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Cumulative probability control charts for geometric and exponential
process characteristics

L. Y. CHANy*, DENNIS K. J. LINz, M. XIE} and T. N. GOH}

A statistical process control chart called the cumulative probability control chart
(CPC-chart) is proposed. The CPC-chart is motivated from two existing statistical
control charts, the cumulative count control chart (CCC-chart) and the cumula-
tive quantity control chart (CQC-chart). The CCC- and CQC-charts are e� ective
in monitoring production processes when the defect rate is low and the traditional
p- and c-charts do not perform well. In a CPC-chart, the cumulative probability
of the geometric or exponential random variable is plotted against the sample
number, and hence the actual cumulative probability is indicated on the chart.
Apart from maintaining all the favourable features of the CCC- and CQC-charts,
the CPC-chart is more ¯exible and it can resolve a technical plotting inconveni-
ence of the CCC- and CQC-charts.

1. Introduction
The traditional statistical process control charts, the p-chart (with control limits

·pp 3
����������������������
·pp…1 ¡ ·pp†=n

p
) and the c-chart (with control limits ·cc 3

���
·cc

p
) are widely used for

monitoring industrial processes where defect occurrences in a sample follow bino-
mial and Poisson distributions, respectively. Despite their wide-spread use, it is
known that these charts have some pitfalls and perform poorly when the defect
rate of the process is low (e.g. Xie and Goh 1992, Xie et al. 1997). This can be
summarized as follows.

. The 3-sigma control limits of these charts are de®ned based on approximat-
ing the binomial and Poisson distributions by the normal distribution, but this
approximation fails when the defect rate of the process is low. Even when the
normal approximation holds, it is only accurate in the central part of the
distribution, and the accuracy at the tails in the 3-sigma regions is usually
poor.

. When the defect rate of the process is low, usually the lower control limits of
the p- and c-charts are negative. Negative control limits are meaningless,
because the number of defects in a sample cannot be negative. Without a
positive lower control limit, it is not possible to detect a downward shift of
the defect rate of the process, that is, an improvement.
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. When the defect rate of the process is low, the upper control limit of the p-
chart is usually < 1=n, and that of the c-chart is usually <1. In this situation,
every single defect becomes a signal of out of control (because the number of
defects takes only non-negative integer values), which is clearly an overreaction
to natural variations in the process.

. The in- or out-of-control decision based on the p- or c-chart depends heavily
on the sample size, regardless of the magnitude of the defect rate. Examples in
Chan (2000, appendix) and Chan et al. (2000: pp. 403±404) show that for the
same data set, for a certain value of the sample size, the occurrence of every
defect is an alarm of out of control, while for a slightly large sample size, none
of the defects indicates that the process is out of control.

Similarly, the np-chart with control limits n·pp 3
��������������������
n·pp…1 ¡ ·pp†

p
and u-chart with

control limits ·uu 3
�������
·uu=l

p
also have these disadvantages. To overcome these disad-

vantages, Calvin (1983), Goh (1987) and Chan et al. (1997) proposed the cumulative
count control chart (CCC-chart) based on the geometric distribution, and Chan et al.
(2000) proposed the cumulative quantity control chart (CQC-chart) based on the
exponential distribution.

In most existing control charts, the variate is plotted against the sample number.
For the p-chart, the variate is the proportion of defective items, while the c-chart
plots the number of defects. For the CCC- and CQC-charts, the variate is the
cumulative length of observation to observe one defect. The objective of this
paper is to enhance the usability the CCC- and CQC-charts by introducing a cumu-
lative probability control chart (CPC-chart) in which the cumulative probability is
plotted against the sample number. This probability chart is constructed using the
cumulative distribution function of the geometric or exponential random variable,
and is more ¯exible and provides a better visual picture for decision making than the
CCC- and CQC-charts. In section 2, the CCC- and CQC-charts are brie¯y reviewed.
In section 3, the cumulative probability chart is introduced. In section 4, technical
aspects of implementation of the CPC-chart are discussed; section 5 is devoted to
average run length analysis. In section 6, examples are given and comparisons are
made among the three charts. This paper is concluded in section 7.

2. The CCC- and CQC-charts
Suppose that the fraction of defective items produced by a binomial process has a

constant value p0…> 0†, and let n be the number of items inspected until a defective
item is observed. It is known (Walpole et al. 1998) that n follows a geometric distri-
bution with expected value E‰nŠ ˆ 1=p0 and cumulative distribution function:

F…n† ˆ 1 ¡ …1 ¡ p0†n …n ˆ 1; 2; . . .†: …1†

To construct a double-limit CCC-chart (Calvin 1983, Goh 1987), the probability of
false alarm, ¬, is ®xed ®rst, and F…n† in (2.1) is set equal to ¬=2, 1 ¡ ¬=2 and 1/2,
which gives respectively the lower control limit (LCL) nL ˆ ln…1 ¡ ¬=2†=ln…1 ¡ p0†,
the upper control limit (UCL) nU ˆ ln…¬=2†=ln…1 ¡ p0† and the centerline (CL)
nC ˆ ln…1=2†=ln…1 ¡ p0†. In a CCC-chart, the number of items inspected, n, is plotted
on the chart when inspection of a sample is completed, or when a defective item is
observed. When a defective item is observed, n is reset to 0. A plotted point corre-
sponding to a defective item appearing below the LCL is an alarm that the fraction
of defective items p of the process may have shifted upward (that is, the process may
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have deteriorated), and a plotted point above the UCL is an indication that p may
have shifted downward (that is, the process may have improved). For a single-limit
CCC-chart, F…n† in (1) is set equal to ¬, giving only the LCL
nL ˆ ln…1 ¡ ¬†=ln…1 ¡ p0†, and occurrence of a defect below the LCL indicates
that p may have shifted upward.

For the case when a Poisson process has a constant rate of occurrence of defects
¶0…> 0† defect(s) per unit quantity of product produced, if Q is the quantity of
product inspected until one defect is observed, it is known (Walpole et al. 1998))
that Q follows an exponential distribution with expected value E‰QŠ ˆ 1=¶0 and
cumulative distribution function:

F…Q† ˆ 1 ¡ e¡¶0Q …Q > 0†: …2†

To construct a double-limit CQC-chart (Chan et al. 2000), the probability of false
alarm, ¬, is ®xed ®rst, and F…Q† in (2.2) is set equal to ¬=2, 1 ¡ ¬=2 and 1/2, which
gives the following LCL, UCL and CL, respectively: QL ˆ ¡ln…1 ¡ ¬=2†=¶0,
QU ˆ ¡ln…¬=2†=¶0, QC ˆ ¡ln…1=2†=¶0. To construct a single-limit CQC-chart,
F…Q† in (2) is set equal to ¬, giving only the LCL QL ˆ ¡ln…1 ¡ ¬†=¶0. In a
CQC-chart, the number of units inspected, Q, is plotted on the chart when inspection
of a sample is completed, or when a defect is observed. When a defect is observed, Q
is reset to 0. Occurrence of a defect below the LCL is an alarm that the rate of
occurrence of defects ¶ of the process may have shifted upward (that is, the process
may have deteriorated), and a plotted point above the UCL is an indication that ¶
may have shifted downward (that is, the process may have improved). A single-limit
CQC-chart is administered in a similar way, except there is no UCL.

The CCC-chart is an alternative to the traditional p-chart and np-chart, and the
CQC-chart is an alternative to the traditional c-chart and u-chart. In the CCC- and
CQC-charts, the plotting of n and Q against the sample number gives a direct and
intuitive interpretation of the state of the process. However, as the process continues,
n or Q will become large and the chart will eventually exceed the boundary of the
plot. To avoid this awkward situation, log n or log Q (with any convenient base, such
as e or 10) instead of n and Q may be plotted. The use of logarithmic scale is
discussed in Xie et al. (1995). However, plotting log n or log Q distorts the original
shape of the charts for n and Q, and makes it di� cult for practitioners to com-
prehend the intuitive meaning of the points plotted. The charts for log n and log Q
rise very sharply when the charts are started, but ¯atten very quickly and hence has a
decreasing accuracy as n and Q increase.

To overcome this technical di� culty of the CCC- and CQC-charts, a new control
chart, namely the cumulative probability control chart (CPC-chart), is proposed. In
a CPC-chart, the cumulative probability is plotted against the sample number. The
sensitivity of a CPC-chart in a region of the control limits can be increased by using a
larger scale. The CPC-chart is standardized, as its vertical axis is scaled to ‰0; 1Š for
any variate. This makes possible to compare several quality characteristics simul-
taneously by plotting their corresponding CPC-charts on the same graph paper (or
computer screen).

3. CPC-chart
The CPC-chart for a variate y is a control chart in which the observed cumulative

probability of y is plotted against the sample number.
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For a binomial process with fraction of defective items p0, if n is the number of
items inspected until one defective item is observed, the cumulative distribution
function F…n† of n is given by (1). In the CPC-chart for this process, y ˆ n and
the observed values of F…y† ˆ F…n† ˆ 1 ¡ …1 ¡ p0†n is plotted against the sample
number. This CPC-chart may be denoted the CPC(C)-chart, as it is the counter-
part of the CCC-chart.

For a Poisson process with rate of occurrence of defects ¶0, if Q is the quantity of
product inspected until one defect is observed, the cumulative distribution function
F…Q† of Q is given by (2). In the CPC-chart for this process, y ˆ Q, and the observed
values of F…y† ˆ F…Q† ˆ 1 ¡ e¡¶0Q is plotted against the sample number. This CPC-
chart may be denoted the CPC(Q)-chart, as it is the counter-part of the CQC-chart.

Given the probability of false alarm ¬, the LCL, UCL and CL of a double-limit
CPC-chart are de®ned as follows:

LCL ˆ ¬=2 …3†

UCL ˆ 1 ¡ ¬=2 …4†

CL ˆ 1=2: …5†

If unequal probabilities of false alarm are set for detecting upward and downward
shifts of the process defect rate, the ¬=2’s in (3) and (4) may be replaced by ¬L and

¬U , respectively, where ¬L ‡ ¬U ˆ ¬. For a single-limit CPC-chart with probability
of false alarm set at ¬, the LCL is de®ned by

LCL ˆ ¬: …6†

Since the LCL, UCL and CL of a CPC-chart de®ned by (3±6) correspond to
those of the equivalent CCC- or CQC-chart, decisions on the process made from the
CPC-chart will be identical to those made from the CCC- or CQC-chart. On a CPC-
chart, the actual cumulative probability is indicated on the vertical axis, while on a
CCC- or CQC-chart, the cumulative count n or cumulative quantity Q is indicated
on the vertical axis.

For any random variable Y , the plotted variate in a CPC-chart is the cumulative
distribution function F…y† of Y , which has a uniform distribution on the interval
‰0; 1Š, no matter what distribution Y has. Thus, all CPC-charts are standardized,
with 0 as the lower boundary and 1 as the upper boundary on the vertical axis. This
makes possible to use the CPC-chart to compare the performance of di� erent quality
characteristics simultaneously. The vertical scale on a CPC-chart is linear, which
makes possible to apply sensitizing rules (Western Electric Company 1956, Balkin
and Lin 1997, Montgomery 2001) to improve the e� ectiveness of decision-making.

4. Implementation issues of the CPC-chart
The rules for plotting a CPC(C)-chart for a geometric random variable Y or a

CPC(Q)-chart for an exponential random variable Y are as follows:

. The cumulative probability F…y† is set to 0 when the chart is started.

. A circled dot `8’ is plotted when inspection of a sample is completed and no
defect is observed in this sample.

. When a defect is observed, a cross ` ’ is plotted on the chart, and F…y† is reset
to 0 immediately.
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The sample size can be determined according to operational convenience. Since a
circled dot `8’ is plotted every time when inspection of a sample is completed, the

process is constantly monitored. The decision rules when a CPC-chart is used are as

follows.

. A cross ` ’ appearing below the LCL is an alarm that indicates that the defect
rate of the process has increased, that is, the process is out of control. In this
case, investigation should be carried out to identify the assignable cause(s) and
corrective action should be taken to bring the process defect rate back to its
previous level. If no assignable causes can be identi®ed, the alarm is considered
a false alarm.

. No conclusion will be made when a circled dot `8’ appears below the LCL.

. The process is regarded as in control when a circled dot `8’ or a cross ` ’

appears on or above the LCL.

. A circled dot `8’ appearing above the UCL is a signal that indicates the

process defect rate may have decreased, that is, the process may have

improved. In this case, investigation should be carried out to ensure that

there is no mistake in data recording, and to identify and retain the assignable

causes that produce such a decrease in the process defect rate. When the pro-

cess has become stable at a lower defect rate, a new control chart will be
constructed with this lower defect rate. If no assignable causes can be identi-

®ed, the signal of improvement may be considered a false signal.

In the plotting of a CPC-chart, a circled dot `8’ may also be plotted immediately

when the cumulative probability F…y† reaches the LCL even if inspection of a sample

has not yet been completed (and no defect is observed), so that a decision of the

process being in control can be made immediately, even before completion of inspec-
tion of the sample. Likewise, a circled dot `8’ may be plotted immediately when the

cumulative probability reaches the UCL even if inspection of a sample has not yet

been completed (and no defect is observed), so that investigation can be carried out

immediately to ®nd out whether the process has actually improved or not.

If the probability of false alarm ¬ is chosen to be small, say 2 0:00135 as in

traditional statistical process control charts, and if the vertical axis of a CPC-chart

has a uniform scale, the LCL will be close to the lower boundary 0 and the UCL will
be close to the upper boundary 1, which makes it di� cult to see whether a point is

outside the control limits or not. However, since the points that are near the control

limits are more crucial for decision making than the points that are far away from

the control limits, a magni®ed linear scale can be used in a vicinity of the control

limits in a CPC-chart for easier visual perception. On the other hand, since the part

of the vertical axis in a vicinity of the CL is obviously in the acceptance region, a

smaller linear scale can be used in this region. An advantage of using a linear scale in
the central part of the chart is that sensitizing rules similar to the Western Electric

Rules (Western Electric Company 1956, Nelson 1984, 1985, Montgomery 2001:

Section 4±3.6)) can be applied to the crosses ` ’ on the chart.

Non-linear scales such as that on a traditional normal probability paper can also

be considered. However, for any distribution of Y , F…y† (when regarded as a random
variable) has a uniform distribution on the interval ‰0; 1Š. Based on this fact, it is

more justi®able to use linear scales rather than nonlinear scales on a CPC-chart.
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5. Average run length analysis
The average run length (ARL) for a type of signal showing up on a control chart

is de®ned as the expected number of points plotted on the chart in order to observe
such a signal. If the probability for a point on the control chart to indicate a signal is
P (which depends on the values of the process parameters), it can be proved math-
ematically that:

ARL ˆ 1

P
…7†

(Wadsworth et al. 1986), Section 7±9.2)). If a control chart has a LCL and an UCL,
there will be a separate ARL for each of these control limits, and there will also be an
overall ARL for both the LCL and UCL.

If the length of inspection required to plot a point on the control chart is a
random variable X with expected value E‰X Š, it is not di� cult to understand intui-
tively that the average length of inspection (ALI) required to observe a signal is
E‰X Š=P ˆ E‰X Š ARL. This result is stated as Proposition A in the appendix, and a
rigorous mathematical proof is provided there.

The ARL’s and the ALI’s of the CCC- and CQC-charts are given in the following
Propositions 5.1 and 5.2.

Proposition 5.1: Suppose a CCC-chart is constructed such that the probabilities of
false alarms for LCL and UCL are ¬L and ¬U when the fraction of defective items is
p0. The ARLs and the ALIs for signals to show up on the chart below the LCL,
above the UCL, and either below the LCL or above the UCL, when the fraction of
defective items is p, are given by:

ARLL ˆ 1

1 ¡ …1 ¡ ¬L†v ; ALIL ˆ 1

p
ARLL

ARLU ˆ 1

¬v
U

; ALIU ˆ 1

p
ARLU ;

ARLL[U ˆ 1

1 ¡ …1 ¡ ¬L†v ‡ ¬v
U

; ALIL[U ˆ 1

p
ARLL[U

respectively, where v ˆ ln…1 ¡ p†=ln…1 ¡ p0†.

Proposition 5.2: Suppose a CQC-chart is constructed such that the probability of
false alarms for LCL and UCL are ¬L and ¬U when the rate of occurrence of defects
is ¶0. The ARLs and ALIs for signals to show up on the chart below the LCL, above
the UCL, and either below the LCL or above the UCL, when the rate of occurrence
of defects is ¶, are given by

ARLL ˆ
1

1 ¡ …1 ¡ ¬L†r ; ALIL ˆ
1

¶
ARLL

ARLU ˆ 1

¬r
U

; ALIU ˆ 1

¶
ARLU

ARLL[U ˆ 1

1 ¡ …1 ¡ ¬L†r ‡ ¬r
U

; ALIL[U ˆ 1

¶ ARLL[U

;

respectively, where r ˆ ¶=¶0.
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Proposition 5.1. follows from (7) and Proposition A in the appendix by substi-
tuting nL ˆ ln…1 ¡ ¬L†=ln…1 ¡ p0† into 1=P ˆ 1=F…nL† ˆ 1=…1 ¡ …1 ¡ p†nL †, sub-

stituting nU ˆ log…¬U†=log…1 ¡ p0† into 1=P ˆ 1=…1 ¡ F…nU†† ˆ 1=…1 ¡ p†nU ,

substituting such nL and nU into 1=P ˆ 1=…F…nL† ‡ 1 ¡ F…nU†† ˆ
1=…1 ¡ …1 ¡ p†nL ‡ …1 ¡ p†nU † (cf. Section 2), and using the fact that the expected

number of items inspected in order to observe a defective item is E‰nŠ ˆ 1=p.

Proposition 5.2 can be proved in a similar way.
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Figure 1a. Average run length plots for the CPC(C)-chart.

Figure 1b. Average length inspected plots for the CPC(C)-chart.



Since decisions resulted from the CPC(C)-chart are the same as those resulting

from the CCC-chart, the CPC(C)-chart and the CCC-chart have identical ARLs and

ALIs. Likewise, the CPC(Q)-chart and the CQC-chart have identical ARLs and

ALIs.
The behaviour of the ARLs and ALIs of these charts will be investigated gra-

phically. In ®gure 1a, the solid lines down from the top are the graphs of ln ARLL
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Figure 2a. Average run length plots for the CPC(Q)-chart.

Figure 2b. Average length inspected plots for the CPC(Q)-chart.



against ev for the CPC(C)- or CCC-chart at ¬L ˆ 0:0005; 0:00135; 0:005; 0:05, the
dashed lines down from the top are the graphs of ln ARLU against ev for the CPC(C)-
or CCC-chart at ¬U ˆ 0:0005; 0:00135; 0:005; 0:05, and the dotted lines down from
the top are the graphs of ln ARLL[U against ev for the CPC(C)- or CCC-chart at

¬L ˆ ¬U ˆ 0:0005; 0:00135; 0:005; 0:05, where v ˆ ln…1 ¡ p†=ln…1 ¡ p0†. Plotting the
graphs against ev instead of v exaggerates the variations of the graphs at small values
of v. Figure 1b shows the corresponding graphs of ln ALIL, ln ALIU and ln ALIL[U

when p0 ˆ 0:01. Figure 1a shows that the graphs of ln ARLU ’s are steeper than those
of ln ARLL’s in a vicinity of ev ˆ 2:718 . . . (or v ˆ 1), which means that in a vicinity
of p0, the CPC(C)- or CCC-chart is more sensitive in detecting process improvement
than process deterioration. When ev is close to 1 (or v is close to 0), the graphs of
ln ARLLs are extremely steep, which means that false signals indicating process
deterioration rarely show up on the CPC(C)- or CCC-chart when p is close to 0.
In ®gure 1b, the graphs of ln ALIs have the same pattern as those of ln ARLs in
®gure 1a except in a small neighbourhood of ev ˆ 1 (or v ˆ 0). When ev approaches 1
(or v approaches 0), both the dashed lines and dotted lines in ®gure 1b approaches
in®nity, which means that when p approaches 0 , although both ARLU and ARLL[U

are small (as shown in ®gure 1a), ALIU and ALIL[U are large owing to the fact that a
large number of items have to be inspected in order to observe a defective one.

Figure 2a shows graphs of ln ARLL, ln ARLU and ln ARLL[U against r for the
CPC(Q)- or CQC-chart at ¬L ˆ 0:0005, 0.00135, 0.005, 0.05 and ¬U ˆ 0:0005,
0.00135; 0:005; 0:05; where r ˆ ¶=¶0. Figure 2b are those of ln ALIL, ln ALIU and
ln ALIL[U against r for the CPC(Q)- or CQC-chart at ¬L ˆ 0:0005, 0.00135, 0.005,
0.05, ¬U ˆ 0:0005, 0.00135, 0.005, 0.05, and r0 ˆ 0:01. These graphs can be inter-
preted similarly to those of the CPC(C)- or CCC-chart.

6. Examples
6.1. Example 1

In the manufacture of integrated circuit chips, the die is connected to the lead-
frame by gold wires using a high-speed bonding machine. In the plant of a multi-
national manufacturer, this is a high-quality process with fraction of defective joints
p0 ˆ 0:0001 (one defective joint per 10 000 joints) when the process in normal con-
dition. A special type of chip with 100 bondings in each chip is being produced. Each
chip is inspected automatically after the bonding process, and the number of defec-
tive bondings on the chip is recorded. In applying the CPC(C)-chart to monitor the
process, a chip is considered as a sample, so that the size of each sample is 100
(bondings). A CPC(C)-chart is constructed with the probability of false alarm set
at ¬ ˆ 2 0:00135 ˆ 0:0027 at p0 ˆ 0:0001. From (1), the cumulative distribution
function of the CPC(C)-chart is F…n† ˆ 1 ¡ 0:9999n, and the LCL, UCL and CL are

¬=2 ˆ 0:00135, 1 ¡ ¬=2 ˆ 0:99865 and 1/2, respectively. On the other hand, it
follows from Section 2 that the LCL, UCL and CL of the CCC-chart are

nL ˆ ln …1 ¡ 0:0027=2†=ln …1 ¡ 0:0001† ˆ 13:5084;

nU ˆ ln …0:0027=2†=ln …1 ¡ 0:0001† ˆ 66073:2

and

nC ˆ ln …1=2†=ln …1 ¡ 0:0001† ˆ 6931:5;

respectively.
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Some observed data are shown in table 1, where `i.c.’ and `im.’ stand for `in-
control’ and `improved’, respectively. The number immediately to the right of an
asterisk `*’ is the number of items inspected since the last resetting of n to 0 (which
happens when a defect is observed but the process is still deemed to be in control).
The CPC(C)-chart is shown in ®gure 3a, and the CCC-chart with log10n as the
vertical axis is shown in ®gure 3b. In ®gure 3a, the range ‰0; 1Š of the vertical axis
is divided into segments with di� erent scales, with the segments [0.00130, 0.00140],
[0.10, 0.90] and [0.99860, 0.99870] covering the LCL, CL and UCL, respectively. In
®gure 3b, the LCL, CL and UCL are log1013:5084 ˆ 1:13061, log106931:5 ˆ 3:84083
and log1066073:2 ˆ 4:82003, respectively.

On the CPC(C)-chart, the cross ` ’ at sample number 1 is clearly shown to be
above the LCL (ˆ 0.00135), which does not indicate that the process is out-of-con-
trol. On the corresponding CCC-chart, however, this point is very close to the LCL
which makes it much harder to see that it is above the LCL. When inspection of
sample number 662 was completed, the cumulative number of items inspected was
66172 > UCL, and the circled dot `8’ corresponding to F…n† ˆ 0:998663 on the
CPC(C)-chart is clearly shown to be beyond the UCL, which is an indication that
the process may have improved. On the CCC-chart, this point visually overlaps the
UCL, and it is very di� cult to see that it is beyond the UCL.

6.2. Example 2
The manufacture of high-quality optical cable is a stringent process, but imper-

fections on the product still occur occasionally. The defect rate of the process,
however, is very low, and in a certain plant it is maintained at four ¯aws per
10,000 metres of cable produced which is a standard established by the manufac-
turer. Regarding the occurrence of ¯aws as a Poisson process, the defect rate of the
process is ¶0 ˆ 0:0004 (¯aw/metre). To monitor the process, samples of size 50
(metres) are inspected continuously, and the probability of false alarm is set at

¬ ˆ 0:05. For the CPC(Q)-chart, from (2) the cumulative distribution function is
given by F …Q† ˆ 1 ¡ e¡0:0004Q, and the CLC, UCL and CL are ¬=2 ˆ 0:025, 1/2 and
1 ¡ ¬=2 ˆ 0:975, respectively. On the other hand, for the CQC-chart, it follows from
Section 2 that the LCL, UCL and CL are QL ˆ ¡ln…1 ¡ 0:05=2†=0:0004 ˆ 63:2945,
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Cumulative

Sample items inspected Defect

number n log10 n F…n† observed Indication

1 14 LCL 1.146 0:001399 ¬=2 yes i.c.

1 *14 LCL 1.146 0:001399 ¬=2 no i.c.

1 72 1.857 0.007175 no i.c.
..
. ..

. ..
. ..

. ..
. ..

.

10 972 2.988 0.092630 no i.c.
..
. ..

. ..
. ..

. ..
. ..

.

661 66072 4.820 0.998650 no i.c.

662 66172 > UCL 4.821 0:998663 > 1 ¡ ¬=2 no im.

663 66245 LCL 4.821 0:998673 ¬=2 yes i.c.

663 *14 LCL 1.146 0:001399 ¬=2 no i.c.
..
. ..

. ..
. ..

. ..
. ..

.

Table 1. Inspection results for a binomial process.



QU ˆ ln…0:05=2†=0:0004 ˆ 9222:1986, QC ˆ ln…1=2†=0:0004 ˆ 1732:8680, respect-
ively.

Some observed data are shown in table 2, where `o.c.’, `n.i.’, `i.c.’ and `im.’ stand
for `out of control’, `no indication’, `in control’ and `improved’, respectively. The
number immediately to the right of an asterisk is the quantity of product inspected
since the last resetting of Q to 0 (which happens when a defect is observed but the
process is still deemed to be in control). The CPC(Q)-chart is shown in ®gure 4a, and
the CQC-chart with log10Q as the vertical axis is shown in ®gure 4b. In ®gure 4a, the
range ‰0; 1Š of the vertical axis is divided into segments with di� erent scales, with the
segments ‰0:020; 0:030Š, ‰0:10; 0:90Š and ‰0:970; 0:980Š covering the LCL, CL and
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Figure 3a. CPC(C)-chart for a binomial process for the data in table 1.
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Figure 3b. CCC-chart for a binomial process for the data in table 1.
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Cumulative

Sample items inspected Defect

number Q log10 Q F…Q† observed Indication

1 47:5 < LCL 1.6767 0:01882 < ¬=2 yes o.c.

1 50 < LCL 1.6990 0:01980 < ¬=2 no n.i.

2 63:2945 LCL 1.8014 0:025 ¬=2 no i.c.

2 100 2.0000 0.03921 no i.c.
..
. ..

. ..
. ..

. ..
. ..

.

100 467:8 LCL 2.6701 0:1707 ¬=2 yes i.c.

100 *32:2 < LCL 1.5079 0:01280 < ¬=2 no n.i.

101 63:2945 LCL 1.8014 0:025 ¬=2 no i.c

101 82.2 1.9149 0.03235 no i.c.
..
. ..

. ..
. ..

. ..
. ..

.

283 9182.2 3.9630 0.9746 no i.c.

284 9232:2 > UCL 3.9653 0:9751 > 1 ¡ ¬=2 no im.

285 9282.2 3.9677 0.9756 no im.
..
. ..

. ..
. ..

. ..
. ..

.

Table 2. Inspection results for a Poisson process.

Figure 4a. CPC(Q)-chart for a Poisson process for the data in table 2.



UCL, respectively. In ®gure 4b, the LCL, CL and UCL are log10 63:2945 ˆ 1:80137,

log10 1732:8680 ˆ 3:23877 and log10 9222:1986 ˆ 3:96493, respectively.

On the CQC-chart, the region of in-control (between the LCL and UCL) covers

only about the upper half of the chart, and therefore the region between 0 and the

LCL is not used e� ciently. (This phenomenon will be even more prominent for

smaller values ¶0.)
The defect found in the left-most sample number 1 in ®gures 4a and b was an

indication of out-of-control, and assignable causes were found during investigation.
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Figure 4b. CQC-chart for a Poisson process for the data in table 2.



The process was then recti®ed. After that, the process was started again and the ®rst
sample was numbered as 1. Indication of improvement appeared at sample number

284, and investigation would be carried out to ®nd out whether this was a false signal

or the process had actually improved. This indication of improvement is much more

clearly shown by the circled dot on the CPC(Q)-chart at sample number 285 (which

corresponds to F…Q† ˆ 0:9756) than that on the CQC-chart.

7. Conclusion

Processes with low defect rates cannot be satisfactorily monitored using the

traditional p-chart, np-chart, c-chart and u-chart. The cumulative count control

chart (CCC-chart) and the cumulative quantity control chart (CQC-chart) are poss-

ible alternatives that can be used to monitor such processes. When the CCC- or

CQC-chart is used, in many cases log n or log Q will be plotted instead of n or Q,

since the cumulative count n or cumulative quantity Q increases linearly as the
sample number increases. Plotting of log n and log Q, however, produces charts

that are over-sensitive for small n or Q and extremely insensitive for large n and

Q. To overcome this disadvantage, using an idea in Yeh and Lin (1997) in the studies

of two-dimensional charts, the cumulative probability control chart (CPC-chart) is

proposed here. In a CPC-chart, the cumulative probability is plotted, instead of the

cumulative count or cumulative quantity. Decisions resulted from the CPC-chart is

the same as those resulting from the CCC- or CQC-chart, because if the CPC-chart
indicates `in control’ or `out-of-control’, so will the CCC- or CQC-chart, and vice

versa. To increase the sensitivity of the CPC-chart near the decision lines (the lower

and upper control limits), the vertical axis of a CPC-chart may be divided into

several segments, in such a way that the segments containing the decision lines

have a larger linear scale.

Using linear scales in the CPC-chart, sensitizing rules can be applied to increase
the e� ectiveness of the chart. Commonly used sensitizing rules for the Shewhart

control chart are de®ned based on dividing the area between the LCL and UCL

into Zones A±C. Zone C is the region between the 1 sigma limits on either side of

the centre line, Zone B is the regions between 1 and 2 sigmas on either side of the

centre line, and Zone A is the regions between 2 and 3 sigmas on either side of the

centre line. Some sensitizing rules are shown in table 3. To develop sensitizing rules

for the CPC-chart, Zones A±C can be de®ned in terms of probabilities instead of the
1, 2 and 3 sigma lines.

147Cumulative probability control charts

1. Point falls outside the 3 sigma limits.
2. Eight points in a row in Zone C or beyond on the same side of the center line.
3. Six points in a row increasing or decreasing.
4. Fourteen points in a row alternating up and down.
5. Two out of three points in a row in Zone A or beyond on the same side of the center line.
6. Four out of ®ve points in a row in Zone B or beyond on the same side of the center line.
7. Fifteen points in a row in Zone C.
8. Eight points in a row not in Zone C.

Table 3. Sensitizing rules.
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Appendix A

Proposition A: Suppose that the length of inspection in order to observe a defect in
the process is a random variable X with expected value E‰X Š. Suppose also that a
point is plotted on the control chart when a defect is observed in the process. If P is
the probability for a point on the control chart to indicate a type of signal, the
average length of inspection in order to observe such a signal on the control chart
is ALI ˆE‰X Š=P.

Proof of Proposition A: Let x denote an observed value of X . Divide the range of
variation of X into two sets A and B, in such a way that x 2 A gives a signal on the
control chart, and x 2 B does not give a signal on the control chart. Let the distri-
bution function of X be F…x†. Hence:

…

x2A

dF…x† ˆ P;

…

x2B

dF…x† ˆ 1 ¡ P;

…

x2A

x dF…x† ‡
…

x2B

x dF…x† ˆ
…

x2A[B

x dF…x† ˆ E‰X Š:

The expected length of observation until the ®rst defect occurs, where this defect
gives a signal on the control chart, is

L0 ˆ
…

x2A

x dF…x†:

Let n 1 be an integer. Suppose that n defects have occurred and none of these
defects gives a signal on the control chart, followed by the …n ‡ 1†th defect which
gives a signal on the control chart. Let the observed values of X corresponding to the
occurrence of these defects be x1; . . . ; xn 2 B and xn‡1 2 A. For each n 1, the
expected value of the total length of observation until the signal occurs on the
control chart is:

Ln ˆ
…

x12B

…

xn2B

…

xn‡12A

…x1 ‡ ‡ xn ‡ xn‡1† dF…x1† dF…xn† dF…xn‡1†

ˆ
Xn

jˆ1

…

x12B

…

xn2B

…

xn‡12A

xj dF…x1† dF…xn† dF…xn‡1†
Á !

‡
…

x12B

…

xn2B

…

xn‡12A

xn‡1 dF…x1† dF…xn† dF…xn‡1†

ˆ
Xn

jˆ1

…

xj2B

xj dF…xj†
Á !

Yn

` 6ˆj

…

x
`2B

dF…x
`
†

Á ! …

xn‡12A

dF…xn‡1†

‡
Yn

jˆ1

…

xj2B

dF…xj†
Á ! …

xn‡12A

xn‡1 dF…xn‡1†
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ˆ
Xn

jˆ1

…

x2B

x dF…x†
…

x2B

dF…x†
n¡1…

x2A

dF…x†

‡
…

x2B

dF…x†
n…

x2A

x dF…x†

ˆ
…

x2B

x dF…x†n…1 ¡ P†n¡1P ‡
…

x2A

x dF…x† …1 ¡ P†n:

Therefore

ARL ˆ L0 ‡
X1

nˆ1

Ln

ˆ
X1

nˆ0

…

x2B

x dF…x†n…1 ¡ P†n¡1P ‡
…

x2A

x dF…x†…1 ¡ P†n

ˆ
…

x2B

x dF…x†P
X1

nˆ0

n…1 ¡ P†n¡1 ‡
…

x2A

x dF…x†
X1

nˆ0

…1 ¡ P†n

ˆ
…

x2B

x dF…x†=P ‡
…

x2A

x dF…x†=P ˆ E‰X Š=P:

This proves Proposition A. &
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