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Abstract

Supersaturated designs (SSDs) can save considerable cost in industrial experimentation when many potential
factors are introduced in preliminary studies. Analyzing data in SSDs is challenging because the number of
experiments is less than the number of candidate factors. In this paper, we introduce a variable selection
approach to identifying the active e1ects in SSD via nonconvex penalized least squares. An iterative ridge
regression is employed to 3nd the solution of the penalized least squares. We provide both theoretical and
empirical justi3cations for the proposed approach. Some related issues are also discussed.
c© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Many preliminary studies in industrial experimentation contain a large number of potentially rel-
evant factors, but actual active e1ects are believed to be sparse. To save experimental cost, exper-
imenters have tried to reduce the number of experiments. An e<cient use of experimental units is
the employment of supersaturated design (SSD), in which the number of experiments is less than
the number of candidate factors (see, for example, Lin, 1991). Construction of SSDs has received
increasing attention recently. For example, Lin (1995) introduced an approach to generating system
SSDs, Fang et al. (2000) proposed an approach for constructing multi-level SSD via a quasi-Monte
Carlo approach. Also, see Lin (2000) and references therein. Since the number of candidate factors
is more than the number of experiments in SSD, variable selection is fundamental in analyzing SSD
for identifying sparse active e1ects. Some traditional approaches, such as best subset variable selec-
tion, are not feasible, while stepwise variable selection may not be appropriate (see, for example,
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Westfall et al., 1998). In this paper, we introduce an approach from the viewpoint of frequentist
analysis.
Fan and Li (2001) proposed a class of variable selection procedures via nonconcave penalized

likelihood. They showed that with the proper choice of penalty function and regularization param-
eter, their approaches possess an oracle property. Namely, the true coe<cients that are zero are
automatically estimated as zero, and the other coe<cients are estimated as if the true submodel were
known in advance. However, their approach cannot be directly applied for analyzing SSD because
regularity conditions imposed in their paper require the design matrix to be full rank. This cannot
be satis3ed by an SSD. In this paper, we extend the nonconcave penalized likelihood approaches
to least squares, namely nonconvex penalized least squares, and focus on the situation in which the
design matrix is not full rank. Theoretic properties of the proposed approach are investigated, and
empirical comparisons via Monte Carlo simulation are conducted.
This paper is organized as follows. In Section 2, we brieFy discuss nonconvex penalized least

squares and introduce a variable selection procedure for SSD. Root n consistency of the resulting
estimator via penalized least squares is established. We also show that the introduced procedure
possesses an oracle property. An iterative ridge regression algorithm is employed to 3nd the solution
of the penalized least squares. A choice of initial value of unknown coe<cients for the iterative
ridge regression is suggested. In Section 3, some empirical comparisons via Monte Carlo simulation
are conducted. A real data example is used for illustration. Section 4 gives the proof of the main
theorem. Some conclusions are given in Section 5.

2. Variable selection for screening active e�ects

2.1. Preliminary

Assume that observations Y1; : : : ; Yn are independent samples from the linear regression model

Yi = xTi � + �i (2.1)

with E(�i) = 0 and var(�i) = �2, where xi is the vector of input variables. Following Fan and Li
(2001), a form of penalized least squares is de3ned as

Q(�) ≡ 1
2n

n∑
i=1

(Yi − xTi �)
2 +

d∑
j=1

p�n(|
j|); (2.2)

where p�n(·) is a penalty function, and �n is a tuning parameter, which can be chosen by a data-driven
approach, such as cross-validation (CV) and generalized cross-validation (GCV, Craven and Wahba,
1979). Many variable selection criteria are closely related to this penalized least squares. Take the
penalty function to be the entropy penalty, namely, p�n(|
|)= 1

2�
2
nI(|
| �=0), where I(·) is an indicator

function. Note that the dimension or the size of a model equals the number of nonzero regression
coe<cients in the model. This actually equals

∑
j I(|
j| �=0). In other words, the penalized least

squares (2.2) with the entropy penalty can be rewritten as

1
2n

n∑
i=1

(Yi − xTi �)
2 +

1
2
�2n|M |; (2.3)
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where |M |=∑
j I(|
j| �=0), the size of the underlying candidate model. Hence, many popular variable

selection criteria can be derived from the penalized least squares (2.3) by taking di1erent values of
�n. For instance, the AIC and BIC correspond to �n =

√
2(�=

√
n) and

√
log n(�=

√
n), respectively,

although these two criteria were motivated from di1erent principles. The entropy penalty is not
continuous, and can be improved by its smooth version, namely a hard thresholding penalty function,

p�(|
|) = �2 − (|
| − �)2I(|
|¡�);

proposed by Fan (1997).
Other penalty functions have been used in the literature. The L2 penalty p�n(|
|)=2−1�n|
|2 yields

a ridge regression, and the L1 penalty p�n(|
|) = �n|
| results in LASSO (Tibshirani, 1996). More
generally, the Lq penalty leads to a bridge regression (see Frank and Friedman, 1993; Fu, 1998;
Knight and Fu, 2000).
All aforementioned penalties do not satisfy the conditions for desired properties in terms of conti-

nuity, sparsity and unbiasedness, advocated by Fan and Li (2001). They suggested using the smoothly
clipped absolute deviation (SCAD) penalty, proposed by Fan (1997). The 3rst-order derivative of
SCAD is de3ned by

p′
�(
) = �

{
I(
6 �) +

(a�− 
)+
(a− 1)�

I(
¿�)
}

for 
¿ 0 with a = 3:7, and p�(0) = 0. For simplicity of presentation, we will use SCAD for all
procedures using the SCAD penalty. As recommended by Fan and Li, we employ penalized least
squares with the SCAD penalty to identify the sparse active e1ects in the analysis stage of SSD in
this paper.

2.2. Asymptotic properties

When (xi ; Yi); i=1; : : : ; n, are independent and identically distributed, Fan and Li have established
an oracle property for their penalized likelihood estimator. In what follows, we will show that the
oracle property still holds for the penalized least-squares estimator when the predictor variable x is
a 3xed design even if design matrix is singular. We next introduce some related notations.
Denote by �0 the true value of �, and let �0 = (
10; : : : ; 
d0)T = (�T10; �

T
20)

T. Without loss of
generality, assume that �20 = 0, and all components of �10 are not equal to 0. Denote by s the
number of nonzero components of �. Let X1 consist of the 3rst s columns of X, the design matrix
of the linear regression model (2.1), and x1k consist of the 3rst s components of xk ; k = 1; : : : ; n.
De3ne V = limn→∞ (1=n)XTX and let V11 consist of the 3rst s columns and rows of V.
To establish the oracle property for the penalized least-squares estimate, we need the following

two conditions:

(C1) max16k6n xT1k(X
T
1X1)

−1x1k → 0; as n → ∞.
(C2) V is 3nite and V11¿ 0.

Conditions (C1) and (C2) guarantee that the asymptotic normality holds for the least-squares
estimator of �̂1. We show in Theorem 1 that the penalized least-squares estimate is root n consistent
and possesses the oracle property for the penalized least-squares estimator with the SCAD penalty.
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Theorem 1. Consider model (2.1) and suppose that the random errors are independent and identi-
cally distributed with zero mean and 7nite positive variance �2. Suppose that conditions (C1) and
(C2) hold. For the SCAD penalty; if �n → 0 and

√
n�n → ∞; then

(a) (Root n consistency). With probability tending to one; there exists a local minimizer �̂ of Q(�);
de7ned in (2.2); such that �̂ is a root n consistent estimator of �;

(b) (Oracle property). With probability tending to one; the root n consistent estimator in Part (a)
satis7es �̂2 = 0 and

√
n(�̂1 − �10)→ N(0; �2V−1

11 ):

The proof of Theorem 1 is given in Section 4. From Theorem 1, with proper rate of �n, the SCAD
results in a root n consistency estimator. Moreover, the resulting estimator correctly identi3es the
inactive e1ects and estimates the active e1ects as if we knew the true submodel in advance.

2.3. Iterative ridge regression

2.3.1. Local quadratic approximation
Note that the SCAD penalty function is singular at the origin and may not have the second

derivative at some points. In order to apply the Newton Raphson algorithm to the penalized least
squares, Fan and Li (2001) locally approximate the SCAD penalty function by a quadratic function
as follows. Given an initial value �(0) that is close to the true value of �, when 
(0)j is not very
close to 0, the penalty p�(|
j|) can be locally approximated by the quadratic function as

[p�(|
j|)]′ = p′
�(|
j|) sgn(
j) ≈ {p′

�(|
(0)j |)=|
(0)j |}
j
and set 
̂j=0 if 


(0)
j is very close to 0. With the local quadratic approximation, the solution for the

penalized least squares can be found by iteratively computing the following ridge regression with
an initial value �(0):

�(1) = {XTX + n��(�(0))}−1XTy;

where

��(�(0)) = diag{p′
�(|
(0)1 |)=|
(0)1 |; : : : ; p′

�(|
(0)d |)=|
(0)d |}:
This can be easily implemented in many statistical packages.

2.3.2. Initial value
The local quadratic approximation requires a good initial value which is close to the true value

�0. When the design matrix is full rank, the least-squares estimate can serve as the initial value of
�. When the sample size is relatively large, the least-squares estimate possesses root n consistency,
and hence it is very close to the true value of �. In the SSD settings, however, the number of
experiments may be less than the number of potential candidates, and therefore the design matrix is
not full rank. In fact, the regression coe<cients are not identi3able without further assumptions, for
example, the e1ect sparsity assumption. Here we use stepwise variable selection to 3nd an initial
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value of �. In other words, we 3rst apply stepwise variable selection to the full model with small
thresholding values (i.e. large value of signi3cance level �) such that all active factors are included
in the selected model. Of course, some insigni3cant factors may still stay in the resulting model at
this step.

3. Simulation study and example

In this section we compare the performance of the SCAD and stepwise variable selection procedure
for analyzing SSD. All simulations are conducted using MATLAB codes. GCV (Craven and Wahba,
1979) was used for determining the regularization parameter � in the SCAD. In the following
examples, the level of signi3cance is set to be 0.1 for both F-enter and F-remove in the stepwise
variable selection procedure for choosing an initial value for the SCAD. The comparison is made in
terms of the ability of identifying true model and the size of resulting model.

Example 1. Given the design matrix constructed in Lin (1993); we simulated 1000 data sets from
the linear model

Y = xT� + �;

where the random error � is N(0; 1). We generate data from the following three models:

Model I: 
1 = 8, 
12 = 5 and all other components of � are equal to 0.
Model II: 
1 = 10; 
2 = 9, 
3 = 2 and all other components of � are equal to 0.
Model III: 
1 =−20; 
3 = 12; 
5 = 10; 
7 = 5; 
16 = 2 and all other components of � are equal

to 0.

In Model I, there are two large active e1ects; while in Models II and III, there are some large
e1ects, some moderate e1ects and a small e1ect. In our simulations, we also employ stepwise regres-
sion with three di1erent criteria. One selects signi3cant e1ects by setting the level of signi3cance to
be 0.05, the other two select a subset with the best AIC and BIC score in the stepwise regression,
respectively. Table 1 summarizes the simulation results. From Table 1, it is clear that SCAD out-
performs all three stepwise regression methods in terms of rate of identifying true models and size
of selected models.

Example 2 (Williams Rubber Experiment). The proposed procedure is applied to the SSD con-
structed by Lin (1993). Stepwise variable selection selects the following factors: X15; X12; X20;
X4; X10; X11; X7; X1; X14; X17 and X22. Then the SCAD procedure is applied. The selected tuning
parameter is �̂ = 6:5673. The 3nal model selected by the SCAD identi3es X4; X12; X15; X20 as the
active e1ects. The result is consistent with the conclusion of Williams (1968).

4. Proofs

To prove Theorem 1, we prove the following two lemmas 3rst.
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Table 1
Percent of 1000 simulations in Example 1

Model Method Rate of the true model being identi3ed Avg. size of 3tted model

Median Mean

I True model: Y = 8x1 + 5x12 + �
Stepwise (p= 0:05) 27.00% 3 3.7
Stepwise (AIC) 2.20% 5 5.0
Stepwise (BIC) 11.10% 4 4.2
SCAD 82.70% 2 2.2

II True model: Y = 10x1 + 9x2 + 2x3 + �
Stepwise (p= 0:05) 32.30% 4 4.5
Stepwise (AIC) 3.00% 6 5.74
Stepwise (BIC) 13.50% 5 5.00
SCAD 74.70% 3 3.34

III True model: Y =−20x1 + 12x3 + 10x5 + 5x7 + 2x16 + �
Stepwise (p= 0:05) 38.90% 6 6.17
Stepwise (AIC) 7.00% 7 7.01
Stepwise (BIC) 24.70% 6 6.43
SCAD 71.90% 5 5.39

Lemma 1. Under the conditions of Theorem 1; there exists a large constant C such that

P
{
inf

‖u‖=C
Q(�0 + n−1=2u)¿Q(�0)

}
¿ 1− �; (4.1)

where u = (uT1 ; 0) and the dimension of u1 is the same as that of �10.

Proof. De3ne

Dn(u) ≡ Q(�0 + �nu)− Q(�0):

Note that p�n(0) = 0 and �20 = 0;

Dn(u)¿
1
2n

n∑
i=1

{‖y − X1(�10 + u1)‖2 − ‖y − X1�10‖2}

+
s∑

j=1

{p�n(|
j0 + �nuj|)− p�n(|
j0|)}; (4.2)

where y = (Y1; : : : ; Yn)T. The 3rst term in (4.2) can be simpli3ed

1
2
n−1uT1

(
1
n
XT
1X1

)
u − n−1=2

n∑
i=1

uTx1i(Yi − xT1i�10): (4.3)
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By the assumption of (C2); the 3rst term in (4.3) equals n−1 12u
T
1V11u1{1+o(1)}. Using R=E(R)+

OP{
√
var(R)} for any random variable with 3nite second moment; it follows that the second term

in (4.3) equals to n−1
√
uT1V11u1OP(1). Note that V11 is 3nite and positive de3nite. By choosing a

su<ciently large C; the 3rst term will dominate the second term; uniformly in ‖u1‖= C.
By Taylor’s expansion, the second term on the right-hand side of (4.2) becomes

s∑
j=1

[n−1=2p′
�n(|
j0|) sgn(
j0)uj + n−1p′′

�n(|
j0|)u2j (1 + o(1))]

which is bounded by
√
sn−1=2an‖u1‖+ n−1bn‖u1‖2;

where

an =max{|p′
�n(|
j0|)|: 
j0 �=0} and bn =max{|p′′

�n(|
j0|)|: 
j0 �=0}:
For the SCAD penalty, if �n → 0, then an = 0 and bn = 0 when n is large enough. Therefore, the
second term in (4.2) is dominated by the 3rst term of (4.3). Hence, by choosing su<ciently large
C, (4.1) holds. This completes the proof.

Lemma 2. Under the conditions of Theorem 1; for any given �1 satisfying that ‖�1 − �10‖ =
OP(n−1=2) and any constant C; the following equation holds with probability tending to one;

Q
{(

�1
0

)}
= min

‖�2‖6Cn−1=2
Q
{(

�1
�2

)}
:

Proof. It is su<cient to show that; with probability tending to 1 as n → ∞; for any �1 satisfying
‖�1 − �10‖=OP(n−1=2) and for some small �n = Cn−1=2 and j = s+ 1; : : : ; d

@Q(�)
@
j

¿ 0 for 0¡
j ¡�n (4.4)

and

@Q(�)
@
j

¡ 0 for − �n ¡
j ¡ 0: (4.5)

By some straightforward computations; it follows that

@Q(�)
@
j

=−1
n
xT( j)(y − X�0) +

1
n
xT( j)X(� − �0) + p′

�n(|
j|) sgn(
j);

where x( j) is the jth column of X.
Since V is 3nite, var{(1=n)xT( j)(y − XT�0)}=O(n−1), and it follows that

1
n
xT( j)(y − X�0) = OP(n

−1=2):



142 R. Li, D.K.J. Lin / Statistics & Probability Letters 59 (2002) 135–144

By condition (C2)
1
n
xT( j)X = Vj(1 + o(1));

where Vj is the jth column of V.
By the assumption that ‖� − �0‖=OP(n−1=2), we have

@Q(�)
@
j

= �n{�−1n p′
�n(|
j|) sgn(
j) + OP(n−1=2=�n)}:

Since lim inf 
→0+ �−1n p′
�n(
)=1 and n

−1=2=�n → 0 as n → ∞, the sign of the derivative is completely
determined by that of 
j. Hence, (4.4) and (4.5) follows. This completes the proof.

Proof of Theorem 1. . To show Part (a); it su<ces to show that there exists a large constant C such
that

P
{
inf

‖u‖=C
Q(�0 + n−1=2u)¿Q(�0)

}
¿ 1− �: (4.6)

This implies that with probability tending to one there exists a local minimum in the ball {�0 +
n−1=2u : ‖u‖6C}: Hence; there exists a local minimizer �̂ such that ‖�̂ − �0‖=OP(n−1=2).
Since

Q(�0 + n−1=2u)− Q(�0)

=
[
Q
{(

�10 + n−1=2u1
�20 + n−1=2u2

)}
−Q

{(
�10 + n−1=2u1

�20

)}]
+
[
Q
{(

�10 + n−1=2u1
�20

)}
−Q(�0)

]
:

By Lemma 2, with probability tending to 1 the 3rst term is positive as �20 = 0. By Lemma 1, (4.6)
holds. This completes the proof of Part (a).
Now we show Part (b). It follows by Lemma 2 that with probability tending to one, �̂2 = 0.
It can be easily shown that there exists a �̂1 in Part (a) that is a root n consistent local minimizer

of

Q
{(

�1
0

)}
;

regarded as a function of �1, and satisfying the following equations:

@Q(�)
@
j

∣∣∣∣
�=

(
�̂1

0

) = 0 for j = 1; : : : ; s:

Note that �̂1 is a consistent estimator and �20 = 0,

@Q(�̂)
@
j

=−1
n
xT( j)(y − X�0) +

1
n
xT( j)X(1)(�̂1 − �10)− p′

�n(|
̂j|)

=−1
n
xT( j)(y − X�0) + VT

( j)(�̂1 − �10)(1 + oP(1))

−(p′
�n(|
0j |) sgn(
j0) + {p′′

�n(|
j0|) + oP(1)}(
̂j − 
j0));
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where X(1) consists of the 3rst s columns of X and V( j) is the jth-column of V11. It follows by
Slutsky’s Theorem and the HQajek–RSidQak Central Limit Theorem (CLT) that

√
n(V11 + �){�̂1 − �10 + (V11 + �)−1b} → N(0; �2V11)

in distribution, where

�= diag{p′′
�n(|
10|); : : : ; p′′

�n(|
s0|)};
b= (p′

�n(|
10|) sgn(
10); : : : ; p′
�n(|
s0|) sgn(
s0))T:

Note that for the SCAD penalty, �= 0 and b= 0 as �n → 0. Thus,
√
n(�̂1 − �10)→ N(0; �2V−1

11 )

in distribution. This completes the proof of Part (b).

5. Conclusion

While the construction of SSDs has been paid increasing attention, the analysis of SSDs deserves
special attention. In this paper, we proposed a variable selection approach for analyzing experiments
when the full model contains many potential candidate e1ects. It has been shown that the proposed
approach possesses an oracle property. The proposed approach has been empirically tested. A real
data example was used to illustrate the e1ectiveness of the proposed approach.
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