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In early stages of experimentation, one often has many candidate factors of which only few have
signi� cant in� uence on the response. Supersaturated designs can offer important advantages. However,
standard regression techniques of � tting a prediction line using all candidate variables fail to analyze
data from such designs. Stepwise regression may be used but has drawbacks as reported in the literature.
A two-stage Bayesian model selection strategy, able to keep all possible models under consideration
while providing a level of robustness akin to Bayesian analyses incorporating noninformative priors, is
proposed. The strategy is demonstrated on a well-known dataset and compared to competing methods
via simulation.
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1. INTRODUCTION

In early stages of industrial experimentation, one often has
a large set of candidate factors believed to have possible sig-
ni� cant in� uence on the response of interest, although it is
reasonable to assume that only a small fraction are in� uential,
a condition known as effect sparsity (Box and Meyer 1986).
Since experiments can be costly, an ef� cient use of experi-
mental units is the employment of supersaturated designs (Lin
1999), in which the number of observations is less than the
number of parameters to be estimated. These designs are use-
ful as screening tools, as the paring of candidate factors is
performed in a cost-ef� cient manner.

The removal of truly in� uential factors causes obvious prob-
lems in follow-up experiments (Lin 1995a, Pan 1999). At
the same time, the inclusion of inactive factors can lead to
unnecessary costs later (Westfall, Young, and Lin 1998). In
the supersaturated design setting, standard regression tech-
niques of � tting a prediction line using all candidate variables
fail. The normal equations cannot be solved uniquely, so that
some parameters are not estimable. Specialized model selec-
tion techniques are needed.

Classical statistical analysis has employed model quality
criteria such as p-values, adjusted R2, s2, Cp , PRESS, AIC,
and BIC within sequential procedures like forward or stepwise
selection (Draper and Smith 1998). Inadequacies of classical
techniques are the apparent fallibility of p-values (Berger and
Sellke 1987), the in� ation of Type I errors in sequential pro-
cedures (Westfall et al. 1998), as well as the lack of an overall
Type I error rate due to the random number of steps taken, and
the lack of a probabilistic comparison (for example, p-value)
between two competing but nonnested models.

Bayesian methods are able to supplement observational
information using prior information on the parameters and
allow straightforward computation of posterior probabilities
using, for example, Gibbs sampling algorithm (Gelfand and
Smith 1990) and other Markov chain Monte Carlo techniques
(see, for example, Gilks, Richardson, and Spiegelhalter 1996).
However, the use of these methods in analyzing supersaturated
designs may require a departure from noninformative priors
to guarantee the existence of a proper posterior distribution,
leading to possible controversy on the objectivity of the results.

This article details a two-stage Bayesian model selection
strategy combining recent methodologies: the stochastic
search variable selection method of George and McCulloch
(1993, 1997) and the intrinsic Bayes factor method of Berger
and Pericchi (1996a,b). This strategy keeps all possible
models under consideration, provides a direct comparison
between any two competing models, and provides a level of
robustness akin to Bayesian analyses incorporating nonin-
formative priors. Our major interest is to provide a reliable
analysis for supersaturated designs, but, as pointed out by
an associate editor, the proposed two-stage procedure can be
used in analyzing any type of dataset, especially when (a)
the number of independent variables is large, (b) a relatively
small number of these factors are likely to be active, (c) only
a relatively small number of observations can be taken, and
(d) all active factors have � rst order effects which are at least
as large as interactions and higher order effects.

This paper is organized as follows. Section 2 presents a
short review of new Bayesian methodologies and, more specif-
ically, summaries of the two methods to be combined here.
Section 3 provides a step-by-step guideline for the proposed
procedure and explains why this two-stage strategy is valuable
and why it may offer important advantages over existing meth-
ods. The strategy is demonstrated on a well-known dataset in
Section 4, and a simulation study is performed in Section 5.
A synthetic dataset is analyzed in Section 6. Finally, Section 7
provides a summary and some concluding remarks.

2. BAYESIAN MODEL SELECTION METHODS

Markov chain Monte Carlo (MCMC) techniques are com-
monly used in Bayesian model selection procedures. George
and McCulloch (1993, 1997) developed a Gibbs sampling
strategy called stochastic search variable selection (SSVS)
based on a mixture of normal priors. A short discussion
of SSVS follows in Section 2.1. Chipman, Hamada, and
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Wu (1997) employed SSVS to select signi� cant factors in
designed experiments. Chipman (1996) extended the use of
SSVS to problems involving class variables, interactions, and
other related predictors. Meyer and Wilkinson (1995) took an
approach like SSVS but used as prior a mixture of normal and
point mass at zero. Mitchell and Beauchamp (1988) presented
a similar approach with the normal component replaced by
a diffuse uniform prior. Carlin and Chib (1995) designed a
Gibbs sampling scheme with different coef� cients for each
predictor across all candidate models. Raftery, Madigan, and
Hoeting (1993), Hoeting, Raftery, and Madigan (1996), and
Hoeting, Madigan, Raftery, and Volinsky (1998) employed a
Metropolis–Hastings type sampler (see, for example, Bernardo
and Smith 1994).

Frequently, Bayes factors are used to compare competing
models for a dataset, although their calculation often requires
the evaluation of high-dimensional integrals, which may
be estimated using some ef� cient computational methods
(Gelman and Meng 1998). One drawback, however, is that
the prior distributions must be proper to ensure identi� ability
of the Bayes factor. Berger and Pericchi (1996a,b) developed
a modi� cation, the intrinsic Bayes factor ( IBF), by using
training samples to convert improper priors to proper poste-
riors (conditional on the training data). This allows the use
of noninformative priors while maintaining identi� ability. A
short discussion of IBF follows in Section 2.2.

2.1 The MCMC Approach of SSVS

The SSVS setup of George and McCulloch (1993, 1997)
has been widely cited and has the advantage that the random
regression coef� cients can be generated jointly instead of one
at a time, leading to greater computational speed (George and
McCulloch 1997). Although other cited strategies have their
own strengths, SSVS is chosen here to analyze supersaturated
designs primarily on the basis of its widespread acceptance
and use in the literature.

The SSVS method starts with the usual linear model
assumptions for regression,

4Y — ‚1‘ 5 Nn4X‚1‘ 2In51 (1)

where X is an n by k model matrix with columns for pre-
dictors centered and scaled so that

Pn
jD1 x2

ij
D 1, and ‚ D

4‚11 : : : 1‚k5 is a vector of coef� cients for the k factors in X.
The method excludes from X those terms that are included in
every model, such as the intercept. To account for these terms,
one replaces the Y vector with the residual vector obtained
by regressing Y on those terms. Thus, if only the intercept is
included in every model, one replaces Y with Y ƒ SY , where SY
is the sample mean.

George and McCulloch (1993) specify a mixture prior dis-
tribution on the regression coef� cients,

4‚ — ƒ5 Nk401DƒRDƒ51 (2)

where R is the prior correlation matrix, Dƒ is a diagonal
matrix consisting of elements a1’11 : : : 1 ak’k,

ai
D

(
1 if ƒi

D 01

ci if ƒi
D 11

which determines the variance of the mixture normal for
values of a set of Bernoulli variable inclusion parameters
ƒ D 4ƒ11 : : : 1 ƒk5, and ’ 0 D 4’11 : : : 1 ’k51 4c11 : : : 1 ck5 are
appropriately chosen tuning constants. The choices of
’11 : : : 1 ’k1 c11 : : : 1 ck should be set so that the ’ corresponds
to a coef� cient that can be safely estimated by zero, and the
c’ corresponds to a typical large value that we should be able
to identify. In Section 3, we will discuss speci� cally how to
choose these variables interact with the experimental goals in
the context of supersaturated designs.

We � rst discuss the choice of R. The correlation matrix of
the regression coef� cient estimates O‚11 : : : 1 O‚k is 4XT X5ƒ1,
since the columns of X were appropriately centered and
scaled. Such a natural choice for R does not exist in the
supersaturated design setting. George and McCulloch (1993)
offer an alternative choice of R D Ik, the identity matrix of
order k, and use it in most of their examples. This choice
seems to work well in practice, and the assumption that the
true regression coef� cients are a priori independent may be
reasonable. A similar practice is adopted here.

For the prior on ‘ 2, George and McCulloch (1993) chose

�ƒ‹ƒ

‘ 2
ƒ �2

�ƒ
1

where �ƒ ¶ 0 and ‹ƒ ¶ 0 are appropriately chosen tuning
constants. Finally, they speci� ed each ƒi as an independent
Bernoulli with probability � i, so that the prior probability
that the ith coef� cient is practically signi� cant is � i . That is,
f 4ƒ5 D Qk

iD1 �
ƒi

i 41 ƒ � i5
1ƒƒi . Here, the default “indifference”

prior is f 4ƒ5 D 2ƒk with � i
D 1=2

The Gibbs sampling algorithm provides an approximate ran-
dom sample from the posterior distribution of the inclusion
parameters given the data and hence estimates of the model
probabilities. We then rank all candidate models by their esti-
mated posterior probabilities and select the one model with
highest posterior probability.

Advantages of the SSVS approach include the following.

ÿ The Gibbs sampling approach allows SSVS to keep all
possible models under consideration, even though there are
more parameters than observations.

ÿ By ranking the competing models according to their fre-
quencies in the Gibbs sample, one can narrow down the choice
of top model(s) or model factors to those with the highest
posterior probabilities.

On the other hand, there are a few limitations, as follows.

ÿ Results depend on the choices of proper prior distribu-
tions, which are needed to yield a proper posterior distribution.
The SSVS setup employs a mixture normal distribution for
coef� cients and a gamma distribution for variance compo-
nents. Results of the algorithm may be highly sensitive to
choices of the tuning constants that specify these distributions.
The problem becomes more serious when parameters are not
estimable as in the case of supersaturated designs.

ÿ Gibbs sampling algorithms require an investigation to
ensure convergence to the posterior distribution. George and
McCulloch (1993) intended the use of SSVS to be exploratory
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in nature, so they promoted the practice of no initializing
iterations to reduce computation time. If several models have
similarly large posterior probabilities, then this practice of
sampling from the Markov chain before convergence has been
achieved casts doubt on the correctness of the top model
choice.

2.2 The Bayes Factor Approach of IBF

With k factors there are 2k competing models—M11 : : : ,
M2k —for the model selection problem. Under model Mi , let
the density of Y be given by fY —äi

4y — ˆi5, which depends on
a (vector) parameter äi . Similarly under Mj , let the density
of Y be fY —äj

4y — ˆj 5, which depends on äj . Let fäi
4ˆi5 and

fäj
4ˆj5 be priors for the two parameters. Using this notation,

the Bayes factor for comparing model Mi to model Mj is

BFij
D

R
fY —äi

4y — ˆi5fäi
4ˆi5dˆiR

fY —äj
4y — ˆj5fäj

4ˆj 5dˆj

0 (3)

One way to perform a robust Bayesian analysis is to use
(improper) noninformative priors for äi and äj , so that the
likelihood function dominates the prior. However, multiplica-
tion of any improper prior by a constant yields an equivalent
prior but a different value for the Bayes factor, rendering
the Bayes factor useless. To correct this de� ciency in stan-
dard Bayes factors, Berger and Pericchi (1996a) used training
samples to convert improper prior distributions to proper pos-
teriors (conditional on the training samples), which are then
used as priors for the remaining data. The result was their IBF

IBFij4l5D
R

fY 4ƒl5—äi 1Y 4l54y4ƒl5 —ˆi1y4l55fäi —Y 4l54ˆi
—y4l55dˆiR

fY 4ƒl5—äj 1Y 4l54y4ƒl5 —ˆj1y4l55fäj —Y 4l54ˆj
—y4l55dˆj

1

(4)

where y4l5 is a minimal training sample and y4ƒl5 consists
of the remaining data. Since the choice of minimal training
sample will affect the IBF, one averages arithmetically (A IBF)
or geometrically (G IBF) over all possible minimal training
samples, L, to obtain a more stable value.

Advantages of the intrinsic Bayes factor approach include
the following.

ÿ The procedure directly compares the � ts of any two com-
peting models, whether nested or nonnested, and chooses the
one with the highest increase in posterior odds over its prior
odds.

ÿ Although the results do depend on the parametric setup
of the model (e.g., linear model with normal error) as almost
all procedures do, the results are fairly robust since noninfor-
mative priors are employed.

ÿ The procedure can be set to run automatically because
no prior input is needed for the noninformative priors.

Alternatively, there are a few limitations, as follows.

ÿ When the number of factors exceeds the number of
observations as is the case in supersaturated designs, there
exists no training sample that can convert an improper prior
to a proper posterior. The procedure, like standard regression
techniques, is computationally impossible and cannot keep all
possible subsets of the predictors under consideration.

ÿ Even if the design used yielded estimable effects (that
is, the design is not supersaturated), a large pool of potential
regressors renders the technique infeasible due to the large
number (2k) of comparisons to be performed.

3. A TWO-STAGE SELECTION STRATEGY

It is well known that a stepwise regression scheme tends
to include far too many factors in its choice of best model
(Westfall et al. 1998). A recent paper by Abraham, Chipman,
and Vijayan (1999) suggests that all-subsets regression is a
better alternative than stepwise regression. However, such an
approach is impractical even when a moderate number of fac-
tors are active. For example, a supersaturated design with 23
factors and at most six active factors leads to possible consid-
eration of

P6
iD1

23
i

D 1451498 models, a formidable model
comparison.

The two Bayesian methods previously discussed are not
suitable for the analysis of supersaturated designs, either.
However, when combined into a single two-stage procedure, a
powerful tool results, as will be demonstrated. One limitation
of IBF is that it cannot be used on supersaturated design data,
but SSVS can. One limitation of SSVS is that its sensitivity
to tuning constant choices and convergence determination
make it unlikely to select one best “objective” model, but
the strength of IBF is that the use of a noninformative prior
allows objectivity in its selection. Often one is willing to use
informative priors when the number of factors is large because
identifying the few good models is easier than determining the
absolute best among those, for which one needs an impartial
tool to remain objective. SSVS, which is an exploratory tool
able to keep all possible models under consideration, can be
used to make the gross comparisons and shorten the list of
candidate models and factors, while IBF can be the impartial
tool used to make the � nal model decision—a two-stage
strategy designed to take full advantage of the strengths of
each approach.

Some critics may argue that a more traditional approach,
such as stepwise regression or all (computationally) possible
subsets evaluation, be used in place of SSVS in the two-stage
strategy. Although these methods might also narrow the list of
candidate factors, SSVS keeps all possible models under con-
sideration in the supersaturated design setting. An additional
bene� t of SSVS is its fast computational speed compared
to the other “all-subsets” alternatives. A general guideline to
implement the two-stage strategy is given below.

3.1 First Stage: SSVS

A. Choices of the Tuning Constants. Application of SSVS
requires the speci� cation of tuning constants �ƒ and ‹ƒ in the
prior for ‘ 2 and ci and ’i (i D 11 : : : 1 k) in the prior for ‚ (cf.
Equations (2) and (3)). George and McCulloch (1993, 1997)
used �ƒ

D � D 0, yielding a noninformative prior for ‘ 2. A
different choice must be made when analyzing supersaturated
designs, as the use of a noninformative prior will lead to an
improper posterior. The interpretation that 6�ƒ=4�ƒ

ƒ 257‹ƒ is
a � ctitious prior estimate for the value of ‘ 2 from a sample
of size �ƒ (George and McCulloch 1993) can be used to help
specify these values. To obtain a diffuse proper prior, one
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may select �ƒ
D � D 3, the smallest integer yielding a positive

estimate, and ‹ƒ
D ‹ D O‘ 2=3, where O‘ 2 is an estimate of ‘ 2,

as tuning constants. Certainly, if any information about ‘ 2 is
available and a proper prior can be speci� ed, one can easily
incorporate it into the analysis.

For 4’i1 ci5, George and McCulloch (1993) offered four
semiautomatic choices: 4 O‘‚i

1 55, 4 O‘‚i
1105, 4010 O‘‚i

11005, and
4010 O‘‚i

15005, where O‘‚i
is the standard error of the least

squares estimate of ‚i . These four choices were incorporated
in all simulations and example data analyses in this paper.
(Later, the abbreviated notations (1, 5), (1, 10), (.10, 100),
(.10, 500), respectively, will be used to refer to them.) Note
that these four choices are not exhaustive; other choices of
tuning constants can also be used. However, using several sets
of tuning constants in the � rst stage to generate suf� cient
variables for the second stage is recommended. The attractive-
ness of specifying ’i in terms of O‘‚i

is that one can weigh
practical signi� cance, quanti� ed by ’i, against statistical sig-
ni� cance, quanti� ed by O‘‚i

, and that the choices are invariant
to scaling of the predictors (George and McCulloch 1993).
However, since O‘‚i

cannot be estimated from supersaturated
design data without assumptions on ‚, an alternative estimate
will be needed and is discussed below.

B. Starting Values. The standard choice of starting values
for the ‚ vector and ‘ 2 within the Gibbs sampling algorithm
is the set of full model least squares estimates—an impossible
strategy for supersaturated designs. A simpler strategy is to use
as estimates of ‚i (i D 11 : : : 1 k) those coef� cients obtained
from � tting all k simple linear regression models. Although
these estimates may be biased, the starting values are not criti-
cal to the success of the Gibbs sampler. More importantly, the
estimate of ‚ does not affect the speci� cation of any tuning
constants.

Unlike the estimate of ‚, an accurate estimate of ‘ 2 is crit-
ical to the success of the algorithm because tuning constants
‹ and ’ D 4’11 : : : 1 ’k5 are de� ned by it. It can be shown that
the conditional distribution used to generate ƒi in the Gibbs
sampler is Bernoulli with probability

1

1 C 1ƒ� i

� i
ci exp ƒ 1

2
‚2

i

c2
i
ƒ1

c2
i ’2

i

that factor Xi is included. Examination of this quantity
con� rms that large ’i’s produce models with few factors
while small ’i’s produce models with many factors. Given
the wide availability of statistical software for performing
stepwise regression, a computationally simple alternative is
to use the estimate of ‘ 2 from the � nal model selected by
that method. Care should be exercised in the selection of
a p-value to be used in the stepwise regression procedure,
however, as stepwise techniques (using a large p-value) are
prone to over� tting (leading to an underestimate of ‘ 2). In
practice, one could make use of several different choices, but
experience gained from applying this practice to the example
of Section 4 and the simulations of Section 5 suggests that
use of .05 for the p-value may work well.

George and McCulloch (1993, 1997) suggest that the Gibbs
sampler should begin with all ƒi

D 1, which corresponds to
starting with the full model. This seems appropriate for super-
saturated designs, too.

3.2 Second Stage: IBF

The factors identi� ed in the SSVS stage using various
choices of tuning constants are now used as the input for the
IBF analysis in the second stage. Berger and Pericchi (1996a)
considered priors of the form f4‚1‘ 5 / ‘ ƒ41Cq5, where q

is a constant greater than ƒ1, to be used in computing the
IBF. This noninformative speci� cation encompasses several
priors for normal linear models. Although in practice one
might make use of all these prior choices, Bernardo (1979)
has provided a convincing argument for the use of the
reference prior (with q D 0), which will be used within
illustrative examples and simulation comparisons to follow.
The procedure can be set to run automatically.

3.3 A Step-By-Step Procedure for the
Proposed Method

A step-by-step guideline for the proposed procedure can be
summarized as follows.

1. Identify all the candidate factors.
2. Center all the predictors and scale them so that each has

sum (across observations) of squares equal to 1.
3. Run stepwise regression using a p-value criterion of p D

005. Using the � nal model that stepwise selects, obtain an
estimate of the residual variance.

4. Run the SSVS procedure of George and McCulloch
(1993) on the full dataset (all factors) using several different
choices for tuning constants (e.g., 4ci1 ’i5 D 4 O‘‚i

155, 4ci1 ’i5 D
4 O‘‚i

1105, 4ci1 ’i5 D 4010 O‘‚i
1 1005, and 4ci1 ’i5 D 4010 O‘‚i

15005,
where O‘‚i

D O‘ ).
5. From each of these four SSVS runs, identify the model

with the highest estimated posterior probability. Select only
models that are distinguishable from the other sampled mod-
els. Also identify any other apparent important factors that
may not have been included in the top model, such as factors
that exist in 5 of the top 10 sampled models.

6. Combine all the models and factors selected in the pre-
vious step into one “encompassing” model.

7. Run the IBF procedure of Berger and Pericchi (1996a)
on the encompassing model using the reference prior (or with
several different prior choices).

8. Identify the best model selected by IBF using either
AIBF or GIBF averaging.

9. Proceed with regression diagnostics on the � nal model
choice to assure oneself of the accuracy of the � nal selection.

4. A NEW LOOK AT WILLIAMS’ DATA

Lin (1993) presented an analysis of a half-fraction
Plackett–Burman type design originally published in Williams
(1968). The design investigated 24 factors in 14 observations,
although 2 of the factors in the original dataset, 13 and 16,
were completely confounded. Table 1 reproduces this dataset,
with factor 13 deleted and factors 14–24 renamed as 13–23,
respectively.

Using his entire dataset (two half-fractions), Williams
(1968) identi� ed factors 4, 10, 14, and 19 as the most
in� uential. Lin (1993) utilized a forward selection procedure
on this half-fraction for identifying the most important factors.
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Table 1. Williams’ Half-Fraction Published in Lin

Run

Factor 1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 C C C C ƒ ƒ ƒ ƒ ƒ C ƒ C C ƒ
2 C ƒ C C ƒ ƒ ƒ C ƒ C C ƒ C ƒ
3 C ƒ ƒ ƒ C C ƒ C ƒ C ƒ ƒ C C
4 ƒ ƒ C C C C ƒ ƒ ƒ C C ƒ C ƒ
5 ƒ ƒ C ƒ C C C ƒ ƒ ƒ C C C ƒ
6 ƒ ƒ ƒ C C C ƒ C C C ƒ C ƒ ƒ
7 C C ƒ ƒ ƒ C ƒ ƒ C C ƒ C C ƒ
8 C C ƒ ƒ C ƒ C C ƒ C C ƒ ƒ ƒ
9 C C ƒ ƒ C C ƒ ƒ ƒ ƒ C C C ƒ

10 C ƒ C C ƒ C C C ƒ ƒ ƒ C ƒ ƒ
11 C ƒ ƒ C ƒ C ƒ ƒ C ƒ C C ƒ C
12 ƒ ƒ C ƒ ƒ ƒ C ƒ C C ƒ C C C
13 ƒ C C ƒ ƒ C C ƒ ƒ C C ƒ ƒ C
14 ƒ C C C C C ƒ ƒ C C ƒ ƒ ƒ ƒ
15 C C C C C ƒ C ƒ ƒ ƒ ƒ C ƒ ƒ
16 C ƒ C ƒ C C C ƒ C C ƒ ƒ ƒ ƒ
17 ƒ C ƒ C ƒ C C ƒ C ƒ C ƒ C ƒ
18 ƒ ƒ ƒ C ƒ C C C ƒ C C C ƒ ƒ
19 C ƒ ƒ C C C C ƒ ƒ ƒ ƒ ƒ C C
20 ƒ C ƒ ƒ ƒ C C C ƒ C ƒ C C ƒ
21 ƒ C C ƒ C C ƒ C ƒ ƒ ƒ C ƒ C
22 ƒ ƒ C ƒ C ƒ ƒ C C ƒ C C C ƒ
23 C ƒ ƒ ƒ C ƒ C ƒ C C C C ƒ ƒ

y 133 62 45 52 56 47 88 193 32 53 276 145 130 127

His analysis also identi� ed these 4 factors in addition to
factor 12. Noting that sequential selection procedures are
prone to over� tting, Westfall et al. (1998) used resampling
to estimate the distribution of the maximal F statistic at each
step of the procedure. They used those estimates to adjust
the p-value cutoffs for inclusion in forward selection. Using
their methodology on the Williams half-fraction dataset, they
concluded that only factor 14 was active.

Several other stepwise analyses were carried out on the half-
fraction. Using a cutoff p-value of .05 (or .01), both forward
and stepwise regression (implemented in SAS, SAS Institute
Inc. 1994) selected only factor 14. Increasing the criterion to
.10 caused 12 factors—the same for forward as for stepwise—

Table 2. Top Models Selected by SSVS Using Stepwise Regression (p-Value D .05)
Error Variance Estimate

’i D O‘ ‚i
, ci D 5 ’i D O‘ ‚i

, ci D 10

Prob. Model Prob. Model

.0010 14 .0170 14

.0008 13, 14, 16, 19 .0058 14, 19

.0008 8, 11, 14, 22 .0048 12, 14

.0008 11, 14, 19 .0044 2, 14

.0006 (eight models) .0036 (three models)

’i D 010 O‘ ‚i
, ci D 100 ’i D 010 O‘ ‚i

, ci D 500

Prob. Model Prob. Model

.1142 4, 12, 14, 19 .2288 14

.0268 4, 10, 12, 14, 19 .0792 4, 12, 14, 19

.0188 4, 12, 14, 19, 20 .0766 12, 14, 19

.0186 1, 4, 12, 14, 19 .0618 12, 14

.0150 4, 11, 12, 14, 19 .0268 14, 16

to be � agged as important. A stepwise procedure utilizing
the AIC criterion (implemented in S-Plus, Statistical Sciences
1995) selected factor 14 only.

The SSVS algorithm was also run, using the tuning
constants and starting values as outlined in Section 3. The
implementation of SSVS used the ‘ 2 estimate of 44308852

obtained from stepwise regression with p D 005. Some of the
top identi� ed models for each choice of (’i1 ci) in Section
3.1 are presented with their model probabilities in Table 2.
The model probabilities are all near zero and nearly equal
when using 411 55; it is doubtful that this result sheds any
light on the best model, although its top choice—factor 14
only—is the same as that selected by (1, 10) and (.10, 500). In
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contrast, the model with factors 4, 12, 14, and 19 was chosen
best under (.10, 100). Strong runners-up included several
submodels of 841 121 141 199, namely itself, 8121141199 and
8121 149 when using (.10, 500), and 8141199 when using
(1, 10).

Based on the selections of the SSVS algorithm, 841121 14,
199 was chosen as the model for input into the IBF scheme.
Table 3 lists the intrinsic Bayes factors for comparing this
encompassing model to each submodel, arranged in order of
increasing AIBF. The best model selected by this approach
was the encompassing model. Second on the list was the
model consisting of 8121 141 199. This submodel had an
AIBF of 31.4 (G IBF of 4.47), meaning that the odds in
favor of the encompassing model (compared to 8121141199)
have increased 31.4 (4.47) times by accounting for the data.
This is strong evidence in favor of 841121141199. Beattie
(1999) has implemented SSVS using an error variance
estimate from stepwise regression with p D 010, yielding top
models involving more than 10 factors. The IBF follow-up
procedure, however, selected 8141 229. A further analysis
using 841121141191229 as the encompassing model concludes
that 841121141199 is the best model (see Beattie 1999 for
details).

Table 4 summarizes the results of the various analytical
techniques applied to the Williams half-fraction. The classical
stepwise techniques tend to be either very conservative (using
p D 001 or .05), selecting one factor, or very liberal (with
p D 010), selecting 12 factors (not shown in the table). SSVS,
when using one estimate of ‘ 2, agrees closely with the conser-
vative stepwise methods but while using a different estimate
is extremely liberal in factor inclusion. The IBF follow-up
procedure to SSVS results in a more moderate, stable � nal
model, with four factors selected from the factors identi� ed
by SSVS. Note that the result from the two-stage procedure is
insensitive to the estimate of ‘ 2 and is close to the � nal model
suggested by Williams (1968). Using the all-subsets regression
procedure recommended by Abraham, Chipman, and Vijayan
(1999), assuming � ve or fewer active factors, yields the same
four-factor model as the two-stage procedure. However, our

Table 3. Intrinsic Bayes Factors of {4, 12,14,19} Against
All Its Subsets

Model factors AIBF GIBF

4, 12, 14, 19 1000 1000
12, 14, 19 3104 4047
4, 14, 19 9407 2302
4, 12, 14 177 4602
12, 14 378 1808
14, 19 693 2501
4, 14 1050 6901
14 3420 3007
None 4880 322
12 6020 611
19 8220 666
4 8900 839
12, 19 10500 1550
4, 12 11600 1700
4, 19 15300 2080
4, 12, 19 24200 6190

Table 4. Comparative Results for Analyses of the Williams Half-Fraction

Model Selection Method Factors Identi’ ed as Important

Williams ’ nal model (Williams 1968) 4, 10, 14, 19
Forward selection w/modi’ ed p 14

(Westfall et al. 1998)
Forward selection w/p D 005 14
Stepwise w/p D 005 14
Stepwise using AIC 14
SSVS (’i D O‘ ‚i

, ci D 5) 14
SSVS (’i D O‘ ‚i

, ci D 10) 14
SSVS (’i D 010 O‘ ‚i

, ci D 100) 4, 12, 14, 19
SSVS (’i D 010 O‘ ‚i

, ci D 500) 14
IBF using 4, 12, 14, 19 from SSVS 4, 12, 14, 19

Bayesian approach does not need to specify the number of
active factors in advance.

5. SOME COMPARISONS BY SIMULATION

In practice, the two-stage approach would be carried out in
the manner of Section 4, with careful selection of the encom-
passing model for IBF occuring by examination of a few top
model or factor choices from the four SSVS runs using differ-
ent estimates of ‘ 2. For simulation, such an in-depth process
is not feasible. For purposes of this study, the best model with
most factors selected by a speci� c SSVS run was used as the
encompassing model for IBF, which compared all subsets of
this SSVS choice. For cases in which the SSVS top selection
contained too many factors for IBF, the top six marginal fac-
tor probabilities were used to obtain the encompassing model.
Note that if the SSVS top selection contains too many factors,
this could also be evidence that the assumption of effect spar-
sity is unrealistic. Indeed, when the effect sparsity assumption
is questionable, the supersaturated design may not be appropri-
ate and more observations (experiments) are needed. Because
of these limitations, it is believed that the simulation studies
will understate the success of the two-stage strategy. All priors
for IBF, as suggested in Berger and Pericchi (1996a), were
used here, although only the results under the reference prior
will be presented. The results for the other priors did not differ
greatly from those of the reference prior.

In the model selection setting, there are two different goals
for the selection algorithm. Ideally, the technique should cor-
rectly identify all the true active factors and ignore those that
are inactive. On the other hand, supersaturated designs are
often used as � rst-line screening procedures, in which one
seeks to correctly identify all true active factors but may tol-
erate the inclusion of a few inactive ones. The number of
inactive factors included should be kept to a minimum so
that follow-up experiments do not get overly expensive or
unwieldy. With these two goals in mind, the procedures were
judged by two criteria: (1) how well they could identify the
true model and (2) how well they could identify the true active
factors yet keep � tted model size to a minimum.

Simulation studies on several randomly generated datasets
were used to evaluate the two-stage Bayesian model selection
strategy against stepwise regression and SSVS. The � rst
simulation investigated the abilities of the selection tech-
niques in the presence of one active factor, namely 10X1,
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Table 5. Percent of 1000 Simulations Succeeding in Identi’ cation

True Model: Y N(10X11 I14)

Average Size
True Model Active Factor

Model Selection Method Identi’ ed Identi’ ed Med. Mean

Stepwise (p D 005) 2207% 100% 3 302
Stepwise (AIC) 9909% 100% 1 100
SSVS (.10, 500) 4005% 99% 2 301
Stepwise/GIBF 2400% 100% 2 300
SSVS (.10, 500)/GIBF 6100% 98% 1 205

True model: Y N(ƒ15X1 C12X5 ƒ 8X9 C 6X13 ƒ 2X171 I14)
Average Size

True Model Active Factors
Model Selection Method Identi’ ed Identi’ ed Med. Mean

Stepwise (p D 005) 3209% 100% 6 605
Stepwise (AIC) 0% 0%–100% 1 102
SSVS (.10, 500) 3604% 84%–98% 6 800
Stepwise/GIBF 3803% 99%–100% 6 603
SSVS (.10, 500)/GIBF 4007% 75%–94% 5 506
True model: Y N(ƒ15X1 C8X5 ƒ6X9 C 3X5X91 I14)

Average Size
All Main Effects Active Main Effects

Model Selection Method Identi’ ed Identi’ ed Med. Mean

Stepwise (p D 005) 2405% 99%–100% 5 409
Stepwise (AIC) 0% 0%–100% 1 100
SSVS (.10, 500) 3808% 83%–98% 5 504
Stepwise/GIBF 2905% 98%–100% 5 406
SSVS (.10, 500)/GIBF 4605% 81%–97% 4 409

to gauge the amount of improvement that is possible in
using the two-stage procedure over the other methods. The
second simulation studied the case with � ve active factors
(ƒ15X1 C 12X5 ƒ 8X9 C 6X13 ƒ 2X17) so that the methods
could be compared on a more typical dataset—with strong
signal, moderate signal, and weak signal. The third simulation
incorporated a model with three active main-effect factors and
one active interaction effect (ƒ15X1

C 8X5
ƒ 6X9

C 3X5X9).
For all simulations, the Williams half-fraction supersaturated
design of Table 1 was used with responses randomly generated
from a normal distribution with speci� ed mean and variance
one. Each simulation was run 1,000 times.

Table 5 displays a representative portion of the simulation
results. For each model selection scheme, the percentages of
correct model and factor identi� cation are listed, along with
the average model size. Stepwise results are shown for p D 005
and for AIC, as these are typical of selections used in prac-
tice. The two-stage procedure is performed in two ways: using
stepwise as the � rst stage (stepwise/IBF) and using SSVS as
the � rst stage (SSVS/ IBF). Note that stepwise/IBF uniformly
dominates stepwise in every criterion for almost all situations.
In general, the two-stage procedure SSVS/ IBF demonstrated
a higher percentage of identi� cation of the true model and a
smaller (and closer to true) model size. All methods except
stepwise (A IC) have similar percentage of including all active
factors in the � nal model.

As expected among the classical stepwise procedures,
an increase in the ability to identify the active factors
accompanied an increase in model size (hence a decrease in
identi� cation of the correct model). The stepwise procedures
generally tended to over� t the model with p D 005 and

.10 and under� t the model with p D 001, although there
was some model dependence on over� tting. The stepwise
scheme employing the AIC criterion performed best when
there was only one active factor but performed miserably
when there were more than one active factor. Although
stepwise/ IBF dominates stepwise, the improvement is only
marginal because the second stage usually con� rmed all the
factors identi� ed by the stepwise procedure. On the other
hand, the SSVS/ IBF procedure might provide improvements
because more factors may be identi� ed in the SSVS step.
Even under the severe restriction described at the beginning
of this section, SSVS (.10, 500)/G IBF is able to identify the
true model or all main effects at a much higher percentage as
compared to the stepwise procedure.

We note that sensitivity of the tuning constants in the
� rst stage SSVS is unlikely to affect the effectiveness of
the two-stage procedure. This is because one will use all
variables identi� ed in the � rst stage, using various sets of
tuning constants, as inputs for the second stage. Results from
SSVS (� rst stage) depended dramatically on the choice of
tuning constants but the choice of the tuning constants may
not have much impact on the two-stage procedure—it will
only affect the size of input variables for the second stage.

6. A SYNTHETIC DATA EXAMPLE

To demonstrate the performance of the two-stage procedure
in general, a synthetic dataset generated from another
type of design (not a supersaturated design) is consid-
ered here. This type of example was given in George
and McCulloch (1993). We construct k D 20 predictor
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Table 6. Comparative Results for Analyses of the Synthetic Dataset

Model selection method Factors identi’ ed as important

Correct model 6–20
Stepwise w / p D 001 11, 13, 16–20
Stepwise w / p D 005 5–20
Stepwise using AIC 16, 17, 19, 20
SSVS (’i D O‘ ‚i

, ci D 5) 7–20
SSVS (’i D O‘ ‚i

, ci D 10) 7–20
SSVS (’i D 010 O‘ ‚i

, ci D 100) 7–20
SSVS (’i D 010 O‘ ‚i

, ci D 500) 7, 9, 11–20
SSVS/AIBF 5–20
SSVS/GIBF 7–20

variables, X11X21 : : : 1 X20, of length n D 40, obtained by
Xi

D X ü
i

C Z, where X ü
i ’s iid N40401 I405 for i D 11 : : : 120,

and are independent of Z N40401 I405. The response vari-
able was generated by the model Y D 6X11 : : : 1 X207‚ C …,
where … N40401‘ 2I405 with ‘ D 2 and the coef� cients
‚0 D 4‚11 : : : 1‚205 were set at 4‚11 : : : 1‚55 D 4010101 0105,
4‚61 : : : 1‚105 D 41111111115, 4‚111 : : : 1‚155 D 4212121 2125,
and 4‚161 : : : 1‚205 D 431 31313135. We analyzed the gen-
erated dataset using the various methods discussed above.
Results from stepwise regression employing different p-values
are given in Table 6. Consistent with our simulation study
results reported in Section 5, the stepwise procedure (slightly)
over� tted the model with p D 005 and under� tted the model
with p D 001; stepwise (A IC) did not perform well. For a
clear comparison, the results from SSVS and the two-stage
procedure are also included in Table 6.

Based on the selections of the SSVS algorithm, Variables
5–20 were chosen to form the encompassing model for input
into the IBF scheme. Using the AIBF, the best model selected
includes Variables 5–20, whereas the best model employing
GIBF includes Variables 7–20. In this case, our two-stage pro-
cedure suggested the need for more observations to ascertain
the signi� cance of Variables 5 and 6. The overall conclusion,
however, is satisfactorily accurate.

7. SUMMARY AND CONCLUSION

Experiments can be costly and involve a large number of
factors. When only a few factors of which are thought to be
active, a supersaturated design can be gainfully employed.
However, the use of supersaturated designs for screening
experiments in industry has brought about the need for new
model selection methodologies. Classical linear regression
procedures are unable to estimate all the parameters. Stepwise
techniques, although appealing for their automation, are prone
to over� tting. More signi� cantly, the selection of a p-value
cutoff may be tied to the true, but unknown, underlying
model. On the other hand, the use of alternative stepwise
criteria, such as AIC or Cp , can lead to under� tting when
more than one factor is active.

Abraham, Chipman, and Vijayan (1999) also pointed out
some shortcomings of stepwise regression for analyzing super-
saturated designs and favored the use of all-subsets regression.
Some of their observations were in fact given in Lin (1995b).
Their preferred all-subsets regression procedure, however, is

viable for models with only a few active factors. Williams’
example involves 23 candidate factors and

P5
iD1

23
i

D 441551
models for � ve or fewer active factors, and 145,498 models
when six or fewer active factors are to be considered. For a
design with even a moderate number of active factors under
study, such a procedure would be formidable (from the com-
putational perspective) to implement.

Bayesian MCMC techniques are attractive because they can
keep all 2k models under consideration and are computation-
ally feasible. The SSVS procedure of George and McCulloch
(1993, 1997) is one popular tool for model selection. However,
its dependence on proper prior distributions results in esti-
mated model probabilities that depend greatly on the selection
of tuning constants. It is unlikely that only one set of tuning
constants would be appropriate for every underlying model. In
practice, one would consider the results from a variety of tun-
ing constant values; yet this approach would not necessarily
lead to a single choice of best model. This strategy would also
seem to suffer from over� tting as the candidate models and
factors are combined into one encompassing model. Instead of
� nding the one best model, the methodology at best identi� es
a set of candidate models or factors for further consideration.

The intrinsic Bayes factor of Berger and Pericchi (1996a,b)
is appealing on theoretical considerations and because of
its use of noninformative prior distributions. However, when
used by itself in analyzing supersaturated design data, it
suffers from nonidenti� ability of the parameter values. When
the number of candidate factors is reduced to a reasonable
amount, as in the proposed two-stage Bayesian model
selection strategy, IBF shows an ability to further reduce the
model to a moderate size and to do so accurately. Our major
interest here is to provide a reliable analysis for supersaturated
designs, but the proposed two-stage procedure can also be
used in analyzing any type of dataset, when (a) the number of
independent variables is large, (b) a relatively small number
of these factors are likely to be active, (c) only a relatively
small number of observations can be taken, and (d) all active
factors have � rst order effects which are at least as large as
interactions and higher order effects.

ACKNOWLEDGMENTS

We thank the editor, an associate editor, and two referees
for their thorough and constructive comments. We also thank
Dr. Robert McCulloch for providing us with a CCC program to
perform his SSVS methodology and Dr. Luis Pericchi for giv-
ing us a copy of his Fortran program to implement IBF. Their
programs were used to independently verify the accuracy of
our C program for the two-stage Bayesian model selection.
Dennis Lin is partially supported by the U.S. National Science
Foundation via grant DMS-9704711 and the National Science
Council of ROC via contract NSC 90-2118-M-001-010.

[Received January 1999. Revised March 2001.]

REFERENCES

Abraham, B., Chipman, H., and Vijayan, K. (1999), “Some Risks in the
Construction and Analysis of Supersaturated Designs,” Technometrics, 41,
135–141.

Beattie, S. D. (1999), “Contributions to the Design and Analysis of
Experiments,” Ph.D. thesis, The Pennsylvania State University.

TECHNOMETRICS, FEBRUARY 2002, VOL. 44, NO. 1

http://www.ingentaselect.com/rpsv/cgi-bin/linker?ext=a&reqidx=/0040-1706^28^2941L.135[aid=1543936]
http://www.ingentaselect.com/rpsv/cgi-bin/linker?ext=a&reqidx=/0040-1706^28^2941L.135[aid=1543936]


A TWO-STAGE BAYESIAN MODEL SELECTION STRATEGY FOR SUPERSATURATED DESIGNS 63

Berger, J., and Sellke, T. (1987), “Testing a Point Null Hypothesis: The Irrec-
oncilability of p-Values and Evidence,” Journal of the American Statistical
Association, 82, 112–122.

Berger, J. O., and Pericchi, L. R. (1996a), “The Intrinsic Bayes Factor for Lin-
ear Models,” in Bayesian Statistics—Proceedings of the 5th Valencia Inter-
national Meeting Held in Alicante, June 5–9, 1994, eds. J. M. Bernardo,
J. O. Berger, A. P. Dawid, and A. F. M. Smith, Oxford: Oxford Science
Publications, Vol 5, pp. 25–44.

. (1996b), “The Intrinsic Bayes Factor for Model Selection
and Prediction,” Journal of the American Statistical Association, 91,
109–122.

Bernardo, J.-M. (1979), “Reference Posterior Distribution for Bayesian
Inference,” Journal of the Royal Statistical Society, Ser. B, 41,
113–147.

Bernardo, J.-M., and Smith, A. F. M. (1994), Bayesian Theory, New York:
Wiley.

Box, G. E. P., and Meyer, R. D. (1986), “An Analysis for Unreplicated Frac-
tional Factorials,” Technometrics, 28, 11–18.

Carlin, B. P., and Chib, S. (1995), “Bayesian Model Choice via Markov Chain
Monte Carlo Methods,” Journal of the Royal Statistical Society, Ser. B, 57,
473–484.

Chipman, H. (1996), “Bayesian Variable Selection with Related Predictors,”
The Canadian Journal of Statistics, 24, 17–36.

Chipman, H., Hamada, M., and Wu, C. F. J. (1997), “A Bayesian Variable
Selection Approach for Analyzing Designed Experiments With Complex
Aliasing,” Technometrics, 39, 372–381.

Draper, N. R., and Smith, H. (1998), Applied Regression Analysis (3rd ed.),
New York: Wiley.

Gelfand, A. E., and Smith, A. F. M. (1990), “Sampling-Based Approaches
to Calculating Marginal Densities,” Journal of the American Statistical
Association, 85, 398–409.

Gelman, A., and Meng, X. (1998), “Simulating Normalizing Constants: From
Importance Sampling to Bridge Sampling to Path Sampling,” Statistical
Science, 13, 163–185.

George, E. I., and McCulloch, R. E. (1993), “Variable Selection via Gibbs
Sampling,” Journal of the American Statistical Association, 88, 881–889.

. (1997), “Approaches for Bayesian Variable Selection,” Statistica
Sinica, 7, 339–373.

Gilks, W. R., Richardson, S., and Spiegelhalter, D. J. (eds.) (1996), Markov
Chain Monte Carlo in Practice, London: Chapman & Hall.

Hoeting, J., Raftery, A. E., and Madigan, D. (1996), “A Method for Simulta-
neous Variable Selection and Outlier Identi� cation in Linear Regression,”
Computational Statistics and Data Analysis, 22, 251–270.

Hoeting, J. A., Madigan, D., Raftery, A. E., and Volinsky, C. T. (1998),
“Bayesian Model Averaging,” Technical Report 335, University of
Washington, Department of Statistics.

Lin, D. K. J. (1993), “A New Class of Supersaturated Design,” “Technomet-
rics, 35, 28–31.

. (1995a), “Generating Systematic Supersaturated Designs,”
Technometrics, 37, 213–225.

. (1995b), Response to “Letter to the Editor,” by Wang, Technometrics,
37, 359.

. (1999), “Supersaturated Designs,” in Encyclopedia of Statistical Sci-
ences, updated Volume 3, New York: Wiley, pp. 727–731.

Meyer, R. D., and Wilkinson, R. G. (1995), “Variable Selection or Variable
Assessment?” Technical Report 126, University of Wisconsin–Madison,
Center for Quality and Productivity Improvement.

Mitchell, T. J., and Beauchamp, J. J. (1988), “Bayesian Variable Selection
in Linear Regression,” Journal of the American Statistical Association, 83,
1023–1036.

Pan, G. (1999), “The Impact of Unidenti� ed Location Effects on Dispersion-
Effects Identi� cation from Unreplicated Factorial Designs,” Technometrics,
41, 313–326.

Raftery, A., Madigan, D., and Hoeting, J. (1993), “Model Selection and
Accounting for Model Uncertainty in Linear Regression Models,” Technical
Report 262, University of Washington, Department of Statistics, to appear
in Journal of the American Statistical Association, 92(437), 179–191.

SAS Institute Inc. (1994), SAS/STAT User’s Guide, Version 6 (4th ed.), Cary,
NC: SAS Institute Inc.

Statistical Sciences (1995), S-PLUS Guide to Statistical and Mathematical
Analysis (3.3 ed.), Seattle: StatSci, a division of MathSoft, Inc.

Westfall, P. H., Young, S. S., and Lin, D. K. J. (1998), “Forward Selection
Error Control in the Analysis of Supersaturated Designs,” “Statistica Sinica,
8, 101–117.

Williams, K. R. (1968), “Designed Experiments,” Rubber Age, 100,
65–71.

TECHNOMETRICS, FEBRUARY 2002, VOL. 44, NO. 1

http://www.ingentaselect.com/rpsv/cgi-bin/linker?ext=a&reqidx=/0035-9246^28^2957L.473[aid=1925622]
http://www.ingentaselect.com/rpsv/cgi-bin/linker?ext=a&reqidx=/0035-9246^28^2957L.473[aid=1925622]
http://www.ingentaselect.com/rpsv/cgi-bin/linker?ext=a&reqidx=/0035-9246^28^2991L.109[aid=1925621]
http://www.ingentaselect.com/rpsv/cgi-bin/linker?ext=a&reqidx=/0035-9246^28^2991L.109[aid=1925621]
http://www.ingentaselect.com/rpsv/cgi-bin/linker?ext=a&reqidx=/0162-1459^28^2982L.112[aid=569080]
http://www.ingentaselect.com/rpsv/cgi-bin/linker?ext=a&reqidx=/0162-1459^28^2991L.109[aid=1302163]
http://www.ingentaselect.com/rpsv/cgi-bin/linker?ext=a&reqidx=/0162-1459^28^2985L.398[aid=20258]
http://www.ingentaselect.com/rpsv/cgi-bin/linker?ext=a&reqidx=/0883-4237^28^2913L.163[aid=1489613]
http://www.ingentaselect.com/rpsv/cgi-bin/linker?ext=a&reqidx=/0167-9473^28^2922L.251[aid=1925618]
http://www.ingentaselect.com/rpsv/cgi-bin/linker?ext=a&reqidx=/0040-1706^28^2937L.359[aid=1925619]
http://www.ingentaselect.com/rpsv/cgi-bin/linker?ext=a&reqidx=/0162-1459^28^2983L.1023[aid=1489625]
http://www.ingentaselect.com/rpsv/cgi-bin/linker?ext=a&reqidx=/1017-0405^28^298L.101[aid=1925620]
http://www.ingentaselect.com/rpsv/cgi-bin/linker?ext=a&reqidx=/0162-1459^28^2982L.112[aid=569080]
http://www.ingentaselect.com/rpsv/cgi-bin/linker?ext=a&reqidx=/0162-1459^28^2991L.109[aid=1302163]
http://www.ingentaselect.com/rpsv/cgi-bin/linker?ext=a&reqidx=/0162-1459^28^2985L.398[aid=20258]
http://www.ingentaselect.com/rpsv/cgi-bin/linker?ext=a&reqidx=/0883-4237^28^2913L.163[aid=1489613]
http://www.ingentaselect.com/rpsv/cgi-bin/linker?ext=a&reqidx=/0040-1706^28^2937L.359[aid=1925619]
http://www.ingentaselect.com/rpsv/cgi-bin/linker?ext=a&reqidx=/0162-1459^28^2983L.1023[aid=1489625]
http://www.ingentaselect.com/rpsv/cgi-bin/linker?ext=a&reqidx=/1017-0405^28^298L.101[aid=1925620]

