527
(1.25,1.00,0.8) 66.62 26.93 25.29 100.32 0.563
(1.50,1.00,0.8) 39.67 114.92 14.35 141.06 0.810
(1.25,1.25,0.8) 44.58 138.89 16.30 143.29 0.879
(1.50,1.50,0.8) 19.56 17.33 8.15 29.75 1.823

T B5. Comparisons of ARL for changes in variability, (nó10, wó0.2, pó3)

Changes M-chart V-chart MEWMA DS D-chart D&D/ D&0 D

p1ó1.1 161.66 89.68 139.69 154.03 1.210
p1ó1.25 89.87 26.07 83.53 72.71 1.563
p1ó1.5 38.88 9.80 38.09 24.58 2.250
p1,2ó1.1 111.23 33.80 106.33 89.75 1.464
p1,2ó1.25 39.45 8.34 47.03 19.38 2.441
p1,2ó1.5 14.91 4.06 18.71 4.38 5.063
p1,2,3ó1.1 79.39 17.45 81.95 48.77 1.772
p1,2,3ó1.25 22.55 4.86 32.42 7.10 3.815

o12ó0.5 164.13 58.32 131.87 187.05 0.750
o12óñ0.2 193.51 192.53 181.10 220.10 0.960
o12ó0.8 105.29 7.09 95.11 39.94 0.360
o12,13ó0.5 127.19 13.38 102.06 80.32 0.500
o12,13óñ0.2 189.23 167.29 170.80 224.42 0.920
o12,13,23óñ0.2 182.50 122.95 158.11 217.25 0.864

p1,2,3ó1.1 101.10 140.70 47.74 212.08 0.886
o12,13,23ó0.5
p1,2,3ó1.1 81.53 28.56 71.66 77.89 1.531
o12,13,23óñ0.2
p1,2,3ó1.1 63.25 3.84 32.46 11.09 0.184
o12,13,23ó0.8
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T B5.—(Continued)

Changes M-chart V-chart MEWMA DS D-chart D&D/ D&0 D

p1,2,3ó1.25 32.61 13.94 24.50 38.68 1.907
o12,13,23ó0.5
p1,2,3ó1.25 23.73 5.62 29.84 9.69 3.296
o12,13,23óñ0.2
p1,2,3ó1.25 51.32 8.32 18.90 47.05 0.397
o12,13,23óñ0.2
p1,2,3ó1.5 11.53 3.80 10.84 3.67 5.695
o12,13,23ó0.5
p1,2,3ó1.5 19.52 101.53 10.07 160.22 1.185
o12,13,23ó0.8

T B6. Comparisons of ARL for changes in variability, (nó10, wó0.4, pó3)

Changes M-chart V-chart MEWMA DS D-chart D&D/ D&0 D

p1ó1.1 159.93 106.38 135.19 153.89 1.210
p1ó1.25 96.48 32.77 76.55 72.23 1.563
p1ó1.5 42.99 11.02 32.68 24.73 2.250
p1,2ó1.1 118.61 43.44 102.52 89.58 1.464
p1,2ó1.25 45.99 9.33 40.99 19.73 2.441
p1,2ó1.5 16.22 4.04 15.24 4.46 5.063
p1,2,3ó1.1 87.42 21.05 76.80 48.37 1.772
p1,2,3ó1.25 26.40 4.98 28.04 7.20 3.815

o12ó0.5 157.46 77.34 123.82 186.95 0.750
o12ó0.2 197.34 195.27 185.39 220.46 0.960
o12ó0.8 103.01 8.25 82.43 39.31 0.360
o12,13ó0.5 121.58 17.21 94.21 81.39 0.500
o12,13ó0.2 182.39 178.61 168.82 221.33 0.920
o12,13,23óñ0.2 180.15 142.43 156.35 214.97 0.864

p1,2,3ó1.1 89.26 158.91 38.99 216.34 0.886
o12,13,23ó0.5
p1,2,3ó1.1 87.22 36.45 63.81 76.79 1.531
o12,13,23óñ0.2
p1,2,3ó1.1 54.47 3.99 25.60 11.68 0.184
o12,13,23ó0.8
p1,2,3ó1.25 34.17 16.82 20.33 39.02 1.907
o12,13,23ó0.5
p1,2,3ó1.25 26.57 5.97 25.81 9.76 3.296
o12,13,23óñ0.2
p1,2,3ó1.25 42.28 9.80 14.82 46.98 0.397
o12,13,23óñ0.2
p1,2,3ó1.5 12.28 3.76 9.04 3.61 5.695
o12,13,23ó0.5
p1,2,3ó1.5 18.42 118.62 8.13 161.89 1.185
o12,13,23ó0.8



534 Arthur B. Yeh et al.

T B7 Comparisons of ARL for changes in variability, (nó10, wó0.6, pó3)

Changes M-chart V-chart MEWMA DS D-chart D&D/ D&0 D

p1ó1.1 164.08 120.21 134.72 15.12 1.210
p1ó1.25 98.40 39.31 73.00 71.88 1.563
p1ó1.5 44.41 12.60 29.42 24.80 2.250
p1,2ó1.1 126.06 51.99 99.10 88.84 1.464
p1,2ó1.25 48.80 10.29 38.28 19.44 2.441
p1,2ó1.5 17.09 3.74 13.96 4.31 5.063
p1,2,3ó1.1 92.31 24.81 75.81 48.58 1.772
p1,2,3ó1.25 28.32 5.00 25.65 7.21 3.815

o12ó0.5 157.38 93.40 120.67 178.02 0.750
o12óñ0.2 199.33 199.25 183.46 220.05 0.960
o12ó0.8 99.58 9.73 77.32 39.74 0.360
o12,13ó0.5 119.87 21.67 88.20 78.88 0.500
o12,13óñ0.2 181.66 186.24 163.00 217.30 0.920
o12,13óñ0.2 178.08 160.11 151.12 217.60 0.864

p1,2,3ó1.1 79.28 170.16 35.57 223.15 0.886
o12,13,23ó0.5
p1,2,3ó1.1 89.51 43.40 59.80 76.24 1.531
o12,13,23óñ0.2
p1,2,3ó1.1 48.93 3.87 22.31 11.14 0.184
o12,1323ó0.8
p1,2,3ó1.25 33.93 19.56 17.86 38.34 1.907
o12,13,23ó0.5
p1,2,3ó1.25 29.31 6.00 23.25 9.55 3.296
o12,13,23óñ0.2
p1,2,3ó1.25 34.39 11.99 13.03 49.07 0.397
o12,13,23óñ0.2
p1,2,3ó1.5 11.99 3.34 8.05 3.64 5.695
o12,13,23ó0.5
p1,2,3ó1.5 16.37 131.83 7.09 162.57 1.185
o12,13,23ó0.8

T B8. Comparisons of ARL for changes in variability, (nó10, wó0.2, pó4)

Changes M-chart V-chart MEWMA DS D-chart D&D/ D&0 D

p1ó1.1 167.95 110.05 148.60 154.93 1.210
p1ó1.25 101.26 35.70 90.42 89.11 1.563
p1ó1.5 43.78 13.20 43.90 35.75 2.250
p1,2ó1.1 121.72 45.99 111.69 103.91 1.464
p1,2ó1.25 46.46 11.21 54.85 29.20 2.441
p1,2ó1.5 16.91 4.88 21.15 7.09 5.063
p1,2,3ó1.1 89.30 23.91 91.80 64.81 1.772
p1,2,3ó1.25 25.78 6.22 36.54 11.82 3.815
p1,2,3,4ó1.1 66.38 14.49 75.42 40.41 2.144
p1,2,3,4ó1.25 17.51 4.39 26.69 5.67 5.960

o12ó0.5 172.98 74.71 141.34 184.70 0.750
o12óñ0.2 196.25 190.87 183.28 204.44 0.960
o12ó0.8 126.90 9.32 102.94 51.99 0.360
o12,13ó0.5 142.04 17.84 108.73 95.01 0.500
o12,13óñ0.2 191.02 175.35 171.12 204.44 0.920
o12,13,14ó0.5 113.50 5.94 94.08 27.72 0.250
o12,13,14óñ0.2 187.62 154.06 163.33 201.84 0.880
o12,13,14,23ó0.5 105.28 7.74 82.08 40.85 0.313
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T B8.—(Continued)

Changes M-chart V-chart MEWMA DS D-chart D&D/ D&0 D

o12,13,14,23óñ0.2 185.75 113.63 156.48 195.13 0.826
o12,13,14,23,24óñ0.2 173.79 81.39 149.75 186.85 0.768

p1,2,3ó1.1 90.62 45.62 37.76 158.82 0.670
o12,13,14,23,24,34ó0.5
p1,2,3,4ó1.1 68.64 44.61 62.39 100.20 1.482
o12,13,14,23,24,34óñ0.2
p1,2,3,4ó1.1 29.39 20.29 20.13 55.34 1.863
o12,13,14,23,24,34ó0.5
p1,2,3,4ó1.25 19.41 5.72 24.74 9.95 4.120
o12,13,14,23,24,34óñ0.2
p1,2,3,4ó1.25 46.87 4.35 15.10 14.09 0.162
o12,13,14,23,24,34ó0.8
p1,2,3,4ó1.5 19.22 53.53 8.33 165.14 0.697
o12,13,14,23,24,34ó0.8

T B9. Comparisons of ARL for changes in variability, (nó10, wó0.4, pó4)

Changes M-chart V-chart MEWMA DS D-chart D&D/ D&0 D

p1ó1.1 167.04 130.02 146.35 154.94 1.210
p1ó1.25 107.55 47.75 81.91 89.44 1.563
p1ó1.5 48.34 15.91 37.10 36.32 2.250
p1,2ó1.1 130.80 59.43 108.92 102.13 1.464
p1,2ó1.25 53.41 13.32 47.88 28.74 2.441
p1,2ó1.5 18.89 5.13 17.59 7.00 5.063
p1,2,3ó1.1 99.38 30.95 86.21 65.84 1.772
p1,2,3ó1.25 30.83 6.49 31.78 11.13 3.815
p1,2,3,4ó1.1 75.18 17.77 70.68 40.12 2.144
p1,2,3,4ó1.25 20.30 4.49 22.91 5.66 5.960

o12ó0.5 161.03 99.05 134.85 184.93 0.750
o12óñ0.2 189.25 199.81 181.72 205.48 0.960
o12ó0.8 120.71 11.66 95.20 52.00 0.360
o12,13ó0.5 134.61 25.56 100.52 92.66 0.500
o12,13óñ0.2 189.48 191.59 172.05 204.79 0.920
o12,13,14ó0.5 106.41 6.84 83.75 27.60 0.250
o12,13,14óñ0.2 180.71 176.50 160.30 201.13 0.880
o12,13,14,23ó0.5 100.09 9.13 68.36 40.85 0.313
o12,13,14,23óñ0.2 178.49 138.30 149.66 197.67 0.826
o12,13,14,23,24óñ0.2 166.70 108.37 145.73 187.08 0.768

p1,2,3,4ó1.1 79.93 63.77 29.78 156.07 0.670
o12,13,14,23,24,34ó0.5
p1,2,3,4ó1.1 74.77 56.95 54.99 102.00 1.482
o12,13,14,23,24,34óñ0.2
p1,2,3,4ó1.1 30.00 26.40 15.78 56.35 1.863
o12,13,14,23,24,34ó0.5
p1,2,3,4ó1.25 22.01 6.14 21.16 9.88 4.120
o12,13,14,23,24,34óñ0.2
p1,2,3,4ó1.25 34.31 4.61 11.70 14.17 0.162
o12,13,14,23,24,34ó0.8
p1,2,3,4ó1.5 16.90 75.28 6.45 163.72 0.697
o12,13,14,23,24,34ó0.8
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T B10. Comparisons of ARL for changes in variability, (nó10, wó0.6, pó4)

Changes M-chart V-chart MEWMA DS D-chart D&D/ D&0 D

p1ó1.1 166.98 136.56 142.11 155.01 1.210
p1ó1.25 106.46 54.32 80.28 87.44 1.563
p1ó1.5 50.66 18.15 33.70 35.57 2.250
p1,2ó1.1 130.67 68.03 105.89 104.11 1.464
p1,2ó1.25 58.53 14.89 45.57 29.49 2.441
p1,2ó1.5 19.75 4.93 16.27 7.08 5.063
p1,2,3ó1.1 106.64 36.29 84.53 63.15 1.772
p1,2,3ó1.25 33.66 6.83 30.08 11.70 3.815
p1,2,3,4ó1.1 79.87 20.40 67.47 40.57 2.144
p1,2,3,4ó1.25 21.94 4.14 21.37 5.50 5.960

o12ó0.5 158.54 117.23 128.36 180.65 0.750
o12óñ0.2 187.94 206.02 181.28 202.03 0.960
o12ó0.8 112.77 14.76 89.47 52.95 0.360
o12,13ó0.5 130.53 33.05 96.98 94.50 0.500
o12,13óñ0.2 186.73 190.35 171.67 204.89 0.920
o12,13,14ó0.5 100.56 7.78 80.20 27.87 0.250
o12,13,14óñ0.2 179.64 177.46 159.11 203.48 0.880
o12,13,14,23ó0.5 93.88 11.24 64.00 41.46 0.313
o12,13,14,23óñ0.2 174.70 154.04 150.42 200.30 0.826
o12,13,14,23,24óñ0.2 165.22 124.10 141.79 188.08 0.768

p1,2,3,4ó1.1 68.00 78.83 27.56 155.03 0.670
o12,13,14,23,24,34ó0.5
p1,2,3,4ó1.1 75.93 64.32 52.23 100.25 1.482
o12,13,14,23,24,34óñ0.2
p1,2,3,4ó1.25 28.31 29.97 14.12 58.02 1.863
o12,13,14,23,24,34ó0.5
p1,2,3,4ó1.25 22.36 6.12 18.72 10.17 4.120
o12,13,14,23,24,34óñ0.2
p1,2,3,4ó1.25 29.11 4.70 10.52 14.08 0.162
o12,13,14,23,24,34ó0.8
p1,2,3,4ó1.5 14.67 91.66 5.96 167.68 0.697
o12,13,14,23,24,34ó0.8


