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ABSTRACT: Statistical experimental design has played an important role -
in industrial investigations. In this paper, we first discuss the major differ-
ences between running industrial and agricultural experiments. Thus, clas-
sical statistical experimental designs which are suitable for agricultural ex-
perimentation may not be appropriate for industrial experimentation. Some
recent research, specifically for designing industrial experimentations, are
then introduced. This includes computer experiment, impact of the disper-
sion effect in unreplicated fractional factorial design and optimal foldover
plans.
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1. INDUSTRIAL AND AGRICULTURAL EXPERIMENTS

Industrial management is becoming increasingly aware of the ben-
efits of running statistically designed experiments. Statistical exper-
imental designs, developed by Sir R.A. Fisher in the 1920’ largely
originated from agricultural problems. Designing experiments for in- '
dustrial problems and for agricultural problems are similar in the basic
concerns. There are, however, many differences. The differences listed
in Table 1 are based upon the overall characteristics of all problems.
Exceptions can be found in some particular cases, of course.

¢ Industrial problems tend to contain a much larger number of fac-
tors under investigation and usually involve a much smaller num-
ber of runs in total.



48 Calcutta Statistical Association Bulletin

¢ Industrial results are more reproducible; that is, industrial prob-
lems contain a much smaller replicated variation (pure error) than
that of agricultural problems.

¢ Industrial experimenters are obliged to run their experimental
points in sequence and naturally plan their follow-up experiments
guided by previous results; in contrast, agricultural problems har-
vest all results at one time. Doubts and complications can be
resolved in industry by immediate follow-up experiments. Con-
firmatory experimentation is readily available for industrial prob-
lems and become a routine procedure to resolve assumptions.

¢ The concept of blocking arose naturally in agriculture, but often
is not obvious for industrial problems. Usually, industrial practi-
tioners need certain specialized training to recognize and handle
blocking variables.

* Missing values seem to occur more often in agriculture (mainly
due to natural losses) than industry. Usually, such problems can
be avoided for industrial problems by well-designed experiments.

Classical designs will remain important to solve daily problems.
However, new problems in this IT (Information Technology) era re-
quire new designs. Given in this paper are some of my recent research
results, specifically for industrial experimentation. This may not be an
appropriate proposal for some agricultural problems. There are cer-
tainly many other important work from other researchers. Here, I will
only focus on my own work. Three subjects to be discussed here are:
computer experiment, impact of the dispersion effect in unreplicated
fractional factorial design, and optimal foldover plans.

Table 1: Diﬁenences Between Agricultural and Industrial Ezperiments

Subject Agriculture Industry
Number of Factors Small Large
Number of Runs Large Small
Reproducibility Less Likely More Likely
Time Taken Long Short
Blocking Nature Not Obvious
Missing Values Often Seldom
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2. COMPUTER EXPERIMENT

Computer models are often used to describe complicated physical
phenomena encountered in science and engineering. These phenomena
are often governed by a set of equations, including linear, nonlinear,
ordinary, and partial differential equations. The equations are often
too difficult to be solved simultaneously by any person, but can be by
a computer modeling program. These programs, due to the number
and complexity of the equations, may have long running times, making
their use difficult for comprehensive scientific investigation.

One goal in this setting is to build an approximating program which,
although not as precise as the computer model, would run fast enough
to study the phenomenon in detail. Construction of an adequate ap-
proximating function (or program) to the computer model requires the
selection of design points (a designed experiment) at which to approx-
imate. Because the computer models are mostly deterministic, these
computer experiments require special designs. Standard factorial de-
signs are inadequate here; in the absence of certain main effects, repli-
cation cannot be used to -estimate random error, but instead produces
redundancy. That is, they are hindered by their non-unique projections
to lower dimensions. This section presents a new and simple strategy
for designs for computer experiments, developed from the rotation of
the standard factorial design to yield a Latin hypercube.

2.1 Previous Work

Selection of an appropriate designed experiment depends to an ex-
tent on the experimental region, the model to be fit, and the method of
analysis. In order to assess design criteria for computer experiments, it
is valuable to study the progression of proposed designs. Koehler and
Owen (1996) provide an overview of past and current approaches. The
two main geometric designs are the standard (full or fractional) fac-
torial désigns and the Latin hypercube designs, but also include other
traditional designs for physical experiments, such as central composite
designs. Easterling (1989) points out that standard factorial designs
have many attractive properties for physical experiments: balance (fac-
tor levels used an equal number of times), symmetry (permutation of
design matrix columns yields same design), orthogonality (separability
of main effects), collapsibility (projects to lower subspace as factorial
design, sometimes redundantly), equally-spaced projections to each di-
mension, and straightforward measurability of main effects.

McKay, Beckman, and Conover (1979) introduced the use of the
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Latin hypercube (LH) in computer experiments. A n-point LH design
matrix is constructed by randomly permuting the integers {1,2,...,n}
for each factor and rescaling to the experimental region, so that the
points project uniquely and equally-spaced to each dimension. The
unique projections of LHs allow for great flexibility in model fitting.
Box and Draper (1959) showed that when the true model is a polyno-
mial of unknown degree, the best design places its points evenly spaced
over the design region. Thus, equally-spaced projections are also of
value. For these reasons, the LH has become the standard for computer
experiments. However, random LH:s are susceptible to high correlations
between factors, even complete confounding, and to omitting regions
of the design space.

Computer-generated designs include those of Sacks; Schiller, and
Welch (1989) that try to minimize the integrated mean square error
(IMSE) of prediction when prediction errors are taken as a realization
of a spatial stochastic process. Johnson, Moore, and Ylvisaker (1990)
proposed similar designs to minimize the correlations between observa-
tions when responses are taken as a realization of a spatial stochastic
process. The latter authors’ design D* they call a maximin distance
design if

Il’zmzigD_ d(z1,22) = mg.xhr'rzlixép d(z1,z2), (2.1)
where d is a distance measure and ming, z,ep d(x1, T2) is the minimum
interpoint distance (MID) of design D; that is, its points are moved as
far apart from one another as possible. Attempts have been made to
bridge the gap between geometric designs and computer-generated de-

signs. However, being themselves computer-generated designs leaves

many susceptible to the aforementioned problems. With this in mind,
we seek a new design for computer experiments with these properties:
the unique and equally-spaced projections to each dimension and flex-
ibility in model selection provided by Latin hypercube design and the
orthogonality and ease of construction provided by standard factorial
designs. In addition, these new designs should perform reasonably well
in terms of other criteria mentioned, such as MID correlation and ¢ov-
erage of the design space.

2.2 Rotated Factorial Designs in Two Dimensions

The strategy taken here is to modify the standard factorial design by
rotation so as to yield a Latin hypercube. To see how this is done, first
consider the standard 32 factorial design, represented by the 3x3 square
of points in Figure 1, and how it can be rotated to yield equally-spaced
projections. The key to finding all such rotations is in the relationship
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Figure 1: Standard 32 factorial design before rotation

between points A-D. We focus on nontrivial angles between 0 and 45
degrees clockwise due to the symmetry of the rotation problem.

The matrix equation to rotate a set of points clockwise by an angle
w about the origin is

(w) - sin(w)
[a1 22 ]x [ Zﬁf(fﬁ) cf,s(w")’ ]

so that if (z1,z,) are the coordinates of a design point in the standard
factorial design, then the rotation moves the point to (z; cos(w) +
x, sin(w), —z1 sin{w) + z2 cos(w)). Notice first that as the points are
rotated clockwise about the origin that A will have the smallest z;-
coordinate for any angle between 0° and 45°. (A 45° rotation will
place A directly on the r;-axis and A is the closest point to the origin.)
Also notice that* the z;-projections of points with the same initial x;-
coordinate (like A, B, and D) will be equally spaced, by sin(w), regard-
less of the rotation angle. Likewise, the z;-projections of points with
the same initial z2-coordinate (like A and C) will be equally spaced,
by cos(w), regardless of the rotation angle. It suffices to find all angles

- that make the z;-projections of points A-D equally spaced. For the

z1-coordinates of A-D, see the table below.
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point  z;-coordinate

A cos(w) + sin(w)

B cos(w) + 2sin(w)
C 2 cos(w) + sin{w)
D cos{w) + 3sin(w)

Between 0° and 45°, sin(w) < cos(w), so the point with the next
smallest z;-coordinate will always be B (although C will tie B when
w = 45°) and the distance between the smallest two T1-projections
will always be sin(w). To achieve equally-spaced x;-projections, the
distance between all x,-projections must equal sin(w). We've already
seen that this is true when w = 45° (equivalently, tan=!(1)) and both
C and B have the second smallest z;-coordinate.

Another possibility is that C will have the third smallest z;-
coordinate, and that the “z;-distance” between B and C will be sin(w).
However, the “z;-distance” between B and D is always sin(w). In
this case, C and D will have the same z,-coordinate, hence cos(w) =
2sin(w) => w = tan~1(1/2). Continuing in this manner, consider
the case where C has the fourth smallest z;-coordinate — after A, B,
and D - and the “z;-distance” between D and C is sin(w). Then
cos(w) — 2sin(w) = sin(w) = w = tan~1(1/3). Point C cannot have
the fifth smallest z,-coordinate, so these three rotations are the only
ones (again, among nontrivial angles between 0° and 45°) that yield
equally-spaced ;-projections from the 32 design. It is easily verified
that these also yield equally-spaced zz-projections.

Figure 2 displays the standard 32 factorial design, shown in open
circles, and the designs that result from these rotations, shown in solid
circles. Boxes are drawn around the rotated designs to identify the
design regions. In practice, one would then scale this design (by sub-
traction and division) to the experimental region of interest. Along
each axis, we have provided dot plots of the projections from which it
is plain to see the equally-spaced property.

Among the rotated standard p? factorial designs with equally-spaced
projections, only those obtained from rotation angles of tan='(1/p) con-
tain no redundant projections. Therefore, we define a p?-point rotated
full factorial design to be a rotated standard p? factorial design with
unique, equally-spaced projections to each dimension (which is a Latin
hypercube). Following the argument above, a general result for facto-
rial designs can be stated.
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Theorem 1: For nontrivial rotations between 0° and 45°, a rotated
standard p*® factorial design will produce equally-spaced projections to
each dimension if and only if the rotation angle is tan~(1/k), where

ke{1,...,p}.
2.3 High-Dimensional Rotation Theory

Consider a standard full factorial design consisting of d factors,
each with p levels. The goal is to rotate this design to convert it into
a LH design, so that the p? points create unique and equally-spaced
projections to each individual factor. For certain values of d (notably
when d is a power of 2) such a rotation exists, but not for general d. The

following proof proceeds in three parts: identification of the required

form of the rotation matrix, construction of the power-of-2 rotation
matrix, and failure of the transformation matrix to be a rotation matrix
when d is not a power of two.

A p-level, d-factor standard full factorial design can be represented
by a p? x d matrix, D, with entries from {1,2,...,p} and all p¢ combi-
nations represented.

1 1 1 P P P
1.1 1 P P P 1 i 1 ? P P
1 2 P 1 2 P 1 2 P 1

- P
(2.2)

A rotation of this matrix is accomplished by post-multiplication by a

d x d matrix R with the property that RTR = I; where I is the d x d

- identity matrix. (In this section, we relax the definition of rotation to

be a matrix R that satisfies RT R = kI for some scalar k, since the true
rotation can be obtained as (1/vk)R.) Let the multiplication matrix
R have entries denoted as r(; j;, which is the entry from the ith row and
Jjth column. Lemma 1 below will not be concerned with whether the
multiplication matrix is indeed a rotation matrix, but with how such a
matrix would yield unique and equally-spaced projections to each di-
mension.

Lemma 1: The entries of each column of the transformation matrix
R must be unique from the set {p*|t =0,1,...,d — 1} in order to yield
unique and equally-spaced projections.

The previous lemma shows that every column of the transformation
matrix must be a permutation of the set {1,p,...,p% 1} (allowing sign
changes to elements and multiplication of entire columns by a constant).
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However, every rotation matrix R satisfies RT R = kI, so that the sum
of squares for all columns of R must be equal. Then, WLOG, every
column of the transformation matrix must be a permutation of the set
{L,p,...,p*"!} (allowing only sign changes to elements). It is obvious
that the columns of the transformation matrix cannot be identical, for
otherwise the columns of the transformed matrix would be identical.
The following lemma shows that the ith entries for the d columns must
be unique in magnitude in order for the transformation to be a rotation.

Lemma 2: For a rotation matrix R, the zth entries of the d columns
are unique in magnitude for all 7.

Lemmas 1 and 2 proved that all the rows and columns of the trans-
formation matrix must be permutations of the set {1,p,...,p%"1} (up
to sign changes). However, this is not sufficient to guarantee that the
matrix will also be a rotation. Another requirement implied by the
rotation condition RTR = kl; is that the columns of R must be or-
thogonal. Any matrix satisfying the requirements of the lemmas and

- this last condition will rotate factorial designs into Latin hypercubes.
The remainder of this chapter shows how to create these matrices for d
that are powers of two and illustrates why other choices of d, in general,
have no such rotation matrix.

Let d be a power of 2. Let ¢ = log, d. Let

_— _ |+l +4p
‘/l_[vl W]_[+p _1] (23)
Now, for ¢ > 1, let V, be defined inductively from V,._; as follows:
. V._ _(pzuolv_l)- ‘
V. = el N 24
¢ [ p2 lV‘:_l (V—l)‘ ( )

.where the operator (-)* works on any matrix with an even number of
rows by multiplying the entries in the top half of the matrix by -1 and
leaving those in the bottom half unchanged.

Theorem 2: The matriz V. is a rotation of the d-factor (d = 2°),
p-level standard full factorial design which yields unique and equally-
spaced projections to each dimension.

Reviewing the two-dimensional result from section 2.2, when d =
2 =21, with w = tan~1(1/p) we have

- [ cos(tan~(1/p)) ~sin(tan~(1/p))

sin(tan~!(1/p)) c08(tan"(1/p))] \/1+ [+p +1 ]
' (2.5)
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which is the correctly scaled rotation matrix V; given in equation (2.3).
Other scaled rotation matrices for cases of interest (d = 4,8 corre-
sponding to ¢ = 2, 3) are

+1 -p +p* -P°
PP-1{ +p +1 -p* -p?
P11 4p® —-pP» -1 +p
+0* +p* +p +1

and

[ +1 -p +p? —p* +p' -p° +p° P’
+p +1 —p* -p? 4P +p! P P
+p -p* -1 +p -p® +p" +p* P
TR et S B S A 2 Sy ey -p*
po—1| +p* —p® +p% —p" -1 +4p P +p
+0° 4pt —p" —p -p -1 +p* +p?
+p% —p" -p' +p® 4P PP -1 4p
L +p7 4% 45 +pt 4P 4P 4p 41

2.7)

respectively.

The choice of rotation matrices for higher dimensions (d > 2) is
not unique. Other inductive definitions for V, in equation (2.4) are
possible, namely

Vet a7

o 2.8
P Ve Ve1 28)

However, the point is still clear, such rotations do exist.

Theorem 3 below proves that all designs obtained by rotation of
standard factorial designs, specifically rotated full factorial designs, will
also be orthogonal. Let k be the sum of squares of the first column of
X. As X is an orthogonal matrix, XTX = kl;. So (XR)T(XR) =
RT™XTXR = RTkI;R = kRTR = kl,, a diagonal matrix. Therefore,
the rotated design matrix X R is an orthogonal design.

Theorem 3: Let X be an orthogonal design matriz of n rows and d
columns in which the sums of squares for columns are equal. Let R be
a d x d rotation matriz. The design resulting from the matriz product
XR is also an orthogonal design.

Recall that Johnson et al. (1990) introduced the use of minimum
interpoint distance (MID) as an important design criterion (see equa- .
tion (2.1)). It can be shown that the MID using Euclidean distance for
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a p-point rotated factorial design scaled to the unit hypercube, [0,1)%,
is VIF P2+, +07/(p - 1) = /32 - D/((?® - Dp—1)?). Ad-
ditionally, it can be shown this is the maximal MID for d = 2. We are
unable to obtain a formal proof for higher dimensions, however. For
other theoretical properties, see Beattie and Lin (1998).

3. IMPACT OF DISPERSION EFFECTS

When studying both location and dispersion effects in unreplicated
fractional factorial designs, a “standard” procedure is to identify lo-
cation effects using ordinary least squares analysis, fit a model, then
identify dispersion effects by analyzing the residuals. Traditionally, the
primary use of these designs has been in detecting and modeling loca-
tion effects (changes in the mean response). An assumption of constant
variance is usually made. In this section, we show that if the model in

the above procedure does not include all active location effects, then

null dispersion effects may be mistakenly be identified as active. We
also derive an exact relationship between location and dispersion ef-

fects.

3.1 An Illustrative Example :

Montgomery (1990) analyzed data from an injection molding experi-
ment where the response to be optimized was shrinkage. The factors
studied were mold temperature (A), screw speed (B), holding time (C),
gate size (D), cycle time (E), moisture content (F), and holding pressure
(G). The design is a 27;;® fractional factorial, meaning it is a resolution
IV, 1/2? fraction of a 27 design. (See Box, Hunter, and Hunter (1978).)
The generators of this design are E=ABC, F=BCD, and G=ACD. The

data are shown in Table 2.

The least squares regression coefficients were obtained from fitting
a saturated model. ‘In 2%¥~? experiments, “effects” are calculated as
the average difference in the response at the 41 and —1 levels of the
column. Here, ef fect; = 2f8;. Montgomery used a normal probability
plot of the estimated effects and determined that columns 1, 2, and
5 (A, B, and AB) produce active location effects. He fit this location

model, which we denote Ml.
(M1)  §=27.3125+6.93754 + 17.8125B + 5.9375AB
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Table 2: Design Matrix and Response for Injection Molding Experiment

A B C€ D B - G F
ivjlo 1 2 3 4 5.6 7 8 9 10 11 13 13 14 15 gy
1 L e e A - = ~ + 6
2 1+ = - - - - -+ o+ o+ 4+ o+ ¢ - 10
3 O T 32
¢ e - 0

1 = = 4+ - + - 4+ - ¢ s + o+ - 4
[ I+ -+ - -+ - - o+ - - 4 2 + o+ 18
7 1 = 4+ + - - - 4 ¢ - -+ o+ - + 26
[ 1+ + + < 4+ + - 4 - - + - - - - 60
] 1 = - - 4+ 3+ + - 3+ - - 2 4 4 + - 8
10 1+ - -~ + - - 4+ 4+ - -+ - -~ + o+ 12
11 -+ -+ -+ - - s -+ + - + 34
12 1+ + -+ 4+ - o+ - 4 - . - - 60
13 1 - -+ o+ o+ - - - + o+ o+ - - + 16
14 1+ - + + - + + = - + - - + - - 5
15 1 -+ 4+ + - - -+ o+ o+ - - - + - 87
16 L +_+ 4+ + + + + 4+ 4+ 4+ o+ + _ + 63

The estimated residuals under M1 are (-2.50, -0.50, -0.25, 2.00, -4.50,
4.50, -6.25, 2.00, -0.50, 1.50, 1.75, 2.00, 7.50, -5.50, 4.75, -6.00). As a
measure of the dispersion effect magnitude for column J,» Montgomery

2
calculates the statistic F} = lnfé-*— which is the natural logarithm of the

ratio of the sample variances of the residuals at the +1 and —1 levels of
column j. Note that Box and Meyer (1986b) point out this statistic is
approximately normally distributed with mean 0 and variance 1. Mont-
gomery compared these statistics to an appropriate normal quantile to
determine significance. He also used a normal plot of these statistics.
Using either the normal quantile or the probability plot, it is evident
that column 3 (C) has a dispersion effect with

Seim1 _ 13244

A = In n = 2.50.
3| M1
' 3 2.66

Thus, Montgomery (1990) concludes that factors A (mold tempera-
ture) and B (screw speed) impact the mean shrinkage of the mold and
that factor C (holding time) impacts the variation in shrinkage. By
studying the interaction between mold temperature and screw speed,
it is apparent that the low screw speed is better for reducing mean
shrinkage and that the setting of mold temperature is not crucial at
this speed. To reduce the variation in shrinkage, holding time should
be set at its low level.

This logical procedure has been used by many and has become a
standard practice. However, the identification of dispersion effects is
quite sensitive to the location model that is fit. To illustrate, note that
another reasonable interpretation from the normal plot is that columns
7 and 13 have active location effects in addition to ‘columns 1, 2, and
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5 (see McGrath and Lin (2001b) for details). Due to the confounding
associated with this design, column 13 represents not just the factor G
effect alone, but also the ACD interaction and other effects. The AD
interaction effect appears in column 7 and the interaction of columns
7 and 13 appears in column 3.

We denote this model with five location effects (columns 1, 2, 5, 7,
and 13) as M2.

(M2) § = 27.3125+6.93754 + 17.8125B + 5.9375AB
—2.6875AD — 2.4375ACD.

The residuals from model M2 are (-2.250, -0.750, 0.000, 1.750, 0.625,
-0.625, -1.125, -3.125, -0.750, 1.750, 1.500, 2.250, 2.375, -0.375, -0.375,
-0.875). From this model we have the F} statistic for column 3,

834 M2 _ 242
i = gt s InZ=2 = ~0.06.

Here, it is apparent there is no dispersion effect associated with column
3 (factor C) as the sample variance of residuals is quite similar at the
—1 and +1 levels of column 3.

So we have two feasible models for mold shrinkage, M1 and M2.
M1 shows two factors important for determining the location (mean)
of the response, and also includes another factor that is important for
controlling the variation in the response. M2 includes four factors that
affect the mean response and no dispersion factors. Which model is
more appropriate? Isone model better than the other? Some additional

information may be helpful. The experiment actually included four -

center points (25, 29, 24, 27) in addition to the fractional factorial.
From these center points, we have an estimate of the variance of the
response, 02, of 62 = 4.92. M1 produces 63,, = 20.73 and M2 produces
6%, = 3.81. The M2 estimate is in much better agreement with the
center point estimate.

. Therefore, a reasonable conclusion based on model M2 is that there
are four important factors: mold temperature, screw speed, holding
time and gate size (D). If this experiment is truly a screening experi-
ment, then fitting M1 would have eliminated a potentially important
factor, gate size. So we have two distinctly different possibilities: (1)
failing to include a pair of location effects created a spurious disper-
sion effect, or (2) failing to account for a dispersion effect created two
location effects. These spurious dispersion effects are not uncommon.
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It can be shown that the exclusion of a pair of active location effects
will create an apparent (spurious) dispersion effect in the interaction of
these two columns. Box and Meyer (1986a) and Bergman and Hynén
(1997) both noted a relationship between location and dispersion ef-
fects. We next provide a theoretical explanation showing that failure
to include two location effects in a model before calculating residuals
can produce a spurious dispersion effect.

3.2 Spurious Dispersion Effects

Assume some method is used to identify m active location effects in
an unreplicated fractional factorial design. A model is fit and residuals
are estimated, but assume there are two active location effects that are
excluded from this model. Let the excluded active location effects be
in columns x; and xy and let x4 be the column associated with the
interaction of x; and xy. Then zizi; = zig. Let f§; and fj be the
usual least squares estimators of 8; and Bj, the regression coefficients
associated with x; and xj respectively. We will show that failure to
include B; and By in the regression model will create a difference in
the expected value of the sample variances at the +1 and —1 levels of
Xd. , o

Define the following sets of rows using the convention P for ‘plus’
and M for ‘minus” M = {i: 2y = —1}, P = {i : ;g = +1}. A
dispersion effect occurs when the variance of the response, independent
of the location effects, (or equivalently, the variance of the residuals
from a known location model) is higher at one level of a column than
the other. We can compare sample variances of the residuals at the
plus and minus levels of a column to determme if it has a dispersion
effect. Let

aﬁ_,_— 22(6,—6,) a.ndsd_-———z:(e. Em)?,

i€EP ieEM

where, &n = 23, \ i and &, = 2 37, e;: It can be shown that the
expected sample variance of the resxduals whenzyy=-1(i € M) is

Bl = [ 22(3‘_%)] noiom,

iEM

2(ﬂj - By)? (3.1)
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and when z;4 = +1 (i € P),

2 | - n—1-m
Elsi] = E mg(ee—ep)z] ==
i€

+ = (B; +Bj)*. (32)

n
From (3.1) and (3.2) we have

in
n-—-2

E[s3:] -E[s3-] = BiBijt - (3.3)

Thus, consider the following three scenarios involving 8; and f;::

o If B; = ﬂj" = 0, then these two location effects are not active
and E (53] = E[s,] = 2515207 and £ [s3,] - E[s3.] = 0.
Thus, any difference is just random error so there will should be

no spurious dispersion effect.

o If only one of the coefficients is nonzero, then (3.3) is still zero
as mentioned in Bergman and Hynén (1997), although both are
biased upwards as estimates of o?.

e If 8; and Bj # 0, the residuals will have different expected vari-
ance at the —1 and +1 levels of x4. Thus, excluding two location
effects from a model and then studying residuals can create a
spurious dispersion effect.

Returning to the injection molding example, if we assume columns
7 and 13 produce active location effects but were left out of the model,

then we have

E [3§+|M1]TE [3§—|M1] = n4f2/§7313

= (—4-)1(:—6)(-—2.6875)(—2.4375) = 29.95

Recalling that sg_' M1 = 2.66 and s2 i1 = 32.44, we have
8341 — S5 a1 = 29.79.

So the observed difference in sample variances is almost the same as
that caused by not including 87 and B;3 in the model. This indicates
the dispersion effect detected by fitting model M1 is spurious.
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3.3 Theoretical Summary

e McGrath and Lin (2001a) shows that (1) failing to include a pair
of location effects creates a spurious dispersion effect in its inter-
action column; and (2) two dispersion effects create a dispersion
effect in their interaction column. They also provide a way to
simultaneously analyze the location and dispersion effects.

o Let B; and f; be the OLS estimates for columns x; and xy
respectively in a 25~ experiment. If the interaction of x; and xy
is in column x4, Var(e|zia = —1) =03_ and Var(ei|zia = 1) =
03, then the correlation of 3; and g is

_ J4s =i (3.4)

¢ Let m be the number of active location effects in the model fit
from a 2¥~7 experiment. Let g = the number of alias pairs
(x5, xy) not in the model such that z;;z;j = zigfori=1,...,n.
Then sZ, and s3_ are independent if and only if g.= (n—1-m)/2
and x4 is in the effect matrix for the fitted model.

4. FOLDOVER PLAN

A standard follow-up strategy discussed in many textbooks involves
adding a second fraction, which is called a foldover design (or simply
foldover), by reversing the signs of one or more columns of the initial
design (e.g., Box, et al., 1978; Montgomery, 2001; Neter, et al., 1996;
Wu and Hamada, 2000). Here, we develop optimal foldover plans for
commonly used fractional factorial designs. The criterion we use is the
aberration of the combined design. (A combined design refers to the
combination of the initial design and its foldover.) Note that foldovers
may be constructed for various reasons. If the analysis of the initial
design reveals a particular set of main and interaction effects that are
significant, then the foldover design should be chosen to resolve con-
founding problems with these significant effects. For example, if one
particular factor is very important and should not be confounded with
other factors, then a foldover based on reversing the sign of this factor
is appropriate. (or as many as possible) main effects from two-factor



62 Calcutta Statistical Association Bulletin

interactions, and (b) to de-alias as many as possible two-factor inter-
actions from each other, then the aberration criterion appears to be a
good choice.

Note that the aberration criterion has been used (sometimes implic-
itly) among the existing foldover strategies. For example, a commonly
used foldover strategy for a resolution III design involves reversing the
signs of all factors. This is usually considered to be a good strategy be-
cause the resulting combined design has resolution IV—which is higher
than the resolution of the initial design. This section demonstrates
that the use of the aberration criterion can lead to further improve-
ment. The combined. design may have a higher resolution or the same
resolution with fewer numbers of two-factor interactions which are con-
founded with each other.

4.1 Existing Work

Let w; denote the number of words of length i in the defining re-
lation of a design d. The vector W(d) = (wi, w2, ws,...,wx) is called
the word length pattern (WLP) of the design. (For simplicity, only
(ws, .. .,wy) of WLP’s are displayed in this article.) The resolution of
d is defined as the smallest r such that w, > 1. For any two designs d;
and dj, let s be the smallest integer such that w,(d;) # w,(dz). Then
d, is said to have less aberration than dz, denoted by W(d;) < W(d2),
if w,(d;) < w,(d2). When there is no design with less aberration than
d;, d; has minimum aberration.

Denote a foldover plan « as the collection of columns whose signs
are to be reversed in the foldover design, then each foldover is generated
by a foldover plan. For example, v = 456 produces a foldover design
by reversing the signs of factors 4, 5, and 6. A classic approach to
constructing a foldover design is to reverse the signs of all k factors.
We call this type of foldover plan a full-foldover plan and denote it
by v = 1---k. The corresponding foldover design d’ (¥f) is called
a full-foldover. Most popular statistical software packages (e.g., SAS)
take this approach. The combined design generated by this foldover
plan, however, may not be optimal with respect to its WLP. Consider
a fractional factorial 2 2 design generated by: 6 = 1234 and 7 = 1245.
When the signs of all 7 factors are reversed, the combined design has
W = (0,1,0,0,0). This is a resolution IV design that has a pair of two-
factor interactions that are fully aliased. A quick search reveals that
« = 6 produces a resolution V design with W = (0,0, 1,0,0), namely,
all two-factor interactions are clear.
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Other foldover plans have also been proposed in the literature. Sign-
-eversal of one factor was considered in, for example, Box et al. (1978)
and Wu and Hamada (2000). Montgomery and Runger (1996) consid-
ered foldovers generated by reversing the signs of one or two factors.
For resolution IV designs, the rule of reversing signs of all factors is
not directly applicable because the resulting combined design will have
the same number of length-4 words. Some software packages consider
different foldover strategies for these designs. For example, in Design-
Expert V6, it is suggested that the sign of a single column be reversed.
Another software package, called RS/Discover, suggested reversing the
sign of the factor if the generator in which this factor is involved is an
odd-length word. It is not clear, however, whether any of these previ-
ously given foldovers is optimal (with respect to WLP of the combined
design). To our knowledge, the optimality of foldover designs has not
been addressed in the literature.

4.2 Construction of Optimal Foldovers

Denote the initial design, the foldover, and the combined design
by d, d’, and D, respectively. The optimal foldover plan v* is the one
such that W(D(vy*)) = min,er W(D(7)), where ' = {m,...,7,} is the
foldover plan space and ¢ is the total number of possible foldover plans.
The resulting foldover d’(y*) and combined design D(y*) are called
optimal foldover and optimal combined design, respectively. Given a
2%=P design, the optimal foldover plan 7* can be found by searching
all ¢ = 2* possible foldover plans. Note, however, that many of these g
foldover plans produce the same foldover design. We call them equiv-
alent foldover plans. Consider, for example, a 2"{,"1 design defined by
a generating relation 5=1234. Obviously, the foldover plans v; = i
(i = 1,2,3,4) are equivalent to each other. And they are all equivalent
to a foldover plan 4, = 5, which only involves the generated factor of
the design—factor 5. (Without loss of generality, weuse 1,...,k—pto
denote the basic factors and ¥ — p + 1,...,k to denote the generated
factors.) In general, if a foldover plan . consists only of the generated
factors, we call it a core foldover plan. An important property is that
every foldover plan is equivalent to a specific core foldover plan (the
proof is given in Li and Lin, 2000):
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Theorem 4: For a 2¥~P design with p generators G1,...,Gp, any
Jfoldover plan is equivalent to a core foldover plan. Moreover, for every
core foldover plan, there are 2P foldover plans that are equivalent to
it ' :

Based on Theorem 4, we present an algorithm to search for optimal
foldover plans. The algorithm is an exhaustive search method based
on a specific set of the p generated factors. Note that the number of
candidate foldover plans is only 2P—a fraction of the total number of
candidate foldover plans 2. The computer program consists of the
following steps:

1. Input n, k, and p of the initial design d.
2. Generate all 2P —1 defining words of d for a given set of G4, ..., Gp.
3. For each core foldover plan ;, (i = 1,...,2°).

(a) Consider all defining words of d. For each word, if there is
an even number of factors whose signs are reversed by ~;,
this word is retained in the defthing relation of the combined
design D(v;); otherwise, the word is deleted.

(b) Compare W(D(y;)) with W(D(v*)) where v* is the best

~ core foldover plan among those that are considered before
7:. Update v* when W(D(y;)) < W(D(¥*)).

4. Output v* and W (D(v*)).

.We use this algorithm to construct the optimal foldovers for 16- and
32-run designs. Although fractional factorial designs with the minimum

aberration are commonly used in practice, in some situations other de- -

signs can meet practical needs better. Chen et al. (1993) presented a
catalog of complete 16-run designs and selected 32-run designs. Finding
optimal foldovers of these designs would be important and useful for
practitioners. Thus, by using the computer search method described
in this section, we constructed optimal foldovers of all these designs.
The methodology described in this article is applicable to any 2k
fractional factorial design. We have focused here on 16-run and 32-run
designs with k£ < 11 because most standard textbooks give designs of
up to 11 factors and foldovers of designs with n > 64 are rarely used
in practice. Foldovers of other (larger) designs, however, can be con-
structed in a straightforward manner. These optimal foldover plans for
all 16-run and 32-run designs are given in Li and Lin (2000).
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4.3 vMajor Findings

For most designs, there exist better foldover plans than the classic
full-foldover plans. In 52 out of 77 cases we have found better foldover
plans than the corresponding full-foldover plans. While some of them
may be obtained by previously reported methods in the literature, most
are new. It shows the numbers of optimal foldover designs that are
better than the full-foldovers for each given set of (k,p).

For resolution III designs, the full-foldover plans produce combined
resolution IV designs. An optimal foldover plan can further improve
this desirable property by two means. Firstly, it may further increase
the resolution of the combined design D. One example is Design
7-2.5, for which the WLP of the combined design from full-foldover
is W(D(7%))=(0,1,0,0,0), whereas the optimal combined design has
W(D(v*))=(0,0,0,0,1). Secondly, it may lead to a resolution IV de-
sign with fewer length-4 words. Thus, the optimal combined design
can de-alias more two-factor interactions from each other. Consider,
for example, Design 7-3.2, for which the full-foldover plan produces a
combined design with three length-4 words I = 2356 = 2347 = 4567.
But the corresponding optimal combined design has only one length-4
word I = 2356.

Although foldovers of resolution III designs are more common in
practice, augmenting resolution IV designs can sometimes be impor-
tant as well. Such examples were discussed in Montgomery and Runger
(1996). The objective here is to de-alias two-factor interactions from
each other. We find that the improvement over the full-foldover plans
from the optimal foldover plans is usually substantial. For example,
optimal foldovers of the minimum-aberration designs 8-3.1, 9-4.1, 10—
5.1, and 11-6.1 de-alias 2, 4, 6, and 15 out of 3, 6, 10, and 25 pairs
of two-factor interactions, respectively. The percentages of de-aliased
pairs of two-factor interactions by optimal foldovers of non-minimum-
aberration designs are also in the range of 60%~80%. Notable excep-
tions are Designs 7-2.1 and 7-2.2, for which the optimal combined
designs have resolution V and VI, respectively. This demonstrates
that augmenting resolution IV designs may also produce designs with
a higher resolution.

~ We conclude this section by giving two remarks. Firstly, one dis-
advantage of the foldover design is that the run size may become large
in some situations. In these cases, partial foldovers proposed by Mee
and Peralta (2000) can be considered. Optimal partial foldover plans
are currently under study. Mee and Peralta (2000) pointed out that
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foldover designs are sometimes inefficient. Such an argument, however,
is valid for conventional full-foldover, but may not apply to the optimal
foldover plan given here. Secondly, there are various reasons for using
a foldover design. Thus, the aberration criterion should not be consid-
ered as the only criterion. However, in the situation where the use of
aberration criterion is justified, the optimal foldover plans presented in
Li and Lin (2000) are recommended. We also note that the proposed
approach can be applied to other design criteria in a straightforward
manner.

5. DiIscussIiON

This paper introduced some recent developments in industrial ex-
perimentation. Section 2 discusses the popular computer experiment
and its related issues. A class of design suitable for computer experi-
ments is proposed. Section 3 discusses the impact of dispersion effect
in analyzing the screening designs, using 2P design as an example.
Section 4 discussed the foldover plans. Most designs discussed here
provide somewhat unique features to the experimenters. These are
some of my undergoing research topics, many of them deserves further
investigation. ] hope that this paper will be useful for those who are
interested in research problems in design area.
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