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In this paper, we propose a new variables control chart, called the box-chart, to simul-
taneously monitor, on a single chart, the process mean and process variability for mul-
tivariate processes. The box-chart uses a probability integral transformation to obtain
two independently and identically distributed uniform distributions. Therefore, a box-
shaped (thus the name), two-dimensional control chart can be constructed. We discuss
in detail on how to construct the box-chart. The proposed chart is applied to two real-life
examples. The performance of the box-chart is also compared to that of the traditional
T2- and |S|-charts.

Keywords: Probability Integral Transformation; Two-Dimensional Control Charts; Uni-
form Distribution.

1. Introduction

Among the techniques that form the core of statistical process control (SPC), con-
trol charts are perhaps the most important and widely used tools. First developed
by Shewhart,! the use of control charts has become a standard practice in industrial
applications. Although over the years, other control charts have been developed,
the variables control charts, X- and R- (or S-) charts, remain the most popular.
Recent developments deviate from early ones most notably on the emphasis they
place on target value and on simultaneous monitoring of both the process mean and
process variability. Examples include the MSE chart (Spiring and Cheng?) which
uses the mean squares deviation from the target value to plot two non-crossing
measurements on a single chart; the T chart (Cheng and Li%) which plots the sum
of absolute deviations of the extreme data values from the target value on a single
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chart; the “process capability plot” (Repco? and Van Nuland®) which plots

W (X—u)2+ ( S—o )2
n/vn o/vV2n
on a two-dimensional circle, where X, S, p and o are the sample mean, sample

standard deviation, process mean and process standard deviation, respectively; and
the “semi-circle” chart (Chao and Cheng®) which plots

T=(X’~u)2+(";1)32

on a semi-circle.
The main advantages of simultaneously monitoring univariate process mean and
variability on a single chart are:

(i) The number of control charts that need to be maintained can be reduced, and
the reduction could be significant particularly when there are multiple processes
or multiple stream processes under investigation.

(ii) When the process is out of control, the corresponding changes in process mean
or process variability or both can be interpreted relatively easily on a single
chart.

Nevertheless, the aforementioned control charts are limited to univariate processes
and the extension to multivariate processes may not be possible.

In this paper, our motivation is to develop new variables control charts which
maintain the ability to simultaneously monitor, on a single chart, the process mean
and process variability for multivariate processes. We shall call the proposed chart
the box-chart. We first demonstrate our motivation of the box-chart through a sim-
ple example in a univariate process. We then discuss how to construct the box-chart
for multivariate processes. Two examples are given for illustration. Comparisons be-
tween the box-chart and existing T'?- and |S|-charts are made through simulation.
An alternative box-chart which retains the sampling sequence is also discussed. Fi-
nally, we discuss some related issues and possible directions for future research in
this area.

2. The Box-Chart

Suppose that the quality characteristic of interest of a univariate process follows
a normal distribution with mean g and standard deviation og. Given a random
sample of n observations X3, Xa,...,X,, define
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where, X = ¥, Xi/n and §% = ¥, (Xi — X)? / (n — 1) are the sample mean
and sample variance, respectively. Here, Z and x2_, denote the standard nor-
mal distribution and the chi-square distribution with n — 1 degrees of freedom,
respectively. When the process is in-control, it is clear that U and V are both
distributed as U(0,1), a uniform distribution supported on (0, 1). Furthermore, U
and V are independent since X and S? are independent. Based on these results, a
new variables control chart, the box-chart, can be constructed. As in a 3o environ-
ment, for example, we can take the control limits: Uiower = Viower = 0. 00135 and
Uupper = Vapper = 0.99865. Furthermore, since both U and V' have the same scale
(between 0 to 1) and are independent, we can combine these two charts together.
Take the data in Van Nuland® as an example, Fig. 1 shows the combination as a typ-
ical box-chart with different regions marked by different letters to indicate whether
the process mean is out-of-control (M), the process variability is out-of-control (V),
or both (B). The out-of-control samples are marked by their corresponding sample
numbers, and some close to out-of-control samples are marked by an additional as-
terisk. The areas of M, V and B are controlled by the probabilities of type-I error
for detecting a shift in the process mean and for detecting a change in the process
variability. The point (U, V) is plotted on the box-chart. If (U, V') falls in any of the
marked regions, it is an indication that the process is out-of-control. For a more
detailed discussion of the univariate box-chart, see Yeh, Lin and Venkataramani.”
Essentially, the box-chart is constructed using two independent uniform distri-
butions obtained from probability integral transformation. Note that the probabil-
ity integral transformation is not limited to univariate random variables. Therefore,
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Fig. 1. An example of the box-chart.
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one can extend the box-chart to multivariate processes as a way of combining the
monitoring of process mean and process variability on a single chart. Specifically, let
X represent the random variable of a multivariate quality characteristic of interest
obtained from a process. It is assumed that X has a p-dimensional normal distribu-
tion with unknown mean and variance-covariance matrix g, and 3g, respectively.
Suppose that in the initial trial samples stage, m samples each of size n are collected.
It is assumed that n > p, otherwise one may encounter problems when estimat-
ing ¥o. Let X;; denote the ith observation of the jth sample, i = 1,2,...,n and
j = 1,2,. .oy Let XJ' = E?:l Xn/n and Sj = Z?zl(xij - X])(xu - X]‘)'/n
be the sample mean and sample variance-covariance matrix of the jth sample,
j=1,2,...,m. Furthermore, define N = mxn, X = 37* ) X;/m, S=378i/m
and 8§(j) = 1, ;4 Si/(m—1), 5 =1,2,...,m.
For § =1,2,...,m, one computes the following statistics
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(4)

where |A| denotes the determinant of the matrix A. Here []}_; Fn—i,N-m-n+2-i
denotes the product of p independent F-distributions each with degrees of freedom
n—iand N—m—n+2—4,i=1,2,...,p. Note that here n, instead of n—1, is used
as the divisor in defining the sample variance-covariance matrix. Either choice, the
results [Eqs. (3) and (4)] can be derived accordingly (see Anderson®). It is shown
in Appendix A that U;’s and V;’s are independently and identically distributed
(iid.) as U(0,1). Therefore, one can plot (U1, V1), (Ua, Va2),.--. s (Um, Vim) on the
box-chart. Furthermore, we have derived the exact and approximate distributions
for computing V; in Appendix B. v

Note that at the trial stage, the objective is to make sure that the process is in-
control before the control chart can be used to monitor the future process. If there
is any out-of-control point, (i) identify the sample and the source of the problem by
looking up the region in which the point falls; (ii) find the assignable causes; and
(iii) correct the process if necessary. Note that the box-chart remains unchanged.
The values of X, N,8,5(;) and m are then recalculated based on the remaining
samples. Consequently, the U;'s and V;’s are recomputed for the remaining samples
and re-plotted on the box-chart. This is repeated until ail the points are in-control.
At this point, the estimates obtained from the remaining samples can be used to
calculate the U’s and Vs for future samples. More specifically, denote the updated
information by m; (m; < m), Nr = m x n, X; and S;. When the monitoring of
the future process begins, for any sample X1, Xg2, ..., Xkn, k > 1, one plots
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on the box-chart. The process is considered to be out-of-control if (Uk, Vi) falls in
any of the marked regions.

3. Examples

The first example, taken from Mitra,? is related to a component used in the assem-
bly of a transmission mechanism. Two quality characteristics, tensile strength and
diameter, are of importance. Twenty samples each of size 4 were obtained from the
process. The data set is listed in Table 1. The box-chart, and the corresponding
T2 and |S|-charts are given in Figs. 2 and 3, respectively. A brief explanation on
how the T2- and |S|-charts are constructed can be found in Appendix C.

The box-chart indicates that none of the 20 samples is out-of-control, which
is consistent with the T'2- and |S|-charts. Samples 7 and 11 (marked by asterisks)
are in-control, although sample 7 is very close to the boundary of region M and
sample 11 is close to the upper region V. These two samples correspond to the
two peaks seen on the T2- and |S|-charts, with the peak of sample 7 appearing on
T2-chart and the peak of sample 11 appearing on |S|-chart, respectively.

Table 1. Data set of the transmission component example.

Sample number Tensile strength Diameter
1 66 70 68 72 16 18 15 20
2 7% 60 T 75 17 22 18 19
3 65 70 7O 65 20 18 15 18
4 72 70 7 65 19 20 15 17
5 73 74 72 70 21 21 23 19
6 72 4 73 74 21 19 20 18
7 63 62 65 66 22 20 24 22
8 75 84 75 66 22 20 20 22
9 65 69 7r 71 18 16 18 18
10 70 68 67 67 18 17 19 18
11 80 75 70 69 24 18 20 22
12 68 65 80 50 20 21 20 22
13 74 80 T6 74 19 17 20 21
14 76 T4 75 73 20 17 18 18
15 71 7 T 73 18 16 17 18
16 68 67 70 69 18 16 19 20
17 72 76 7 77T 22 19 23 20
18 7% T4 7% 77 19 23 20 21
19 72 T4 73 75 20 18 20 19

20 72 68 74 70 21 19 18 20
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Fig. 2. The box-chart of the transmission component example.

Note that for the process mean, the out-of-control region on the box-chart is
one-sided, since the statistic used is based on the Hotelling-T2. As for the process
variability, the out-of-control region is two-sided since it is based on the sample
generalized variance. Furthermore, caution should be taken when interpreting the
|S|-chart as well as the region V' on the box-chart. If a sample point is plotted out-
of-control on the |S|-chart or on the box-chart, it is primarily due to the change in
the determinant of the sample variance-covariance matrix. However, this does not
necessarily imply that there is an increase or decrease in the process variability. It is
worth mentioning that Johnson and Wichern!® gave 3 sample variance-covariance
matrices for bivariate data that all have the same determinant and yet have very
different correlations.
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Fig. 3. The T2- and |S|-charts of the iransmission component example.

The second example, also taken from Mitra,? is often encountered in fabric-
production process. The variables of interest are the single-strand break factor (a
measure of the breaking strength) and the weight of textile fibers. Originally, 20
samples each of size 4 were obtained from the process. The samples are listed in
Table 2. The original 20 samples do not indicate any out-of-control signal. Note
that in this example

%= 82.4625 5 - 7.5215 —0.3542
T\ 20.1750 /°’ “\-03542 3.2917/)°
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Table 2. Data set of the fabric-production example.

Sample number Break factor Weight
1 80 82 78 8 19 22 20 20
2 75 78 84 81 24 21 18 21
3 83 8 84 87 19 24 21 22
4 79 84 8 83 18 20 17 16
5 82 81 78 8 23 21 18 22
6 86 84 8 87 21 20 23 21
7 84 88 82 8 19 23 19 22
8 76 84 78 82 22 17 19 18
9 85 88 85 87 18 16 20 16
10 80 78 8 83 18 19 20 18
11 86 84 85 86 23 20 24 22

12 81 81 83 82 22 21 23 21

13 81 8 8 79 16 18 20 19
14 75 T8 82 80 22 21 23 22
15 77 84 T8 85 22 19 21 18
16 86 81 84 84 19 23 18 22
17 84 8 78 79 17 22 18 19
18 82 8 79 83 20 19 23 2
19 79 88 85 83 21 23 20 18
20 80 84 82 85 18 22 19 20
21* 83 93 8 87 24 21 26 23
22* 79 82 92 84 13 26 21 16

23* 91 76 9 95 23 16 27 20

*Samples 21, 22 and 23 are generated samples.

Assuming that the in-control process has a bivariate normal distribution with
o = X and Xg = S, three samples are generated, where sample 21 (marked by a
[J) has a shift in u, sample 22 (marked by a ) has a change in ¥, and sample 23
(marked by a A) has both. The generated samples, with decimal points rounded off
to integers, are listed at the bottom of Table 2. The box-chart, which contains all
23 samples, is shown in Fig. 4 and the corresponding T'- and |S]-charts are shown
in Fig. 5. All three out-of-control samples are picked up correctly by the box-chart.
These results are consistent with those shown on the T2- and |S|-charts.

4. Simulation Studies

In this section, we compare the performance of the proposed box-chart with the
existing T2- and |S|-charts for multivariate processes. The comparison is carried
out using Monte Carlo simulation. The performance is defined in terms of the
average run length (ARL). The simulation run is 50,000, and the subgroup sizes
used are n = 4, 6, 8, 10. We set the areas of the out-of-control regions of an in-control
process to be 0.0027 and 0.00135 for both M and V. This leads to in-control ARL’s
of approximately 185 and 370 respectively for the box-chart. The probabilities of
type-I error of both T2-chart and |S|-chart are also chosen to be 0.0027 and 0.00135
so that the combined T2- and |S|-charts have in-control ARL’s approximately the
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Fig. 4. The box-chart of the fabric-production example.

same as the box-chart. In simulating the out-of-control ARL’s, once a sample is
generated it is used to evaluate both the box-chart and the T2- and |S|-charts.

The in-control process is assumed to have a bivariate normal distribution with
e = (0,0)' and 3¢ = I. We consider three possible changes in the process: a shift
in process mean; a change in process variability; and changes both in process mean
and process variability. The ARL of the box-chart is compared to that of the 72-
and |S|-charts.

We first assume that the process variability remains unchanged, ie., the
variance-covariance Xy = I, but the process mean has been shifted to p = (u1, u2)'.
This is equivalent to shifting the mean of the first variable by p; standard devi-
ations, and shifting the mean of the second variable by pe standard deviations.
Summarized in Table 3 are the ARL’s of the box-chart and the T2- and |S|-charts
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Fig. 5. The T2- and |S|-charts of the fabric-production example.

for different choices of (i1, 2). The box-chart is very comparable to T2- and |S|-
charts except in cases when there is a small shift in first variable and sample size n
is small (e.g., n = 4, gy = 0.5, 0.75 and pg = 0).

Next, we assume that the process mean has reqmained at u = (0,0)', while
p:faz p";é” ), where a3, 02 > 1,
—1 < p < 1. We then simulate the ARL values for a variety of choices of (01,02, p).
The simulation results are shown in Table 4. For all cases considered here, the box-

chart performs comparably with the T2- and |S|-charts. Shown in Table 5 are the

the variance-covariance matrix X is equal to =
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Table 3. Comparisons of ARL for mean shifts.

ARlLg =185 ARLg = 370

(21, p2) Box-chart T2 and |S)| Box-chart T2 and ||
(n=4)

(0.50, 0.50) 39.28 25.88 63.45 41.36
(0.75,0.75) 10.52 7.61 14.84 10.62
(1.0,1.0) 3.89 3.06 4.90 3.85
(0.50,0) 79.87 54.47 145.35 100.20
(0.75,0) 32.66 22.05 53.71 35.29
(1.0,0) 13.10 9.28 18.78 9.28
(n=6)

(0.50, 0.50) 21.21 14.56 32.74 21.43
(0.75,0.75) 5.06 3.90 6.84 5.16
(1.0,1.0) 2.05 1.76 2.39 2.03
(0.50, 0) 54.70 37.20 95.79 65.88
{0.75,0) 17.55 11.97 26.70 18.09
(1.0,0) 6.31 4.71 8.80 6.46
(n=8)

. (0.50,0.50) 1256 9.05 19.44 13.48
(0.75,0.75) 3.17 2.58 3.94 3.18
(1.0,1.0) 1.44 1.32 1.60 1.43
(0.50,0) 36.68 24.69 62.74 41.77
(0.75,0) 10.63 7.68 15.03 10.67
(1.0,0) 3.80 3.02 5.02 3.89
(n = 10)

(0.50, 0.50) 8.90 6.46 12.39 8.77
(0.75,0.75) 2.24 1.90 2.67 2.23
(1.0,1.0) 1.20 1.14 1.28 1.20
(0.50, 0) 28.72 19.43 46.59 30.83
(0.75,0) 6.97 5.22 9.92 7.21
(1.0,0) 2.64 2.21 3.29 2.69

simulated ARL’s when shifts in process mean and changes in process variability
both occur. Again, the box-chart and the 7'2- and |S|-charts have very similar
ARL’s.

5. An Alternative Box-Chart that Retains Sampling Sequence

Apparently, the box-chart has one drawback in that it loses track of the sampling
sequence. To understand the time sequence pattern, however, Balkin and Lin!!
argues that it is better to employ well developed techniques in time series area, such
as sacf (sample autocorrelation function) and spacf (sample partial autocorrelation
function) plots. The box-chart can easily accommodate the sampling sequence as
well. Using the original 20 samples of the fabric-production example, Fig. 6 shows
an alternative box-chart which incorporates the sampling sequence. There are two
statistics being plotted in Fig. 6, the “u” computed based on (3) is represented by
a solid line, while the “v” computed based on (4) is represented by a dashed line.
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Table 4. Comparisons of ARL for changes in variability.

ARLg = 185 ARlLy = 370
(c1,02,p) Box-chart T2 and |S| Box-chart T2 and |S|
(n=4)
(1.25,1.25,0) 25.93 22.01 39.18 32.59
(1.50, 1.50, 0) 6.92 6.20 9.19 8.24
(1.25, 1.25,0.5) 28.39 22.81 43.98 34.85
{1.50, 1.50, —0.2) 7.09 6.34 9.51 8.36
(n=6)
(1.25,1.25,0) 18.38 16.40 27.96 25.06
(1.50, 1.50, 0) 4.34 4.06 5.48 5.14
(1.25,1.25,0.5) 25.51 21.51 35.79 30.32
(1.50,1.50, —0.2) 4.56 4.29 5.75 5.37
(n=8)
(1.25,1.25,0) 13.76 12.52 20.52 18.72
(1.50, 1.50, 0) 3.09 2.98 3.75 3.61
(1.25,1.25,0.5) 22.20 18.70 33.42 28.23
(1.50, 1.50, —0.2) 3.25 3.11 3.98 3.81
(n = 10)
(1.25,1.25,0) 10.73 9.99 15.58 14.59
(1.50, 1.50, 0) 2.42 2.36 3.84 3.76
(1.25,1.25,0.5) 19.67 17.09 28.69 24.59
(1.50,1.50, —0.2) 2.54 2.47 3.02 2.93

Table 5. Comparisons of ARL for changes both in mean and variability.

 ARLo=185 ARLg = 370
(11, p2)(01,02,p) Box-chart T2 and |S| Box-chart 72 and |S|
(n=4)

(1.0, 1.0)(1.50, 1.50, 0) 2.28 2.04 2.61 2.33
(0.75,0.75)(1.50, 1.50, 0) 3.26 3.88 3.75 3.40
(0.50,0.50)(1.75, 1.75, 0.5) 3.37 3.10 3.91 3.44
(0.25,0.25)(1.50, 1.00, —0.2) 19.77 15.93 28.72 23.08
(n=6)

(1.0, 1.0)(1.50, 1.50, 0) 1.59 1.48 1.76 1.63
(0.75,0.75)(1.50, 1.50, 0) 2.19 2.01 2.50 2.34
(0.50, 0.50)(1.75, 1.75, 0.5) 3.39 2.26 2.58 2.38
(0.25,0.25)(1.50, 1.00, —0.2) 15.41 12.76 21.98 18.15
(n=8)

(1.0, 1.0)(1.50, 1.50, 0) 1.30 1.25 1.41 1.33
(0.75, 0.75)(1.50, 1.50, 0) 1.69 1.59 1.80 1.77
(0.50, 0.50)(1.75, 1.75, 0.5) 1.87 1.80 1.92 1.84
(0.25, 0.25)(1.50, 1.00, —0.2) 12.35 10.31 17.93 14.97
(n = 10)

(1.0, 1.0)(1.50, 1.50, 0) 1.16 1.13 1.22 1.18
(0.75,0.75)(1.50, 1.50, 0) 1.42 1.36 1.57 1.49
(0.50,0.50)(1.75, 1.75, 0.5) 1.59 1.54 1.62 1.59

(0.25,0.25)(1.50, 1.00, —0.2) 10.07 8.64 14.48 12.15
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Fig. 6. An alternative box-chart (with time sequence) of the fabric-production example.

Also note that for “u” only upper control limit (denoted by UCL (U) as represented
by a solid horizontal line) is needed, while for “v” both control limits (denoted by
UCL (V) and LCL (V) as represented by two dashed horizontal lines) are present.

In fact, Fig. 6 brings up a wider point here. After proper probability integral
transformation, all performance measures (such as T2 and |S|) lie in the range (0, 1).
Thus, the (alternative) box-chart can plot more than two performance measures
preferably using different colors, if so desire.

6. Concluding Remarks

We have proposed and studied the box-chart as a way to combine the T 2. and
|S|-charts into ‘a single chart. The box-chart, based essentially on a probability
integral transformation, is developed specifically for multivariate normal processes.
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However, the proposed box-chart is not limited to normal processes provided that
the distributions of the test statistics used are known. Future research along this
line would be worthwhile.

The box-chart can clearly indicate, on a single chart, whether the process mean
or the process variability is out-of-control. Therefore, the use of box-chart in prac-
tice can reduce the number of control charts that need to be maintained, and the
reduction could potentially be significant if there are multiple processes or multiple
stream processes to be monitored. Furthermore, since both performance measures
T? and |S| have been transformed to lie in the range (0, 1), additional performance
measures, after proper probability integral transformation, could potentially be
plotted on the same chart (Fig. 6), thus making it possible for the (alternative)
box-chart to incorporate multiple performance measures.

The ARL performance of the box-chart, on the other hand, does not compare
favorably with that of the T2- and |S|-charts, particularly in cases when the mean
shifts are small and the sample size is small. However, in such cases, CUSUM
and EWMA control charts may be more appropriate. The other drawback of the
box-chart is that it loses track of the sampling sequence. Although the alternative
box-chart which retains the sampling sequence, as described in Sec. 5, can be used
instead. It should be noted that the out-of-control signals can be interpreted by
applying common procedures such as the T2 decomposition techniques (see Mason,
Tracy and Young!? and Mason, Champ, Tracy, Wierda and Young!3).

The simulation results seem to indicate that the box-chart, like the T2- and
|S|-charts, is less sensitive in detecting smaller mean shifts or smaller changes in
variability or both. One possible way to make the box-chart more sensitive to smaller
changes is to develop some type of CUSUM box-chart. Note that the box-chart is
constructed essentially by combining two independent U (0, 1) random variables, one
derived from the statistic used to monitor the process mean, and the other derived
from the statistic used to monitor the process variability. Therefore, a CUSUM-
based box-chart can be developed by calculating independently the sums of two
sequences of i.i.d. U(0,1)’s, one for detecting smaller mean shifts and the other for
detecting smaller changes in process variability. The ideas seem appealing, and we
plan to fully explore these ideas in a follow-up study.
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Appendix A
Here we show tht the test statistics described in (3) and (4) are i.i.d. U(0, 1). Write

Ty =(X; — i)'s'"l()—(j ~-X) and T%= l—_S—’-I— i
ISiil
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T, gives the so-called Hotelling-T'? statistic which can easily be shown to be
proportional to an F-distribution (Anderson®), and therefore U; is U(0, 1). As for
V;, note that both |S;| and |S;,| are |X| times a product of p independent x? with
different degrees of freedom. Furthermore, |S;| and [S;)| are independent.

To show that T} and T» are independent, it suffices to show that S and |S;|/[S ;)|
are independent. We next write NS = nS; + n(m — 1)S(;). By normality,

nS; ~Wy(E,n—1) and n(m- 1)S() ~ Wp(B,(m — 1)(n - 1)),

where W,(2,r) denotes the Wishart distribution with parameter X, degrees of
freedom r and rank p. Since S; and Sy are independent, NS ~ Wy (X, m(n — 1)).
To this end, it suffices to show that, apart from some constants, if A; ~ Wp(XZ, m;)
and Az ~ W,(X, m2) are independent, then their sum Ry = 4, + A, is independent
of Ry = |A1|/]|A2].

Without loss of generality, we can assume X = I. We shall proceed the proof by
induction. When p = 1, the result is trivial, since for any two independent x2, their
sum is independent of their ratio. When p = 2, write A; = Y 1" Z; Z; and A =

T Y,Y}, where Z;’s and Y;’s are independent N2(0,I) (a bivariate standard
normal distribution), and furthermore Z;’s are independent of Y;'s. Partition Z;’s
and Y;’s into two components (both are scalars),

(1) &
(Zf ) and (Yj )
) (@
Z; Y;

Note that all these components are i.i.d. N(0,1). Consider the joint distribution of
R; and Ry conditioning on

Z® = (2. z?,..,z2Qy and YO =¥, YR .

Given Z(® and Y@, R, and R, are independent since R is equivalent to the sum
of two independent x? and R» is proportional to their ratio. Furthermore, since
neither of the distributions of R; and R depends on Z® and Y@, R; and R, are
independent.

Suppose now the independence result holds for dimension p—1, we need to show
that it also holds for dimension p. Partition Z;’s and Y;’s into two components
where the first component is a vector of p—1 and the second component is a scalar,

AR vy
! and I .
(2) 2)
Z; Y;

Note that the first components of Z;’s and Y;’s are iid. N, —1(0,I) and the
second components are i.i.d. N(0,1). Given Z® and Y@, R, is equivalent to
Wp—1(I,m1) +Wp_1(I,m2) (two independent distributions) and R, is proportional
to |Wp—1(I,m1)|/|Wp-1(I, m2)|. Therefore, given Z*) and Y®, R, and R are in-
dependent since the result holds for p — 1. Finally, R; and R are independent
unconditionally since neither distribution depends on the conditions.
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Appendix B
First note that |nS;| is distributed as (Anderson®)

[Zof x X?;—l X Xﬁ-z XX szn-p
and |(N — n)S;| is distributed as
'EDI X X?V-—m-—n+1 X X?V—m—n X-oe X X%V—m-—n-—-p+2 ’

where the chi-square distributions with various degrees of freedom which appear in
the products are all independent. Furthermore, since S; and S(;) are independent,

P : P
N-m-n+2-1i InS;|
& ~ Fy i Nem—nt2—i,
(H —n )XI(N_n)Sm] TT Focinmonss

i=1 i=1

where F,_i Nom—nt2-i, t = 1,2,...,p, are independent.

For the special case when p = 2, the exact distribution of |nS;|/|(N — n)S;|
can be determined. It is based on a simple result (Anderson®) which states that if
x2., and x2_, are two independent chi-square distributions, then x2_; x x2_, is
distributed as (x3,_4)2/4. Therefore, in the case when p = 2, the statistic V; as
defined in (4), j = 1,2,...,m, can be computed as

N-m-n_ InS;|1/? )
n—2 |(N—n)§(j)|1/2 |

V=P (F2n—4,2(N-—m—-n) <

Likewise, when p = 2, the statistic Vj, as defined in (6) can be computed as

NI—-mI—n % ]nSkl1/2
n—2 I(NI—-n)g]Il/z )

Ve =P (an—4,2(N, —my-n) <

In the case when p > 3, as suggested in Gnanadesikan and Gupta!? and in

Anderson,? one can use the normal distribution to approximate the distributions
of ’
| IS;1 Sl
log=— and log—=.
% =l ® Tl

More specifically, following the results in Muirhead,!® it can easily be shown that
both

n—1_|S,| (m—-1)(n—1)  |{Syl
log —2- and lo
2p ° %l \/ 2% & 1]

are asymptotically distributed as N(0, 1), the standard normal distribution. Fur-
thermore, since S; and g(,-) are independent, it follows that

(m-—1)(n—-1) |8,
\/ Spm log ]s(j)‘ (B.1)
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is asymptotically distributed as N(0,1). Therefore, in the case when p > 3, we
suggest that V; as defined in (4) be computed as

v = (m — 1)(n —1) 1, ISil
(Z<\/ gIS(j)I)'

Similarly, one can compute V; as defined in (6) as

(mr—1)(n—1)  [Sg|
Vi = (Z < \/ Spm; log l—§—l-|-) .

It should be noted that in the case when normal approximation is used, Vj
(likewise V4 ) is distributed as U(0, 1) asymptotically. For small n, the exact distri-
bution of (B.1) tends to have heavier tails than N(0,1) does. This in turn makes
the statistic V; tend to fall more likely in the rejection regions as determined based
on U(0,1).

Appendix C

The construction of the T2-chart is based on Hotelling-72 (Hotelling!®) which is
defined as, for j =1,2,...,m

T? = (XJ — i)'g—l(}-{j - f() .
Under normality, T? is distributed as

p(m—1)
(N-m—-—p+1)

Therefore, for a given probability of type-I error o, the UCL of the T2-chart can
be computed as

X Fp,N-m—p+l .

m-—1
UCL = (N-Iz(m——p)-i—l) X fi—a(®, N—m —p+1),

where
P(FPYN—m—zH»l < fica(m N-m—-p+1))=1-a.

As for the |S|-chart, the construction is based on the so-called generalized
variance, i.e., the determinant of the sample variance-covariance matrix (see, e.g.,
Alt'"). More specifically, for j = 1,2,...,m, one plots |S;| on the |S|-chart with
the 3o limits defined as

LCL = ‘bﬁ(b1 ~3/b2)

ver = 3 'S' (by +353) .
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where
1 p
by = —— x —1
1 (n — l)p H(n’ z)
i=1
1 p p P
by = T xH(n—-z)x H(n——3+2)——n(n—3) :
=1 J=1 =1
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