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A consistent product/process will have little variability, i.e. dispersion. The widely-used unreplicated two-level
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ﬁctorialdesim.memauﬁsﬁckdeﬁneiuiﬁedmwmmdedmdhmesunplemhmﬁmm
given. Through simulations and examples from the literature, the test is compared to general nonparametric
dispetsionmestsandapamnenicmbasedonanommlitymnption.ﬂmomnpaﬁsonsshowthewstwbe
ﬂlemostmbustofﬂwcesmdiedandcvensupetiottoﬂwnmulity-basedtestundernormalityinsomesituaﬁms.
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dispersion effect.
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1 INTRODUCTION

Unreplicated two-level fractional factorial designs are often used in industry to study factors’
effects on the mean of a response. If k factors, each with two levels, are studied by obtaining
a single observation at each of the 2* factor-level combinations, then the design is called a
2* factorial design. (The two levels of each factor are commonly labeled +1 and —1). In a
2* experiment, n = 2* independent location effects can be estimated: the overall mean, and
(j)j-factor interactions, j = 2, ..., k. The effect matrix is the resulting » x n matrix of +1s
and —1s. Table I shows an effect matrix for a 16 run experiment.

Replicating the experiment, i.e. obtaining r > 2 observations at each design point, allows
estimation of variance at each design point as well as an error term for testing for active loca-
tion effects. Often, however, replication is too expensive due to limited resources. Sometimes
even an unreplicated factorial may not be feasible. A 2*~7 fractional factorial design is
created by assigning the k factors to the columns of a 2*” effect matrix. In these designs,
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TABLE | Experimental Designs and Responses.

M A B C D E G F
D A B C D AB AC AD BC BD CD DE CE BE AE E
0 2 3 4 5 6 7 8 9 10 NI 12 13 14 IS5 yp ym
I 1 -1 -1 -1 -1 1 1 1 1 1 I -1 -1 -1 -1 1 2015 6
2 1 1 -1 -1 -1 -1 -1 -1 1 1 1 1 1 1 -1 -1 1780 10
31 -1 1 -1 -1 -1 1 1 -1 -1 1 1 1 -1 1 -1 1835 32
4 1 1 1 -1 -1 1 -1 -1 -1 -1 1 -1 -1 1 1 1 1760 60
51 -1 -1 1 -1 1 ~1 1 -1 1 -1 1 -1 1 1 -1 1885 4
6 1 1 -1 1 -1 -1 1 -1 ~1 1 -1 -1 I -1 1 1 1785 15
71 -1 1 1 -1 -1 -1 1 I -1 -1 -1 1 1 -1 1 1745 26
8 1 1 1 1 -1 1 1 -1 1 -1 -1 1 -1 -1 -1 -1 1965 60
9 1 -1 -1 -1 1 1 1 -1 1 -1 -1 -1 1 1 1 -1 2555 8
10 1 1 -1 -1 1 -1 -1 1 1 -1 -1 I -1 -1 1 1 2405 12
1nm 1t -1 1 -1 1 -1 I -1 -1 1 -1 1 -1 1 -1 1 2085 34
12 1 1 1 -1 1 1 -1 1 -1 1 -1 -1 1 -1 -1 -1 2440 60
13 1 -1 -1 1 1 1 -1 -1 -1 -1 1 1 1 -1 -1 1 2740 16
14 1 1 -1 1 1 -1 1 1 -1 -1 1 -1 - 1 -1 -1 2575 5§
15 1 -1 1 1 1 -1 -1 -1 1 1 1 -1 -1 - 1 -1 2560 37
16 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2745 52

p denotes the degree of fractionization. For example, if 7 factors are studied in # = 16 runs, the
design is an unreplicated 273, or a 1/23 = 1/8 fraction of the 27 factorial. In unreplicated
designs, an assumption of homogeneity of variance is often made in order to study location effects.

Suppose the experimenter wishes to study seven factors labeled 4, B, C, D, E, F, and G,
ie. a 2’73, Row M in Table I shows these labels. The experiment would be run by setting
each factor at the level shown and observing the response for a given row. For example,
the first combination has all factors at their “low” or —1 level. In practice, the 16 combina-
tions would be performed in random order in an attempt to balance out any noise due to a
time effect, for example.

The other columns in the matrix that are not labeled represent interactions between the
factors being studied. In a fractional factorial design, each column actually represents a string
of effects. In other words, main (factor) effects are confounded (confused) with one or more
interactions and all interactions are confounded with other interactions. For example, the col-
umn used to estimate the interaction between factors 4 and B, AB, can be obtained by multi-
plying the 4 and B columns resulting in column 5. One can verify that the CE and FG
interactions also appear in this column. Thus, a fractional factorial creates a confounding
or alias relationship among effects.

Ordinary least squares (OLS) analysis is generally used to estimate the location effects
associated with each column. Using i = 1, ..., n to index the n = 2*~” rows of the desigg
matrix and j =0, ...,n— 1 to index the columns, column j then is x; = (xy5, Xy, . . ., Xy)
and the OLS estimate (location effect estimate) for column j is f; = Y i, xyy:/n. When
effects in all columns are of interest (common in these designs), there is no error term avail-
able for traditional hypothesis testing and alternate methods of detecting these location
effects are necessary. Daniel [2, 3] suggested normal probability plotting of the coefficients.
Many other approaches have since been developed. Examples include Box and Meyer [4] and
Lenth [5]. See Hamada and Balakrishnan [6] for an overview and comparison of methods.
All of these methods assume homogeneous variances. As this paper is focused on dispersion
effects, we will not dwell on these methods. In order to properly study dispersion effects,
however, location effects must first be identified. We will assume that some method has
been used to identify location effects considered to be active (nonzero).
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Studying dispersion effects is also important in industrial applications. Knowledge of a
factor’s effect on variation can be used to make a more consistent product or process. In a
2k-P design, a dispersion effect occurs when the variance of the response is different at
the low level (—1) of a factor than at its high level (+1). Let the true response in row i
be Y=Y T x,B+& Var(e)=0? Define o2 =(2/m)Y(0?|xy=+1) and
o = (2/n)t,(af | x4 = —1). Then a dispersion effect occurs if 62, # o%_. Informally,
plots of residuals from the fitted location model against the levels of each factor can be
used to subjectively assess any difference in variance. Box and Meyer [7] and
Montgomery [8] are among those who have developed more formal methods for studying
dispersion (variance) effects in addition to location (mean) effects in these designs.
Bergman and Hynén [9] and McGrath and Lin [10] showed that the traditional F test is
appropriate to test for a dispersion effect in a design column of a 2*~? experiment under a
specific condition. This condition results in all residuals at the +1 level of a column being
uncorrelated with all residuals at the —1 level of the same column, although residuals are
still correlated within the +1 and —1 levels. Under the assumption of normally and indepen-
dently distributed errors, the +1 residuals are independent of the —1 residuals. Thus the ratio
of the sample variances at the +1 and —1 levels of the column to be tested can be compared
to an F distribution. However, it is well known that this test is very sensitive to the normality
assumption. Hence the motivation for a non-parametric dispersion test for unreplicated 27
designs.

Many have used nonparametric approaches to study location effects in factorial designs.
The Kruskal-Wallis and Friedman tests are rank tests used for detecting location effects in
one-factor and two-factor designs respectively. Groggel and Skillings [11] developed a loca-
tion effect test for multifactor designs. We have not found any work in the literature that uses
a nonparametric approach to study dispersion in unreplicated fractional factorial designs.
This idea is apparently new.

This paper is organized as follows. In Section 2 we develop a nonparametric dispersion test
designed specifically for 247 factorial designs. The distribution of the test statistic is given
and large sample approximations using the normal and beta distributions are discussed. A
simple example of the test is then given. In Section 3, simulations are used to compare
this test to the aforementioned F test. In addition, the new test is compared to the nonpara-
metric tests of Mood [12], Ansari~Bradley [13], Siegel-Tukey [14}, Klotz [15], Conover [16]
and Pan [17]. Here it is shown that the proposed test performs well compared to all of these
existing tests. Section 4 provides application of the new test to two examples from the litera-
ture. Finally, a summary is provided in Section 5.

2 A NONPARAMETRIC DISPERSION TEST

By selecting a column x, to test for a dispersion effect, we can form n/2 pairs of columns
(%, X7) such that xyx; = x4 Vi. The OLS estimates associated with each pair of these col-
umns, (B;, B;) will be referred to as “alias pairs” based on I = x,. (See Appendix A for a
brief overview of this concept or Box et al. [1, pages 374-385] for a thorough discussion.)
McGrath and Lin [10] showed that in order to have the residuals at the +1 level of a column
uncorrelated with the residuals at the —1 level of the same column, it is necessary to adapt
the assumed “true” location model. The adapted model must include exactly the following
terms: all active location effects, the location effect of the dispersion column to be tested, and
all of their aliases. The effects that are not in this model can be grouped into g alias pairs
B".B)).f =1,...,8 Here, B and B are the OLS estimates associated with columns
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% and x;. McGrath and Lin [10] showed that Bergman and Hynén’s Dy statistic is a func-

tion of these alias pairs,

Z}:l (ﬁ(jf) + ﬁ}f, )2
E}=l(ﬁ}n - ﬁ}f) )2
This statistic has an F distribution with g degrees of freedom in both the numerator and
denominator.

It is well known that this test is quite sensitive to the normality assumption. To make this a
non-parametric test, we first let k}/) and RY be the ranks of ﬂjm and g respectively with
the ranks being assigned among all 2¢g B;s that are not in the model. We could then substitute
R}n for ﬂjm in (1). However, when using ranks, the numerator and denominator are perfectly
negatively correlated because their sum is a fixed constant (twice the sum of squares of the
positive integers less than or equal to 2g). Hence, we will use the denominator as the test
statistic, the sum of squared differences in ranks (SSDR). Then small values of SSDR
imply 0%_ < 67, and large values imply 63_ > 63,. Thus, by studying the differences in
ranks within alias pairs we can perform a two-sided dispersion test. If we let
Dy = R — &), then

DBH =F= (1)

SSDR = i(ﬁ}n - iejsﬂ)Z = 28:1)}. )
J=1 =1

The distribution of SSDR is rather complicated. However, it is straightforward to simulate
it by sampling permutations of the integers 1, ..., 2 g. Table II shows critical values of SSDR

TABLE Il Critical Values of SSDR.

Nominal significance levels
g 0.005 0.01 0.025 0.05 095 0.975 0.990 0.995
4 NA 4 10 12 80 82 84 NA
5 5 13 19 29 151 155 159 163
11 17 21 31 153 157 161 165
6 24 30 42 54 250 260 270 274
26 32 4 56 252 262 272 276
7 45 57 77 97 387 405 421 429
47 59 79 99 389 407 423 431
8 80 98 127 158 568 603 638 660
81 99 128 159 569 604 639 661
9 129 155 197 239 779 819 857 879
131 157 199 241 781 821 859 881
10 190 228 288 344 1048 1102 1156 1188
192 230 290 346 1050 1104 1158 1190
11 279 329 405 481 1369 1439 1513 1557
281 331 407 483 1371 1441 1515 1559
12 388 448 550 646 1746 1834 1928 1982
390 450 552 648 1748 1836 1930 1984
13 529 607 731 845 2189 2301 2421 2497
531 609 733 847 2191 2303 2423 2499
14 692 790 940 1078 2700 2836 2978 3070
15 879 999 1187 1359 3285 3451 3629 3741
16 1128 1268 1486 1684 3944 4136 4346 4482
17 1397 1561 1819 2047 4685 4907 5157 5319
18 1718 1906 2208 2468 5504 5768 6052 6230
19 2087 2297 2645 2955 6425 6733 7059 7281

20 2504 2750 3142 3498 7432 7782 8168 8422
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forg =4, ..., 20 based on 200,000 simulations for each value of g. Note that while SSDR can
be calculated for g = 2 or 3, its discreteness results in too few possible values to be used as a
practical test statistic. For g < 13, two SSDR values are given. The top number is associated with
a significance level less than nominal and the bottom is associated with a value greater than nom-
inal. For g > 13 only a single value is needed as all are very close to the specified nominal.

The expected value of SSDR can be found as follows. The range of Dy is[1, 2, ..., 2g — 1.
For Dy = 1, there are 2g — 1 possible values of nﬁn(W,ﬁ](,n), ie 1,2,...,2g—1. For
Dy = 2, there are 2g — 2 possible values ofmin(ft}’),itul) ,ie 1,2,...,2g — 2. In general,
Dy =i has 2g—i possible values of min(R", ‘I, ), ie 1,2,...,2g—i The pair
(min(R}n ,RY), Dy) fully defines the alias pairs’ rankings. There are (22‘) = g(2g — 1) possible
pairs of . Thus, P(Dy = i) = P(D} =) = g - i)/g2g — 1), i=1,2,...,2g — 1.
From this it follows that E(D}) =Y %' (2g —)/g(2g — 1) = g(2g + 1)/3. Then
E(SSDR) = E(z}=l D}) and

E(SSDR) = EZE?-Q 6)

In a similar manner, it can be shown that Var(D}) = g(g — 1)2g + 1)(14g + 9)/45.
However, the Dy are not independent. For g = 2 and g = 3, all possible rankings were deter-
mined leading to the exact joint distribution of the Dy. In addition, simulations of SSDR for
g=4,...,20 were used. Based on these exact and simulated distributions the following
covariance and correlation were empirically derived: Cov(D?, D} = —g(2g + 1X(4g + 3)/45
and Corr(D}, D/z,) = —(4g + 3)/[(g — 1)(14g + 9)]. Finally, we have

Var(SSDR) = 2g%(g - 1)(2fs+ 1)(5g +3) @

As SSDR is a sum, there is a central limit effect and a normal approximation is reasonable
for large g. Given g and the above formulas, we can obtain critical values using E(SSDR) +
Z,/2(Var(SSDR))"/ where a = the specified P (Type I error) and Z,; is the appropriate stan-
dard normal quantile. (Although SSDR is discrete, not much is gained by a continuity correc-
tion as the values of SSDR are quite large for large g.) However, the distribution of SSDR is
light-tailed. For moderately large g, say 20 < g < 30, a symmetric beta distribution provides
a better approximation than the normal. This is intuitive as the beta distribution has a finite

range, as does SSDR. A symmetric beta distribution has a single shape parameter, say b. Letting
3

B=————__SSDR,

28%(2g +1)

it is shown in Appendix B that

. _1( 58%Q2g+1) g—1
B~ Beta(b,b) where b_2(m—__—n 1)~ 3 for large g.
In this paper we will study the most common design sizes, i.e. n = 16 and n = 32, where
these approximations are not necessary due to Table II. They are provided for use with larger
designs." Note that the SSDR statistic, along with other nonparametric statistics discussed
later, assume the response is continuous. So while, theoretically, there are no ties among

As Table I includes values of g up to 20, even some 64 run designs can be studied from the table. For example, it
is possible that when n = 64, g = 20 with as few as 11 (=17%) active location effects




704 R. N. MCGRATH AND D.K. J. LIN

the responses (or residuals or estimates), ties do occur relatively often in practice. Ties will be
addressed using an example in Section 4.

As an example of calculating SSDR, we study data originally analyzed by Davies [18] and
subsequently by Bergman and Hynén [9]. The effect of five factors on the quality of a
dyestuff was studied in an unreplicated 25-! design. The five factors were temperature
(4), starting material (B), reduction pressure (C), oven drying pressure (D), and vacuum
leak (E). Table I shows the design matrix and responses where the y, column contains the
responses and the D row labels the factors and the two-factor interactions. The regression
coefficients (OLS estimates) are shown below. As there are no degrees of freedom for
error, we can not calculate standard errors to accompany these point estimates.

Intercept A B C D AB AC AD
217.9688 0.21875 —3.78125 7.03125 33.34375 8.34375 1.53125 2.59375
BC BD CcD DE CE BE AE E
4.15625 -1.78125 7.15625 0.03125 2.34375 ~3.84375 1.15625 -1.96875

Inspection of these coefficients shows that D has a large impact on location, i.e. the mean
dyestuff quality. This agrees with the results using Lenth’s [5] method and the findings of
Davies [18] and Bergman and Hynén [9] that the only location effect is D. Bergman and
Hynén also found a dispersion effect due to E. So while each of the columns 1-15 may
be tested for a dispersion effect, we will calculate SSDR for column 15 (SSDR;) for illustra-
tive purposes. To ensure uncorrelated residuals between the two levels of E, we adapt the
model with the overall mean and f;, to also include Sz and Bz because (Bp, Bpg) is an
alias pair for I = E.

Pi = 217.9688 + 33.34375x;p — 1.96875x;z + 0.03125x,pz.

To calculate SSDRg, we use the coefficients that are not included in this model. These 12 coef-
ficients are ranked from 1 to 12 in increasing order. These rankings are BE=1, B=2, BD =3,
A=4,AE=5,4C=6,CE=7,AD=8,BC=9,C=10, CD=11, AB = 12. These columns
fall into g = 6 alias pairs: 4:4E, B:BE, C:CE, AB:CD, AC:BD, AD:BC. Notice that the product
of the two columns in each pair results in column E. From (2) we see that SSDR; is then the
sum of the difference in the ranks within each pair, i.e.,

SSDRg = (4 =5 + (2 — 1) + (10 = 7)* + (12 = 11)* + (6 — 3)* + (8 — 9)? = 22.

(Calculation of SSDR for the other columns can be done in the same straightforward manner.)
From Table II, with g = 6, we see that SSDR; leads to a two-sided p-value < 0.01. In fact,
from the simulated reference distribution (available upon request from the first author), we
have a p-value of 0.007. This obviously agrees quite well with Bergman and Hynén’s finding
for column E of F=11.51 and p-value =0.009 based on (1). However, SSDR and the F test
will not always provide similar conclusions. This is shown in the next section where we com-
pare SSDR to the F and several other tests, and also in Section 4 where we study the other
columns from this example.

3 COMPARISON OF DIFFERENT METHODS

We compare SSDR to six other dispersion tests. All of these tests are based on comparing two
samples: the residuals from rows x;; = +1 and x;; = —1 respectively. To describe the other
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tests, we first define some notation. Let P = {i: x;; = +1} where x, is the column being
tested for dispersion. Let ¢; be the residual from observation i from the adapted model
that includes all location effects, the location effect of the column being tested for dispersion,
and their aliases, and let 7; be the rank of this residual among all » residuals. All of the other
nonparametric tests to be studied are general two sample tests in that they allow unequal sam-
ple sizes. They do, however, assume independent observations. When studying residuals
from an n = 2*~7 design, we have equal sample sizes (n/2) but will not have independent
residuals. Thus, other nonparametric tests violate this assumption while SSDR is designed
specifically for dispersion effect testing from 2*” designs. We might expect that the
normality-based tests will outperform SSDR (and all other nonparametric tests) under the
normality assumption.

Numerous simulations were performed to compare these dispersion tests. For each case
studied, 10,000 data sets were simulated. Most of these were performed with n = 16. Four
different general comparisons were made. The power and P (Type I error) of dispersion
tests were studied under the normality assumption in three general scenarios: power with
no location effects, P (Type I error) with one or more active location effects, and P (Type I
error) with two active location effects undetected in the location model. Finally, each test was
compared based on its ability to hold a specified P (Type I error) under different (non-
normal) distributional assumptions. For a fair comparison among tests, the adapted model
(see Section 2) was used.

Mood [12] apparently was one of the first to develop a nonparametric dispersion test. In
our notation, the test statistic is J_,.p(; — n/2)’. Ansari and Bradley [13] used the statistic
2_icp - Siegel and Tukey [14] developed a dispersion test that is a variation of the Wilcoxon
rank sum test, for location differences. In the Siegel-Tukey test, the smallest ranks are
assigned alternately between the largest and smallest observations. For example, if » = 8
observations have been sorted from smallest to largest, the ranks assigned would be
1,4,5,8,7,6, 2, 3. Denoting the rank of residual i using this method as #;, the test statistic
is then 3”,.p . Klotz [15] modified Mood’s statistic to be Y",cp[®™'(z:/(n + 1))* where
@[] is the cumulative standard normal distribution evaluated at y. A squared ranks test
(see, for example, Conover [16]) uses the statistic Y., 7?. We will compare SSDR to all
of the above.

Fligner and Killeen [19] developed analogs of some of the above tests. More recently, Hall
and Padmanabhan [20] used a bootstrapping approach to the problem. Pan [17] modified the
popular test of Levene [21] and compared it to the Fligner and Killeen and Hall and
Padmanabhan tests. Therefore, of the more recent tests, we will compare SSDR to Pan’s test.

3.1 No Location Effects, Normal Errors

We first study the Type I error rate and power of the test for dispersion effects in the case of
no location effects and normally distributed errors. With #» = 16 and no location effects, the
adapted model consists solely of the overall mean and the location effect of the column to be
tested for dispersion. This leads to 14 effects left out of the model, or g = 7 alias pairs.
Table HI shows the results for various magnitudes of dispersion. Here, A = af, + /03_ desig-
nates the dispersion effect magnitude with A = 1 being the null case. The dispersion effect
was created by generating 16 standard normal variates and then multiplying half of these
(where x;g = +1) by A!/ 2 As expected, Table III shows the standard F test holds the nominal
value of o and has the best power under these conditions. SSDR and the tests of Ansari—
Bradley, Siegel-Tukey and Pan all hold the nominal « reasonably well. Of these tests,
Pan’s generally has the best power followed by SSDR. The squared ranks test and the tests
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TABLE Il Power Under Normality Assumption (n =16, g=7).

A F SSDR Mood Klotz Ansari-Bradley  Siegel-Tukey  Squared Ranks Pan

«=0.01
¥ 00101 00136 00141 00159 0.0080 0.0086 0.0102 0.0087
22 01623 01062 01144  0.1300 0.0718 0.0837 0.0962 0.1125
32 05130 03221 02944 03294 0.1961 0.2227 0.2754 0.3665
42 07772 05312 04533 04977 0.3227 0.3563 0.4489 0.5977
51 09055 06778 05688  0.6098 0.4236 0.4598 0.5727 0.7561
a=0.05
12 00502 00529 00748 0.0720 0.0533 0.0632 0.0634 0.0429
22 03978 03063 03386 ' 03491 0.2575 0.2790 0.3461 0.3155
32 07776 06192 06233 0.6422 0.5050 0.5315 0.6404 0.6596
42 09294 07931 07781  0.7951 0.6642 0.6828 0.8012 0.8473
$* 09754 08850 0.8627 0.879%4 0.7626 0.7785 0.8819 0.9336
a=0.10
¥ 00988 01046 0.1321 0.1373 0.0863 0.0976 0.1217 0.0871
22 05341 04384 04638 04936 0.3400 0.3595 0.4760 0.4561
32 08644 07432 07403 07717 0.6047 0.6259 0.7582 0.7806
4 09601 0.8806 08648 0.8904 0.7481 0.7635 0.8843 0.9215
52 09882 09411 09257 09386 0.8352 0.8474 0.9392 0.9693

of Mood and Klotz have inflated true o values. (With nominal & = 0.10, the standard error is
approximately 0.003, for example.)

3.2 One or More Location Effects, Normal Errors

We next estimate the Type I error rate assuming that one or more location effects are present
under the normality assumption. Here we use n = 32 to more fully study the impact of many
location effects. Recall that for each location effect included in the “true” model we must add
its alias based on I = xy, thus reducing g. Figure 1 plots the estimates of the true « for nom-
inal a=0.05. (Appendix C shows estimates of the true a for nominal a« = 0.01,
0.05, and 0.10.) Only SSDR and F hold the specified value of a. The other tests are severely
impacted by the independence assumption as g decreases with respect to 7. So in general, the
only viable tests under the normality assumption are SSDR and F,

3.3 Two Undetected Location Effects, Normal Errors

Next we study the Type I error rate in the case where there are two active location effects that
are not identified and hence mistakenly left out of the model. McGrath and Lin [22] showed
that these unidentified location effects create an expected difference between s2, and s2_, the
sample variance of the residuals where x;; = +1 and x;s = —1 respectively, leading to pos-
sible detection of a spurious dispersion effect. As in Section 3.1, we assume normality with
n =16 and g = 7. Several combinations of location effect magnitudes (from 0.5¢ to 20)
were simulated assuming no dispersion effects. Figure 2 show the results (see Appendix D
for details). All residual-based nonparametric tests have poor performance. As the magnitude
of the unidentified effects increases, the P (Type I error) greatly increases. The performance
of F is also poor but not as much so. SSDR, while having a slightly inflated P (Type I error)
does much better than all of the others. Thus, SSDR is the only test of those studied that pro-
vides reasonable protection against identifying spurious dispersion effects caused by a pair of
unidentified location effects. This is a very valuable property as will be seen in Section 4.
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P(Tyoe | Error)

FIGURE 1 P (Type I Error), Normal Distribution (n = 32)

So under the normality assumption, the common F test (based on the adapted model) is
preferred if all location effects are identified. However, it is not uncommon that one or
more active location effects remain undetected in unreplicated fractional factorial designs.
If two or more location effects are left unidentified, then the F test can be grossly misleading.
So even though SSDR is a nonparametric test, it is preferred over a test correctly assuming
normality in some situations. Additionally, the F test is quite sensitive to the normality
assumption. So our next discussion is the robustness of all tests with respect to non-normal
distributions. '

3.4 Non-normal Distributions

Along with the normal distribution, four additional error distributions were examined; uni-
form(0, 1), beta(1,2), #5), and exponential(1). These were initially studied with n = 16,
g=17, and a = 0.01,0.05 and 0.10. Of the symmetric distributions, the ¢ distribution is
heavy-tailed while the uniform may be considered light-tailed due to its finite range. The
beta distribution studied is slightly skewed and light-tailed. The exponential distribution is
asymmetric (positively skewed). Table IV shows the results.

For the uniform distribution, the SSDR, F, and Pan tests have substantially conservative
P (Type I error)s. The Mood and Klotz tests have inflated (liberal) P (Type I error)s but
the Ansari-Bradley, Siegel-Tukey, and squared ranks tests hold « reasonably well. For the
beta distribution, again the SSDR, F, and Pan tests are conservative, but only slightly so.
The Mood and Klotz tests have quite liberal P (Type I error)s. The Ansari-Bradley,
Siegel-Tukey, and squared ranks tests seem to hold « at «=0.01 and 0.05 but are liberal
for & =0.10. For the # distribution, all tests except Pan, Ansari-Bradley, and Siegel-Tukey
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FIGURE 2 Dispersion Effect P (Type 1 Error) (nominal = .05) with Two Unidentified Location Effects

have unacceptably high P (Type I error)s. So for a symmetric distribution, the Pan, Ansari—
Bradley and Siegel-Tukey tests appear to be the most robust to distributional assumptions
when there are no location effects.

To test performance when location effects are present (a more realistic situation), we let
g = 5 with n = 16. This combination can occur when there are between two and five active
location effects. The results are shown in the bottom of Table IV, Here we see that SSDR out-
performs all others. For the normal, uniform, beta, and ¢ distributions, SSDR holds « better
than the other tests with few exceptions.

For the exponential distribution, all tests performed poorly for both g =5 and g = 7.
Other skewed distributions were studied and the results (not shown) were also poor. But
the simulations were performed assuming that location effects were identified and removed
correctly. With a heavily skewed distribution, it is quite likely that extreme values will
occur and actually make one or more location effects appear active. It is conjectured that
if these spurious location effects were removed, the dispersion effect test results may improve.
As is well-known, a proper transformation may be helpful to bring the error distribution clo-
ser to normality. Even if the errors are not normally distributed, tests will behave better if
based on a reasonably symmetric distribution (e.g. the beta distribution tested here) as
opposed to a heavily skewed one.

So the simulations have shown that no dispersion test studied is truly “distribution free” in
2k-P designs as none is able to hold its P (Type I error) for all non-normal distributions.
Additionally, unlike location effect estimates in fractional factorial designs, dispersion effect
estimates are not independent. However, it seems that SSDR is the most robust dispersion test
for these designs. It holds & under more conditions and protects against spurious dispersion
effects caused by undetected location effects far better than any other test. We will demon-
strate these properties with two examples from the literature.
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TABLE IV P (Type 1 Error), n=16.

Ansari-  Siegel-  Squared
o Distribution F SSDR Mood Klotz Bradley Tukey ranks Pan

Case: g=7
0.01  Normal 0.0107 0.0087 0.0154  0.0156 0.0082 0.0097 0.0089 0.0082
Uniform 0.0018 0.0026 0.0160 0.0163 0.0096 0.0112 0.0102 0.0042
Beta 0.0080 0.0089 0.0288  0.0287 0.0136 0.0159 0.0168 0.0100
«5) 0.0345 0.0252 0.0189  0.0176 0.0102 0.0122 0.0136 0.0102
Exponential  0.0957 0.0581  0.0775  0.0646 0.0471 0.0561 0.0670 0.0289
0.05 Normal 0.0469  0.0498 0.0648  0.0722 0.0507 0.0618 0.0635 0.0405
Uniform 0.0124 00163 0.0696 0.0743 0.0575 0.0690 0.0615 0.0276
Beta 00392 0.0430 0.1075 0.1127 0.0849 0.0966 0.0900 0.0465
«5) 0.1121 00995 0.0710 0.0756 0.0565 0.0660 0.0727 0.0552
Exponential  0.2214  0.1805 0.2397 0.2349 0.1989 0.2145 0.2081 0.0936
0.10  Normal 0.0981 0.0959 0.1330 0.1365 0.0841 0.0963 0.1184 0.0844
Uniform 0.0326 0.0415 0.1332  0.1312 0.0907 0.1015 0.1162 0.0588
Beta 0.0829 0.0872 0.1887 0.1883 0.1299 0.1406 0.1569 0.0871
«5) 0.1872  0.1757 0.1379  0.1477 0.0872 0.0978 0.1313 0.1057
Exponential  0.3085 0.2796  0.3605  0.3543 0.2668 0.2810 0.3049 0.1540
Case: g=5
001  Normal 0.0094 00104 0.0350 0.0354 0.0212 0.0222 0.0248 0.0318
Uniform 0.0059 0.0063 0.0382 0.0383 0.0264 0.0277 0.0281 0.0297
Beta 0.0097 0.0100 0.0371 0.0374 0.0234 0.0254 0.0278 . 0.0321
«5) 0.0229 00161 0.0428  0.0445 0.0271 0.0296 0.0330 0.0469
Exponential  0.0595  0.0300 0.0731  0.0729 0.0478 0.0552 0.0647 0.0725
0.05  Normal 0.0459 0.0473 0.1123  0.1189 0.0876 0.1016 0.1096 0.0968
Uniform 0.0293  0.0310 0.1136 0.1186 0.0930 0.1037 0.1090 0.0872
Beta$ 0.0447 00481 01222 0.1279 0.0929 0.1060 0.1158 0.0946
«5) 0.0924 00745 0.1348  0.1457 0.1017 0.1140 0.1353 0.1330
Exponential  0.1595 0.1096 02064 02186 0.1599 0.1771 0.1043 0.1820
0.10  Normal 0.0974  0.0967 0.1882  0.2078 0.1248 0.1349 0.1828 0.1674
Uniform 0.0605 00650 0.1798  0.1875 0.1300 0.1392 0.1702 0.1429
Beta 0.0882 00945 0.1979 02121 0.1344 0.1436 0.1841 0.1594
«5) 0.1633  0.1391  0.2189  0.2381 0.1464 0.1804 0.2156 0.2064

Exponential 02478  0.1894 02980  0.3187 0.2162 0.2297 0.2906 0.2681

4 EXAMPLES

In the example from Section 2, we tested for a dispersion effect in column E only. We now
discuss testing for dispersion effects in all of the other columns using the F test and SSDR.
Table V shows the statistics and p-values for each. The F test results show one highly sig-
nificant dispersion effect (E), and two mildly significant effects, D and DE. The SSDR results
show E as being highly significant but two different mildly significant effects (C and AE).
The interpretation here is not clear. The simulations of Section 3 showed that non-normal
distributions, unidentified location effects, or other dispersion effects can create spurious dis-
persion effects. Thus, from a practical view, one might only consider dispersion effects to be
active if the p-value is quite small. In this example we would conclude that only factor Ehas a
dispersion effect. »

We now provide an example where the SSDR test is the only one of those studied that does
not incorrectly detect a spurious dispersion effect. The data in this example were originally
analyzed by Montgomery [8] and subsequently by McGrath and Lin [22]. The data are from
an injection molding experiment where the response to be optimized was shrinkage. The fac-
tors studied were mold temperature (4), screw speed (B), holding time (C), gate size (D),
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TABLE V Dyestuff Dispersion Effect Statistics.

Column g bR s, F p-value SSDR p-value
A 6 391 141 0.361 0.241 250 0.100
B 6 133 376 2.827 0.232 112 0.505
C 6 231 86 0.373 0.255 260 0.049
D 7 100 47 4474 0.066 115 0.151
AB 6 228 148 0.651 0.615 198 0.513
AC 6 115 393 3.417 0.160 54 0.089
AD 6 377 157 0417 0311 234 0.202
BC 6 346 160 0.462 0.370 224 0277
BD 6 124 384 3.100 0.194 74 0.193
cD 6 216 102 0471 0.381 200 0.487
DE 6 86 455 5.292 0.062 74 0.193
CE 6 275 101 0.368 0249 248 0.109
BE 6 148 361 2.441 0.302 82 0.247
AB 6 409 96 0.235 0.102 264 0.034
E 6 43 495 11.513 0.009 22 0.007

cycle time (E), moisture content (F), and holding pressure (G). The design is a 2"~ fractional
factorial, a 1/23 fraction of a 27 design. The factors are labeled in the row marked M and the
responses are in the column marked y), in Table 1. The location effect estimates are shown
below. Due to the complex confounding pattern associated with this design, we have merely
labeled the coefficients by their column numbers.

0 1 2 3 4 5 6 7
272125 6.9375 17.8125 —0.4375 0.6875 5.9375 —0.8125 —2.6875
8 9 10 11 12 13 14 15
-0.9375 -0.0625 -0.0625 0.1875 0.0625 —2.4375 0.1875 0.3125

Based on a normal probability plot, Montgomery [8] found active location effects in col-
umns 1, 2, and 5 (which agrees with Lenth’s procedure). Fitting this model,

Pi = 27.3125 + 6.9375x;; + 17.8125x + 5.9375x;s,

Montgomery identified dispersion effects by calculating In(s3, /s5_) for each column and
producing a normal probability plot. (Here, 53, and s%_ are the sample variances of residuals
for x4 = +1 and x;y = —1 respectively.) Based on this analysis, column 3 was found to have
a dispersion effect with In(s2, /s3_) = In(32.44/2.66) = In(12.20) = 2.50. To make the resi-
duals in the +1 rows of column 3 uncorrelated with the residuals of the —1 rows, we adapt
the model as discussed in Section 2 resulting in

Pi1=27.3125 + 6.9375x, + 17.8125x, — 0.4375x;3 + 5.9375x;5
— 0.08125x;5 — 0.9375x;3 + 0.1875x;;;.

This leaves eight terms out of the model and g = 4. The alias pairs are 4:10, 7:13, 9:14,
and 12:15. Looking at these coefficients, we note that two are tied, namely
By = Byp = —0.0625. We use two methods to address ties. First, we assign the arithmetic
mean of the ranks that would be assigned without ties. Noting there are two coefficients
with lower values than the tied coefficients, we assign rank 3.5 to each. This leads to
SSDR = 31.5 with an approximate p-value of 0.576 (from interpolation of the reference
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distribution). The second approach is to calculate SSDR under all possible rankings. Here,
there are only two possible rankings, (Ry = 3,Rjo =4) and (Ry =4, R;o = 3), but the
method can be extended for three or more tied values or multiple groups of ties. These
rankings result in SSDR values of 34 and 30 with p-values of 0.648 and 0.533 respectively.
The minimum and maximum p-values can be used as liberal and conservative significance
figures. Analysis of other experiments has shown that, in most cases, the mean rank method
is satisfactory as the p-values do not generally change greatly with the other ranking
combinations. Obviously any ranking assignment in this example leads to a conclusion of
no significant dispersion effect in column 3. ‘

The other tests provided the following test statistics for column 3: F=35.75 (p = 0.004),
Pan=28.54 (p < 0.001), Mood = 37.5, Klotz= 0.855, Ansari-Bradley = 53, Siegel-Tukey = 18,
and Conover=1286. The p-values of the nonparametric tests are all <0.01. Thus all
tests but SSDR find a significant dispersion effect in column 3. Recall that two unidentified
location effects create a spurious dispersion effect in their interaction column. SSDR is
relatively insensitive to this spurious effect while all other tests studied have a relatively
high probability of incorrectly detecting this effect (see Fig. 2). Of the effects not
identified by Montgomery, columns 7 and 13 are by far the largest. A normal probability
plot of the effects (not shown) does provide some evidence that these two effects are indeed
active. Note that these columns form an alias pair. Including these two location effects in
the location model and testing again (g =3) we find that no test shows significance
(very high p-values across the board). This very large change in p-values for all tests
but SSDR indicates that the other tests were greatly affected by the two location effects
left out of the model while SSDR was not. Thus it seems that SSDR provided the most reason-
able conclusion of no dispersion effect in column 3 along with location effects in columns 7
and 13.

5§ SUMMARY

With today’s short product life cycles, product designers and engineers are pressed to develop
high quality products and processes in a short time frame. A consistent product/process will
have little variability. When a factor has a dispersion effect on a response, the level of the
factor can be chosen to reduce the response variation resulting in improved consistency.
Unreplicated 2*~7 designs can play an important role in detecting dispersion effects with a
minimum expenditure of resources.

We compared SSDR to the F test which is sensitive to the normality assumption. We
showed that when two active location effects are mistakenly left out of the model, the
other nonparametric tests and the F test have a high probability of detecting the spurious dis-
persion effect created. SSDR provides protection against this misidentification even under
normality.

As for the other nonparametric tests studied, they assume independent observations. When
residuals from a location model are studied, the residuals are correlated regardless of which
model is fit or what distributional assumptions are made. Accordingly, general nonparametric
dispersion tests do not hold the nominal « = P (Type I error). SSDR, on the other hand is
based on the regression coefficients left out of the model. Under the null hypothesis of no
dispersion, these quantities are uncorrelated regardless of distributional assumptions and
independent under normality. Thus SSDR is a very robust dispersion effect test for unrepli-
cated fractional factorial designs.
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After deriving the distribution of SSDR, it was discovered that SSDR is similar to a statistic
derived by Shirahata [23]. Shirahata’s test was developed as a nonparametric test for an intra-
class correlation coefficient while ours is derived from the common F test.

Finally, we note that there are difficulties in studying dispersion effects from unreplicated
2k=P designs (see Pan [24]). Regardless of distributional assumptions (and unlike location
effect estimates), dispersion effect estimates are not independent of one another. As shown
by McGrath and Lin [25], two dispersion effects actually create a spurious dispersion effect
in their interaction column. They developed a normality-based method that is applicable
when multiple dispersion effects are present. Further research is required to develop a non-
parametric test applicable when multiple dispersion effects are present.
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APPENDIX A - BRIEF OVERVIEW OF ALIASING IN 2*-? DESIGNS

An example 2* design matrix including all interactions is shown below. This is a full factorial.
I A B C AB AC BC ABC

1 -1 -1 -1 1 1 1 -1
1 1 -1 -1 -1 -1 1 1
1 -1 1 -1 -1 1 -1 1
1 1 1 ~1 1 -1 -1 -1
1 -1 -1 1 1 -1 -1 1
1 1 -1 1 ~1 1 -1 -1
1 -1 1 1 -1 -1 1 -1
1 1 1 1 1 1 1 1

Here the J column represents the intercept or overall mean. When a large dispersion effect
exists, the effect is to greatly reduce the impact of half of the observations, resulting in a near
half fraction of the original design. Suppose, instead of the full factorial, a 1/2 fraction, a
2°~! is used by only running the rows where ABC =1 above. This results in the following
design matrix.

I A B C AB AC BC ABC

I -1 -1 -1 -1 1
-1 1 -1 -1 1 -1
-1 -1 1 1 -1 -1

1 1 1 1 1 1

Notice the following equalities: /=ABC, A =BC, B=AC, C=AB. In this paper, these are
the alias pairs we would use to study the dispersion effect in column ABC of the original
design. Although this example used n = 8 in a full factorial, the idea is applicable to any
2%-P design. To study a dispersion effect in, say column D of a 2¥~P design, we find the
alias pairs formed in a 1/2 fraction of the original 2P, a 2¥-?~! where I=D. For a more
thorough discussion of 2*~? designs, see Box ef al. [1, pages 374-385).

[ S
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APPENDIX B

SSDR has a finite range and is roughly symmetric for large g so a scaled symmetric beta
distribution may form a reasonable approximation. If B ~ Beta(b, b) then E(B) =1 /2
and Var(B) = 1/4(2b + 1). To find an appropriate scaling factor, we define W = gB and
match the first two central moments of # and SSDR to solve for a and b. E(W) = a/2 =
E(SSDR) = g*(2g + 1)/3 so a =2g*(2g + 1)/3. Additionally, Var(W) =a?/4(2b+1) =
g*(2g + 1)*/9(2b + 1) = Var(SSDR) = 2g%(g — 1)(2g + 1)X(5g + 3)/45. Solving for b we
have b=1/2((5g%(2g +1)/(2(5g +3)g — 1)) = 1). Thus, W =2g?(2g+ 1)B/3 and
SSDR have equal expected values and variances implying that B = 3SSDR/2g*(2g + 1)~
Beta(b, b). Simulations using 20 < g < 30 have shown the approximation works rather well.
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APPENDIX C
P (Type I Error) Under Normality Assumption, n =32,
Ansari- Siegel-
g F SSDR Mood Kiotz Bradley Tukey Squared ranks Pan
«=0.01
15 0.0093 0.0114 0.0153 0.0153 0.0128 0.0122 0.0107 0.0088
14 0.0117 0.0117 0.0174 0.0183 0.0150 0.0143 0.0141 0.0126
13 0.0103 0.0116 0.0209 0.0225 0.0174 0.0169 0.0164 0.0146
12 0.0104 0.0120 0.0257 0.0281 0.0193 0.0187 0.0196 0.0180
1 0.0091 0.0110 0.0305 0.0336 0.0222 0.0222 0.0229 0.0220
10 0.0103 0.0107 0.0390 0.0432 0.0297 0.0287 0.0324 0.0313
9 0.0114 0.0115 0.0507 0.0570 0.0384 0.0370 0.0414 0.0494
8 0.0119 0.0058 0.0645 0.0742 0.0489 0.0476 0.0556 0.0899
7 0.0113 0.0111 0.0831 0.0961 0.0647 0.0628 0.0728 0.1133
6 0.0102 0.0103 0.1094 0.1302 0.0792 0.0763 0.0954 0.1447
5 0.0095 0.0099 0.1421 0.1704 0.1094 0.1057 0.1273 0.1868
4 0.0124 0.0190 0.2139 0.2530 0.1795 .0.1795 0.1969 0.2642
a=0.05
15 0.0518 0.0555 0.0658 0.0626 0.0588 0.0529 0.0531 0.0436
14 0.0532 0.0519 0.0712 0.0709 0.0652 0.0573 0.0606 0.0492
13 0.0533 0.0498 0.0796 0.0826 0.0684 0.0615 0.0687 0.0583
12 0.0527 0.0516 0.0884 0.0937 0.0788 0.0708 0.0802 0.0709
11 0.0518 0.0509 0.1029 0.1109 0.0854 0.0753 0.0917 0.0823
10 0.0524 0.0505 0.1227 0.1293 0.0996 0.0911 0.1070 0.1039
9 0.0526 0.0535 0.1393 0.1546 0.1178 0.1074 0.1247 0.1338
8 0.0490 0.0410 0.1651 0.1828 0.1360 0.1233 0.1508 0.1922
7 0.0526 0.0545 0.2007 0.2235 0.1638 0.1498 0.1848 0.2277
6 0.0484 0.0466 0.2377 0.2721 0.1884 0.1761 02197 0.2669
5 0.0500 0.0467 0.2980 0.3408 0.2308 0.2133 0.2757 0.3207
4 0.0521 0.0768 0.3705 0.4327 03147 0.2836 0.3448 0.3961
* a=0.10
15 0.1023 0.1080 0.1249 0.1226 0.1129 0.1009 0.1111 0.0884
14 0.1003 0.1012 0.1341 0.1337 0.1052 0.1089 0.1203 0.0985
13 0.1004 0.0998 0.1448 0.1462 0.1091 0.1131 0.1289 0.1107
12 0.0999 0.1018 0.1537 0.1610 0.1189 0.1250 0.1410 0.1248
11 0.1013 0.0988 0.1784 0.1793 0.1455 0.1408 0.1591 0.1459
10 0.1045 0.1017 0.1961 0.2053 0.1473 0.1509 0.1803 0.1711
9 0.1059 0.1037 0.2202 0.2312 0.1655 0.1729 0.2072 0.2056
8 0.1026 0.0929 0.2464 0.2658 0.1890 0.1940 0.2318 0.2729
7 0.1013 0.1055 0.2992 0.3151 0.2243 0.2291 0.2709 0.3096
6 0.1008 0.1046 0.3257 0.3639 0.2471 0.2516 03134 0.3523
5 0.0993 0.0927 0.3874 0.4343 0.2938 0.2988 0.3689 0.4046
4 0.1006 0.1157 0.4640 0.5370 0.3633 0.3633 0.4418 0.4776
APPENDIX D

P (Type I emror) of Spurious Dispersion Effects When Two Location Effects are Unidentified (Nominal = 0.05, 7 = 16).

Location Ansari- Siegel- Squared

effects (in o) F SSDR Mood Kotz Bradley Tukey ranks Pan
0.5, 0.5 0.0485 0.0574 0.0893 0.0859 0.0655 0.0754 0.0622 0.0509
0.5, 1.0 0.0760 0.0646 0.1136 0.1127 0.0825 0.0962 0.1019 0.0727
1.0, 1.0 0.1411 0.0818 0.2099 0.2118 0.1621 0.1841 0.2029 0.1555
1.0, 1.5 0.2023 0.0914 0.3241 0.3214 0.2673 0.2928 0.3224 0.2536
15,15 0.3472 0.1046 0.5885 0.5218 0.4603 0.4910 0.5212 0.4495
15,20 0.4363 0.1086 0.6738 0.6627 0.6179 0.6422 0.6643 0.5938
2.0,2.0 0.6137 0.1131 0.8410 0.8287 0.8030 0.8246 0.8404 0.7891




