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In unreplicated 2kƒp designs, the assumption of constant variance is commonly made. When the variance
of the response differs between the two levels of a column in the effect matrix, that column produces
a dispersion effect. In this article we show that two active dispersion effects may create a spurious
dispersion effect in their interaction column. Most existing methods for dispersion-effect testing in
unreplicated fractional factorial designs are subject to these spurious effects. We propose a method
of dispersion-effect testing based on geometric means of residual sample variances. We show through
examples from the literature and simulations that the proposed test has many desirable properties that
are lacking in other tests.
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Traditionally, the primary use of fractional factorial designs
has been in detecting the factors that produce location effects
(changes in the mean response). An assumption of constant
variance (no dispersion effects) is usually made. Many tech-
niques have been designed to attack this problem. Examples of
studies of location effects in unreplicated fractional factorial
designs include those of Daniel (1959, 1976), Box and Meyer
(1986a), Lenth (1989), Juan and Peña (1992), and Loughin
and Noble (1997). See Hamada and Balakrishnan (1998) for
an overview and comparison of different methods.

Taguchi (e.g., see Taguchi and Wu 1980) emphasized the
importance of detecting dispersion effects. If a factor produces
a dispersion effect in the response, the factor level can be
adjusted to reduce the variation in a manufactured product.
Thus, identifying and studying dispersion effects can result in
a product or process that is robust to environmental variations
(noise). Techniques have been developed for studying disper-
sion effects in replicated experiments with r ¶ 2 observations
at each design setting. See Davidian and Carroll (1987) and
Nair and Pregibon (1988) for examples.

For unreplicated fractional factorials, however, no estimate
of variation is available at each design setting, making the
study of dispersion effects more challenging. If the design is
a fractional factorial, the confounding greatly increases the
complexity. In their pioneering work, Box and Meyer (1986b)
developed an informal method for identifying dispersion
effects in unreplicated experiments by studying the logarithm
of the ratio of residual variances. They noted, as did Pan
(1999) and McGrath and Lin (2001), the importance of � rst
identifying location effects before studying dispersion effects.
Montgomery (1990) extended this method by plotting these
statistics on a normal probability plot to distinguish between
small and large dispersion effects. Wang (1989) developed
a test statistic that has an approximate �2 distribution for

a large sample size. Ferrer and Romero (1993a,b) used the
residuals (or an appropriate transformation of the residuals)
as a response to study dispersion. More recently, Bergman
and Hynén (1997) developed an exact dispersion test using
a statistic having an F distribution, while McGrath and Lin
(1999) developed a nonparametric version of this test. We
show in Section 3 that these tests behave as expected only
when a lone dispersion effect exists. Wol� nger and Tobias
(1998) used a mixed-model approach that is applicable for
unreplicated full factorials but not highly fractionated designs.
In this article, we discuss a new test that is applicable even
when there are multiple dispersion effects in unreplicated
2kƒp experiments.

The article is organized as follows. In Section 1 we dis-
cuss the test of Bergman and Hynén (1997), an appropriate
dispersion-effect testing method when only a single dispersion
effect is present. In Section 2 we show that two dispersion
effects create a spurious dispersion effect in their interaction
column and develop a new test that is insensitive to this prob-
lem. Examples from the literature are used to compare these
methods. In Section 3 various simulations show the superior-
ity of the proposed method. Finally, Section 4 provides some
practical considerations and recommendations.

1. AN EXISTING METHOD

Suppose an n D 2kƒp fractional factorial design is run. The
design matrix, X D 4x01x11 : : : 1 xnƒ15 represents k factors and
interactions between these factors depending on the degree
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of fractionation, x0 D 411 : : : 1 150, and 4xj
D x1j1 x2j 1 : : : 1 xnj5

0

with xij
D 1, j D 11 : : : 1 nƒ 1. We assume that the observa-

tions are independently normally distributed with

Yi
D

nƒ1X

jD0

xij‚j
C …i1 …i N401‘ 2

i 51 ‘ 2
i

D ‘ 2
nƒ1Y

jD1

ã
xij =2
j 1 (1)

with ‚j , ãj , and ‘ 2 unknown parameters. This model repa-
rameterization was used by Cook and Weisberg (1983), among
others; ‚j is a measure of the location (additive) effect for
column j , and ãj is a measure of the dispersion (multiplica-
tive) effect for j . The absence of dispersion effects—that is,
ãj

D 11 j D 11 : : : 1 n ƒ 1—corresponds to the usual model,
assuming homogeneity of variance.

Bergman and Hynén (1997) developed a dispersion-effect
test statistic, DBH, that has an F distribution. Because our pro-
posed approach has some similarities, we brie� y describe their
procedure for comparison purposes. De� ning ei as the residual
from the � tted model in row i, it is straightforward to show
that when testing the null hypothesis ãj

D 1, DBH
j is the ratio

of the sample variances of residuals from Pj
D 8ei 2 xij

D C19

and Mj
D 8ei 2 xij

D ƒ19—that is, s2
jC=s2

jƒ. However, a spe-
ci� c model must be � t for this statistic to have an F distri-
bution. It must include exactly the overall mean, all active
(nonzero) location effects, the location effect of the column to
be tested for dispersion, and the interaction of the dispersion-
effect column with the other terms in the model. Accordingly,
several different location models need to be � t to test all of
the columns.

Example 1. As an example of calculating DBH, Bergman
and Hynén (1997) studied data originally analyzed by Davies
(1956). The effect of � ve factors on the quality of a dyestuff
was studied in an unreplicated 25ƒ1

V design. The � ve factors
were temperature 4A5, starting material 4B5, reduction pres-
sure 4C5, oven drying pressure 4D5, and vacuum leak 4E5.
Table 1 shows the design matrix and responses where the y1

column contains the responses. All authors found that D has a
large impact on location—that is, the mean dyestuff quality—
and appears to be the only location effect. This � nding also
agrees with the results using the procedure of Lenth (1989)
with � D 005.

Table 1. Experimental Designs and Responses

A B C D A
B

A
C

A
D

B
C

B
D

C
D

D
E

C
E

B
E

A
E E

i n j 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 y1 y2

1 1 ƒ1 ƒ1 ƒ1 ƒ1 1 1 1 1 1 1 ƒ1 ƒ1 ƒ1 ƒ1 1 20105 13
2 1 1 ƒ1 ƒ1 ƒ1 ƒ1 ƒ1 ƒ1 1 1 1 1 1 1 ƒ1 ƒ1 17800 54
3 1 ƒ1 1 ƒ1 ƒ1 ƒ1 1 1 ƒ1 ƒ1 1 1 1 ƒ1 1 ƒ1 18305 44
4 1 1 1 ƒ1 ƒ1 1 ƒ1 ƒ1 ƒ1 ƒ1 1 ƒ1 ƒ1 1 1 1 17600 49
5 1 ƒ1 ƒ1 1 ƒ1 1 ƒ1 1 ƒ1 1 ƒ1 1 ƒ1 1 1 ƒ1 18805 13
6 1 1 ƒ1 1 ƒ1 ƒ1 1 ƒ1 ƒ1 1 ƒ1 ƒ1 1 ƒ1 1 1 17805 14
7 1 ƒ1 1 1 ƒ1 ƒ1 ƒ1 1 1 ƒ1 ƒ1 ƒ1 1 1 ƒ1 1 17405 18
8 1 1 1 1 ƒ1 1 1 ƒ1 1 ƒ1 ƒ1 1 ƒ1 ƒ1 ƒ1 ƒ1 19605 85
9 1 ƒ1 ƒ1 ƒ1 1 1 1 ƒ1 1 ƒ1 ƒ1 ƒ1 1 1 1 ƒ1 25505 41

10 1 1 ƒ1 ƒ1 1 ƒ1 ƒ1 1 1 ƒ1 ƒ1 1 ƒ1 ƒ1 1 1 24005 73
11 1 ƒ1 1 ƒ1 1 ƒ1 1 ƒ1 ƒ1 1 ƒ1 1 ƒ1 1 ƒ1 1 20805 79
12 1 1 1 ƒ1 1 1 ƒ1 1 ƒ1 1 ƒ1 ƒ1 1 ƒ1 ƒ1 ƒ1 24400 17
13 1 ƒ1 ƒ1 1 1 1 ƒ1 ƒ1 ƒ1 ƒ1 1 1 1 ƒ1 ƒ1 1 27400 82
14 1 1 ƒ1 1 1 ƒ1 1 1 ƒ1 ƒ1 1 ƒ1 ƒ1 1 ƒ1 ƒ1 25705 58
15 1 ƒ1 1 1 1 ƒ1 ƒ1 ƒ1 1 1 1 ƒ1 ƒ1 ƒ1 1 ƒ1 25600 10
16 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 27405 29

Using their DBH, Bergman and Hynén also found a dis-
persion effect due to E and mild dispersion effects due to
D and DE (see col. 2 of Table 2). To calculate DBH

D , the
location model is simply Yi

D ‚0 C xiD‚D
C …i0 (We will use

the notation DBH when referring to the general test statistic
and DBH

j when referring to the statistic calculated for column
j .) Using the residuals from this model, DBH

D
D s2

DC=s2
Dƒ D

447064=100005 D 40474. With two terms in the model, there
are 416 ƒ 25=2 D 7 df in each variance estimate. Compar-
ing DBH

D to an F71 7 distribution gives a p value of .009. As
previously mentioned, to calculate DBH

E the model must be
adapted to

Yi
D ‚0

C xiD‚D
C xiE‚E

C xiDE ‚DE
C …i0 (2)

Residuals from this same model can also be used to calculate
DBH

DE . With four terms in this model, there are 416 ƒ 45=2 D 6
df in each variance estimate, so the DBH can be compared to
an F61 6. The same procedure can be used with the appropriate
model to test for dispersion in each column.

In the next section we show that when there are multiple
dispersion effects, as there may be in this example, this test
can be misleading because spurious dispersion effects may be
created. In Section 3 we show that DBH tests for null disper-
sion effects have in� ated signi� cance levels in the presence of
a single active dispersion effect.

2. THE PROPOSED METHOD

De� ne an interaction triple 4xj1xj 0 1xj 005 such that xij xij 0 D
xij 00 for i D 11 : : : 1 n and the actual magnitudes of dispersion
effects in these columns as ãj , ãj 0 , and ãj 00 . In Section 2.1 we
derive a dispersion-effect test in which the location model con-
sists exactly of an overall mean and an interaction triple. From
this case, we derive the general test statistic in Section 2.2.
Throughout this article, we assume that the observations are
normally distributed in accordance with (1). Unless otherwise
speci� ed, we will assume that all active location effects have
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Table 2. Dispersion-Effect Statistics and p Values for Example 1

Fc 1c approx.
Effect DBH (p value) FML p value p value

D 4047 (0066) 1097 0463 0464
E 11051 (0009) 8019 0033 0033
DE 5029 (0062) 3014 0222 0224

been identi� ed and are included in the model. In Section 3 we
discuss the impact of unidenti� ed location effects.

2.1 Interaction Triple Dispersion-Effect Testing

Suppose two columns of an interaction triple have disper-
sion effects (ã 6D 1). Then a dispersion effect is induced in
their interaction column (the third member of the interaction
triple). This can be seen as follows. Any interaction triple cre-
ates four unique sets of rows with the variance of each row
(assuming that columns not shown do not produce dispersion
effects) to be given hereafter:

j j 0 j 00 Variance/‘ 2

ƒ1 ƒ1 C1 4ãj 00=ãjãj 0 51=2

C1 ƒ1 ƒ1 4ãj=ãj 0 ãj 0051=2

ƒ1 C1 ƒ1 4ãj 0 =ãjãj 0051=2

C1 C1 C1 4ãj ãj 0 ãj 0051=2.

Suppose a location model is � t that includes exactly the
overall mean and the location-effect estimates of an interaction
triple, as in (2). De� ning Cq , q D 11 : : : 14, as the four sets
of residuals corresponding to the unique rows, DBH

j can be
written as

DBH
j

D
s2

jC

s2
jƒ

D
P

ei2Pj
e2

iP
ei2Mj

e2
i

D
P

q2Cq Pj
s2

qP
q2Cq Mj

s2
q

1 (3)

where s2
q is the sample variance of the residuals contained

in Cq . Thus, we can view DBH as the ratio of the sum (or
arithmetic mean) of two sample variances and the sum (or
arithmetic mean) of two others. Calculating this ratio using
the variances of the observations and denoting it RBH

j , we have

RBH
j

D 4ãj=ãj 0 ãj 0051=2 C 4ãjãj 0 ãj 0051=2

4ãj 00=ãjãj 0 51=2 C 4ãj 0 =ãjãj 00 51=2
D 1C ãj 0 ãj 00

ãj 0 C ãj 00
ãj 0

Additional pairs of active dispersion effects having their inter-
action in column j would create additional multipliers of the
same form. This product is the dispersion effect that DBH esti-
mates. Other tests such as those of Box and Meyer (1986b),
Wang (1989), and McGrath and Lin (1999) also estimate this
biased effect. In general, letting ãI

j be the dispersion effect
induced by the other two dispersion effects,

ãI
j

D 41C ãj 0 ãj 005=4ãj 0 C ãj 0050 (4)

So ãI
j is a multiplicative factor that increases (or decreases)

the underlying dispersion effect of column j, possibly creating
a spurious dispersion effect or dampening a true effect. Note
that ãI

j
D 1 iff ãj 0 or ãj 00 or both D 1.

We propose a geometric mean approach to avoid the spu-
rious dispersion effect. Viewing the far right side of (3) as

a ratio of arithmetic means, we instead calculate a ratio of
geometric means resulting in the test statistic

F ML
j

D
Q

q2Cq Pj
s2

q

1=2

Q
q2Cq Mj

s2
q

1=2
D

³Q
q2Cq Pj

s2
qQ

q2Cq Mj
s2

q

1́=2

0 (5)

Again, we will use the notation F ML when referring to the
general test statistic and F ML

j when referring to the statistic
calculated for column j . Calculating this ratio using the vari-
ances of the observations and denoting it RML

j , we have

RML
j

D 4ãj=ãj 0 ãj 0051=24ãjãj 0 ãj 0051=2

4ãj 00 =ãjãj 0 51=24ãj 0 =ãjãj 0051=2

1=2

D ãj 0

Thus, by studying products of variances instead of sums, no
spurious dispersion effect is created.

F ML, as de� ned in (5), can be viewed as the square
root of the product of two independently and identically
Fd1 d-distributed random variables, where d is the degrees
of freedom associated with each s2

q . As pointed out by one
referee, we have assumed that all active location effects are
included in the interaction triple. We also assume that no two
columns with active dispersion effects are excluded from the
interaction triple while their interaction column is included.
In Section 3 we show that this assumption is less restrictive
than that of DBH.

The distribution of F ML can be easily simulated by generat-
ing two large samples of independent Fd1 d random variables,
forming pairs, and calculating the geometric mean of each
pair. In addition, we show in the Appendix that

E4F ML5 D â64d C 15=27â 64d ƒ 15=27â ƒ26d=27
2
1 (6)

where â6¢7 is the gamma function. The distribution of F ML,
however, can be approximated by an Fc1 c distribution. It is
well known that, if F Fc1 c , then E4F 5 D c=4c ƒ 251 c > 2.
Setting E4F ML5 D c=4c ƒ 25 and solving for c gives

c D 28â64d C 15=27â 64d ƒ 15=2792

8â64d C 15=27â 64d ƒ 15=2792 ƒ â 46d=27
0 (7)

Example 1 Revisited. Returning to Example 1, we calcu-
late F ML for D, E, and DE . Fitting Model (2) we can calculate
DBH

E and DBH
DE , as well as the residuals. Note that the model

containing these three columns’ location effects can also be
used to calculate DBH

D . The residuals fall into the sets C1
D

8e11 e41 e61 e79, C2 D 8e21 e31 e51 e89, C3 D 8e91 e121 e141 e159,
and C4 D 8e101 e111 e131 e169. Calculating the sample variance
of the residuals in each set yields s2

1
D 161006, s2

2
D 61073,

s2
3

D 38075, and s2
4

D 995073. With d D 3, we � nd E4F ML5 D
1062411 and c D 5021989 from (6) and (7). Thus, we can
approximate the distribution of F ML

j with an F502215022 distribu-
tion. (Although noninteger degrees-of-freedom critical values
are not commonly found in published tables, statistical pack-
ages can easily calculate p values or provide critical values
in these cases.) Applying (5) we have the results shown in
the last three columns of Table 2. (The simulated distribution
was based on 200,000 pairs of independent F50221 5022 random
variables, so the standard error of the reported p values is

.0005 for p value D 005.) Thus it appears that E has a dis-
persion effect but that D and DE do not. We will further
discuss the con� icting results of DBH and F ML in this example
in Section 4.

TECHNOMETRICS, NOVEMBER 2001, VOL. 43, NO. 4



TESTING MULTIPLE DISPERSION EFFECTS IN UNREPLICATED FRACTIONAL FACTORIAL DESIGNS 409

2.2 The General Test

The use of F ML is not limited to the case in which the � tted
model consists solely of an interaction triple as in Example 1.
It may be used for any unsaturated model from an unreplicated
2kƒp experiment such that the interaction of every pair of terms
in the model is also in the model. In other words, the � tted
location model must include exactly the following terms:

1. The overall mean (‚0)
2. All active location effects and their interactions
3. The location effects of the columns to be tested for dis-

persion and their interactions
4. The interactions of all of the preceding terms

Model (2) is of this form since it includes exactly the overall
mean and an interaction triple. The next smallest model would
include this model, one additional term, and the interaction
of the additional term with each term in the interaction triple.
With such a model, seven columns can be tested for dispersion
effects. For example, suppose the researcher wanted to test
factor C for dispersion. Then (2) would be adapted to

Yi
D ‚0 C xiD‚D

C xiE‚E
C xiDE‚DE

C xiC‚C

C xiCD ‚CD
C xiCE ‚CE

C xiCDE ‚CDE
C …i0

The preceding conditions imply that the maximum number
of dispersion effects to be tested by F ML is 4n ƒ 25=2 in an
unreplicated design. Although this may seem restrictive, it
is sensible. If the adapted location model includes 4n ƒ 25=2
terms (plus the overall mean), then only 4n ƒ 25=2 df remain
for estimating dispersion effects plus the overall variance.

In general, the covariance matrix of the residuals from the
appropriate model meeting the preceding conditions can be
calculated to determine what sets of residuals are correlated
with each other, forming the Cq’s. Alternatively, each Cq con-
sists of the residuals from rows of the effect matrix with identi-
cal entries for the adapted model. Thus we see that a replicated
design of a fraction of the original design is formed. The resid-
uals from the adapted model fall into m mutually exclusive
sets Cq1 q D 11 : : : 1m, each with n=m residuals such that the
residuals are correlated within set and uncorrelated between
sets. For each q and each j such that O‚j is in the � tted model,
either Cq Pj or Cq Mj . De� ne s2

q as
P

ei2Cq
e2

i =4n=mƒ15—
that is, the sample variance of the residuals. If the sample
variance of each set has d df, then we have the following
general formulas:

F ML
j

D
³

Y

q2Cq Pj

s2
q

Y

q2Cq Mj

sƒ2
q

2́=m

(8)

and

E F ML
j

D 4â 6d=2C 2=m7â6d=2 ƒ 2=m7â ƒ26d=275m=20 (9)

Here, F ML may be viewed as the 2=mth power of the product
of m=2 iid Fd1 d random variables based on the same assump-
tions used in the interaction triple case. Its distribution can be
simulated in a straightforward manner or can be approximated
by an Fc1 c distribution with

c D 2 8â6d=2 C 2=m7â6d=2 ƒ 2=m79m=2

8â6d=2 C 2=m7â6d=2 ƒ 2=m79m=2 ƒ â m6d=27
0 (10)

Simulations have shown that the approximation works quite
well. The possible combinations of m and d for unreplicated
designs of n D 16 runs are 4m1 d5 D 441351 48115 and for n D
32, 4m1d5 D 441751 481351 416115. (Note: Whenever m D 2,
F ML D DBH Fd1 d because there is only a single dispersion
effect being tested.) The approximation seems least accurate
for d D 1, speci� cally 4m1d5 D 48115, a case we discuss in
the following example and in the simulations of Section 3.

Example 2. Consider data originally analyzed by Anderson
and McLean (1974). The experiment was a 25ƒ1

V design to
study the impact of � ve factors on an index of “goodness” of
asphalt concrete. The response is shown in the y2 column of
Table 1. Anderson and McLean used this example to illustrate
the analysis of a 1=2 fraction and did not intend to discuss
dispersion effects. They correctly indicated that the main
effects and two-factor interactions consume all 15 df leaving
no error term. They also stated that a previous estimate of 200
for the error mean square was available. Using this value and
performing analysis of variance, the F tests are based on 1 and
ˆ df. If � D 005 is used, four effects are found active: AD, AE,
BD, and DE. Column 2 of Table 3 shows the DBH statistics and
associated p values using this four-location-effect model as a
base. We see that AB and E have mildly signi� cant dispersion
effects with p values of .0567 and .0424, respectively.

Note that the four location effects form an interaction triple
(AD, AE, DE) and another term, BD. If we add the interactions
between BD and the interaction triple terms, we get the model

Yi
D ‚0 C xiC‚C

C xiAB‚AB
C xiAD‚AD

C xiBD‚BD

C xiAE‚AE
C xiBE‚BE

C xiDE‚DE
C …i0 (11)

As we see in this example, the adapted location model may
not be a hierarchical model. The main effects A, B, D, and
E do not appear in the model, yet interactions involving these
factors do appear. One must note, however, that this is not the
� tted location model. It is an adapted model used solely for
the purpose of dispersion-effect testing.

The residuals are correlated in pairs resulting in the sets
C1

D 8e11 e129, C2
D 8e21 e119, C3

D 8e31 e109, C4
D 8e41 e99,

C5
D 8e51 e169, C6

D 8e61 e159, C7
D 8e71 e149, and C8

D
8e81 e139, so each s2

q has d D 1 df. We may test the columns

Table 3. Dispersion-Effect Statistics and p Values for Example 2

Fc 1c approx.
Effect DBH (p value) FML p value p value

A 0014 (00141)
B 1016 (00908)
C 1022 (00876) 0058 0708 0682
D 1083 (00631)
AB 0011 (00057) 0012 0159 0134
AC 0047 (00552)
AD 3001 (00251) 5056 0259 0223
BC 0094 (00963)
BD 0036 (00350) 0048 0622 0588
CD 0024 (00275)
DE 1020 (00848) 2061 0522 0483
CE 0031 (00359)
BE 2089 (00329) 9059 0144 0120
AE 0087 (00879) 1011 0944 0937
E 17037 (00042)

TECHNOMETRICS, NOVEMBER 2001, VOL. 43, NO. 4
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associated with each of the location terms for dispersion by
calculating F ML

j . Here we are performing seven tests using
the test statistic of the form in (8) with d D 1 and m D 8. The
degrees of freedom for the approximate F test are c D 8=3
from (10). The last three columns of Table 3 show the F ML

values for these columns as well p values.
F ML can only be calculated for the 4n ƒ 25=2 D 7 columns

associated with the terms in the location model given in (11).
Due to the required form of location model, this is the max-
imum number of dispersion effects that can be tested using
this approach for an unreplicated 16-run experiment. Note
that DBH

AB is mildly signi� cant, whereas F ML
AB is not signi� -

cant. Moreover, F ML
E cannot be calculated to compare with

the mildly signi� cant DBH
E . We further discuss this example

in Section 4 after studying the two tests’ behaviors through
simulations in the next section.

3. COMPARISON BY SIMULATION

To compare F ML and DBH, we use the common family of
n D 2kƒp D 16 designs. In each situation studied, 10,000 sets
of 16 responses were randomly generated based on a normal-
ity assumption. Assuming that all active location effects are
included in the model, we can assume without loss of gener-
ality that all ‚j

D 0. To � t a model of the same form as (11),
any seven location effects that meet the criterion of each pair’s
interaction being another term in the model may be used. We
� t the model

Yi
D ‚0 C xiA‚A

C xiB‚B
C xiC‚C

C xiAB‚AB

C xiAC ‚AC
C xiBC ‚BC

C xiABC ‚ABC
C …i1 (12)

which results in 4m1 d5 D 481 15. [Note that for this study,
the column labels (A, B, C, AB, AC, BC, ABC) are irrele-
vant other than for de� ning the relationships among columns.]
Here, DBH F41 4. F ML was compared to both a simulated
reference distribution based on 200,000 simulations and an
F8=31 8=3. All tests were performed with a nominal signi� cance
level of � D 005. Section 3.1 studies the performance of both
tests when there are no unidenti� ed location effects but per-
haps multiple dispersion effects. Section 3.2 studies the impact
of unidenti� ed location effects on both tests.

3.1 Multiple Dispersion-Effect Simulations

Table 4 shows the results of the simulations with the possi-
bility of multiple dispersion effects, assuming that all location
effects are identi� ed. In this table, SDBH and SF ML refer to the
arithmetic means of the generated statistics. Because the p

values are based on 10,000 simulations, the standard error of
reported p values is .0022 for p value D 005. The same
standard errors and de� nitions apply to Table 5, Section 3.2.

No Dispersion Effects. For the � rst comparison, 10,000
sets of 16 standard normal variates are generated and stored
in a (16 � 101 000) matrix. This is the null case with no
dispersion effects. The � rst block of rows of Table 4 shows
that both DBH and F ML using the simulated distribution
behave as expected and yield roughly the speci� ed signi� -
cance level of .05 for all effects. The SDBH and SF ML values
are close to their expected values of 2 and 4, respectively.

The Fc1 c approximation yields an in� ated signi� cance level
of about .06. So, although Table 4 shows the Fc1 c signi� cance
levels, we will use the simulated reference distribution for
comparison in the rest of the table.

One Dispersion Effect. Initially, a dispersion effect was
created by multiplying all observations from the preceding
matrix by 5 in the rows where A D C1 resulting in ãA

D 25.
The results are shown in the second block of Table 4. In this
case, SDBH

A
D 510500 D 42554200605 and SF ML

A
D 42554403775,

or ãA times their values under the null case as they should
be. DBH has greater power than F ML for detecting this effect.
However, the SDBH statistics for the null effects have risen com-
pared to the null case discussed previously leading to in� ated
signi� cance levels of about .13 or .14. This is because DBH

does not have an F distribution for these columns because
both the numerator and the denominator are sums of �2 ran-
dom variables that are not identically distributed. So a single
dispersion effect increases the probability of falsely detecting
another dispersion effect when using DBH. Thus, the added
power for the active effect comes at the expense of the sig-
ni� cance level of the others. On the other hand, the null F ML

statistics are identical to the preceding null case, indicating
that F ML is totally insensitive to another dispersion effect.

Next, the original observations (null case) were adapted to
have a single dispersion effect of ãD

D 25. Note that ‚D is
not in Model (12). The third block of rows of Table 4 shows
this has almost no impact on DBH and absolutely no impact on
F ML. Thus we see that F ML is not affected by a another sin-
gle dispersion effect regardless of whether the location effect
of that column is included in the model or not. DBH is only
practically affected when another dispersion effect exists in a
column that has its location effect in the � tted model.

Two Dispersion Effects. In the next case, we create effects
of ãA

D 25 and ãC
D 9. Again the SF ML values are identical

to those of the single effect of ãA
D 25 with the exception

of SF ML
C , which is greater by a factor of 9 as it should be.

However, the SDBH values are in� ated even more than before.
So again, although DBH has greater power than F ML for the
active effects, it cannot hold the speci� ed signi� cance level
for the null effects. This is especially true for AC (signi� cance
level = .325), which is showing the induced (spurious) effect
due to the interaction of A and C .

Next we created dispersion effects of ãD
D 25 and ãBD

D 9.
The two dispersion columns, D and BD, are not in the location
model, but their interaction column B is. As the � fth block
of rows in Table 4 shows, all signi� cance levels for DBH are
greater than 008, with DBH

B having a very large signi� cance
level of about .326. On the other hand, the only F ML statistic
that is affected by the other two dispersion effects is B, with a
signi� cance level of about .125. Thus, F ML is more robust to
multiple dispersion effects than DBH even when these effects
occur in columns not included in the adapted location model.

Several Dispersion Effects. To study the impact several
small dispersion effects have on the other dispersion effects,
we created dispersion effects for every column that is not
included in (12) using ã D 1052. Additionally, the large disper-
sion effect of ãA

D 52 was created. The results are shown in
the last block of Table 4. The DBH signi� cance levels are all
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Table 4. Multiple-Dispersion-Effect Simulation Results (nominal signi’ cance level � D .05)

Fc1c approx.

Sig. level Sig. level sig. level
Active effects Effect SDBH (power) SFML (power) (power)

None (Null) AC 1.964 .051 3.693 .050 .062
B 1.876 .045 3.833 .049 .058

BC 1.971 .048 3.620 .046 .067
C 1.942 .050 3.647 .049 .061

ABC 1.941 .049 3.945 .050 .063
AB 1.994 .051 3.685 .051 .063
A 2.060 .050 4.377 .050 .063

ãA D 52 AC 3.424 .139 3.693 .050 .062
B 3.421 .136 3.833 .049 .058

BC 3.233 .139 3.620 .046 .067
C 3.359 .138 3.647 .049 .061

ABC 3.542 .141 3.945 .050 .063
AB 3.289 .138 3.685 .051 .063
A 51.500 .818 109.428 .528 .573

ãD D 52 AC 1.968 .051 3.693 .050 .062
B 1.888 .046 3.833 .049 .058

BC 1.985 .047 3.620 .046 .067
C 1.953 .049 3.647 .049 .061

ABC 1.956 .050 3.945 .050 .063
AB 2.001 .051 3.685 .051 .063
A 2.077 .052 4.377 .045 .063

ãA D 52 AC 14.256 .365 3.693 .050 .062
ãC D 32 B 4.808 .203 3.833 .049 .058

BC 4.525 .197 3.620 .046 .067
C 30.236 .483 32.829 .264 .300

ABC 5.122 .200 3.945 .050 .063
AB 4.645 .205 3.685 .051 .063
A 70.295 .764 109.428 .528 .573

ãD D 52 AC 2.388 .085 3.693 .050 .062
ãBD D 32 B 11.269 .326 15.331 .125 .147

BC 2.445 .087 3.620 .046 .067
C 2.402 .090 3.647 .049 .061

ABC 2.423 .086 3.945 .050 .063
AB 2.509 .089 3.685 .051 .063
A 2.521 .086 4.377 .050 .063

ãD D ãAD D ãBD D AC 21.067 .351 5.989 .058 .071
ãCD D ãABD D ãACD D B 19.226 .347 6.216 .056 .069
ãBCD D ãABCD D 1052 BC 19.100 .359 5.871 .054 .066

C 20.311 .353 5.914 .055 .069
ãA D 52 ABC 21.124 .356 6.398 .058 .069

AB 19.900 .351 5.975 .058 .071
A 180.342 .935 177.463 .660 .701

tremendously high ( 035) for the null effects while the F ML

signi� cance levels are only slightly in� ated ( 0057).

3.2 Unidenti’ ed Location Effects

Finally, the impact of unidenti� ed location effects was stud-
ied through simulations. The general impact of unidenti� ed
location effects on dispersion-effect testing was studied by
Pan (1999) and McGrath and Lin (2001). In this section, we
study the speci� c impact on F ML and DBH. For this study,
again 10,000 experiments with 16 runs were simulated using a
standard normal distribution for the responses. Residuals from
the � tted model (12) were used for all cases. The results are
shown in Table 5 with the � rst block of rows showing the
results for a null model. (This is the same case studied in the
� rst block of rows of Table 4.)

One Unidenti�ed Location Effect. In the second block of
rows in this table, an unidenti� ed location effect ‚D

D 1 was
added. Comparing the results from the � rst two blocks of
rows in Table 5, one notices that all signi� cance levels have
decreased for both tests, as expected, since this unidenti� ed
effect in� ates the sample variances in both the numerator and
the denominator of both tests. Although � rm conclusions can-
not be drawn from this small study, it does appear that the
signi� cance level of F ML is affected less than that of DBH.

Two Unidenti�ed Location Effects. The third block of
rows considers two unidenti� ed location effects, ‚D

D ‚BD
D

1, whose interaction is in column B. McGrath and Lin
(2001) showed that two unidenti� ed location effects create
a difference in the expected value of the sample variance of
residuals at the high and low levels of their interaction column.
Our simulations verify this result: Both tests show that the
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Table 5. Unidenti’ ed-Location-Effect Simulation Results (nominal signi’ cance level � D .05)

Fc 1c approx.

Sig. level Sig. level sig. level
Active effects Effect SDBH (power) SFML (power) (power)

None (Null) AC 1.964 .051 3.693 .050 .062
B 1.876 .045 3.833 .049 .058

BC 1.971 .048 3.620 .046 .067
C 1.942 .050 3.647 .049 .061

ABC 1.941 .049 3.945 .050 .063
AB 1.994 .051 3.685 .051 .063
A 2.060 .050 4.377 .050 .063

‚D D 1 AC 1.906 .043 3.505 .045 .057
B 1.888 .038 4.044 .046 .059

BC 1.884 .044 3.687 .045 .056
C 2.011 .043 3.945 .047 .058

ABC 1.905 .041 4.198 .045 .058
AB 1.858 .040 3.470 .046 .056
A 1.811 .042 3.797 .046 .059

‚D D 1 AC 1.756 .034 3.543 .042 .053
‚BD D 1 B 6.159 .141 16.650 .125 .149

BC 1.758 .033 3.776 .037 .048
C 1.758 .032 3.304 .042 .052

ABC 1.689 .033 3.317 .038 .048
AB 1.683 .030 3.518 .041 .051
A 1.709 .033 3.341 .043 .052

ãA D 52 AC 3.424 .139 3.693 .050 .062
B 3.421 .136 3.833 .049 .058

BC 3.233 .139 3.620 .046 .067
C 3.359 .138 3.647 .049 .061

ABC 3.542 .141 3.945 .050 .063
AB 3.289 .138 3.685 .051 .063
A 51.500 .818 109.428 .528 .573

ãA D 52 AC 3.052 .125 3.864 .051 .061
‚B D 1 B 3.047 .128 4.340 .052 .060

BC 3.198 .123 3.913 .051 .062
C 3.035 .129 3.996 .047 .059

ABC 2.972 .122 4.449 .049 .058
AB 3.270 .127 4.069 .049 .064
A 30.921 .688 63.945 .400 .443

ãA D 52 AC 2.914 .118 3.746 .046 .057
‚D D 1 B 4.155 .122 8.761 .069 .082
‚BD D 1 BC 2.836 .115 4.132 .044 .053

C 2.953 .116 3.563 .048 .059
ABC 2.747 .113 3.573 .044 .054
AB 2.488 .116 1.821 .057 .071
A 22.435 .590 43.713 .333 .375

signi� cance level is in� ated for ãB , although somewhat less
so for the F ML

B test. For the other null dispersion effects, the
signi� cance level is dampened even more than with a single
unidenti� ed location effect. Again, it appears that the F ML

signi� cance level is affected less by these unidenti� ed effects.
One Dispersion Effect With Zero, One, or Two Unidenti-

� ed Location Effects. The fourth block of rows shows results
when only a single dispersion effect of ãA

D 25 exists with
no unidenti� ed location effects. (This is the same case stud-
ied in the second block of rows in Table 4.) This block may
be compared to blocks 5 and 6, which include this disper-
sion effect plus the unidenti� ed location effects of ‚D

D 1
and ‚D

D ‚BD
D 1, respectively. Again, a single unidenti� ed

location effect (block 5) dampens the signi� cance level for all
effects (including the active dispersion effect) for both tests.
However, F ML roughly holds the nominal value of .05 for

the null effects, whereas the signi� cance level for DBH 012.
With two unidenti� ed location effects (block 6), the same pat-
tern holds with SDBH

B and SF ML
B being larger than the other null

effects as expected. These simulations show that both DBH and
F ML are sensitive to unidenti� ed location effects. However,
F ML appears to be less sensitive than DBH.

All of the simulations discussed in Sections 3.1 and 3.2
were based on the multiplicative dispersion model given in
(1). If an additive dispersion model were assumed—that is,
‘ 2

i
D‘ 2 C Pnƒ1

jD1 xijƒj—then the conclusions might differ from
those reported here. Of course, other dispersion models could
also be entertained. We chose to study the multiplicative
model because it appears to be the most common dispersion
model, being used by Cook and Weisberg (1983), Nair and
Pregibon (1988), Wang (1989), Ferrer and Romero (1993a,b),
and Wol� nger and Tobias (1998) among others.
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4. PRACTICAL CONSIDERATIONS AND
RECOMMENDATIONS

If factors are included in an experiment, the experimenter
must suspect that they may have an impact on the response
in some manner. In an unreplicated 2kƒp design, the goal may
not be to identify and estimate all active effects (indeed all
may be active) but to � nd the largest (i.e., most important)
effects. When testing for location effects in these designs, the
location effect estimates are the same whether active effects
are mistakenly assumed null or not. Ignoring active effects just
reduces the power of location-effect tests.

However, when testing for dispersion effects, the presence
of one or more dispersion effects may affect the estimation
of other dispersion effects, not just the detection power. As
shown in Section 3.1, DBH is biased whenever there are mul-
tiple dispersion effects. If two active dispersion effects occur
in columns that are not in the adapted location model, F ML

is biased for their interaction column but no others. Section 3
shows that unidenti� ed location effects create bias for both
tests, although F ML seems less susceptible. Thus, when mul-
tiple dispersion effects exist, truly clean dispersion-effect esti-
mates seem dif� cult to attain in unreplicated 2kƒp designs.

We may draw some conclusions about the two examples
studied previously. In Example 1, DBH

D and DBH
DE had p values

.06 and may have been considered signi� cant. However, F ML
D

and F ML
DE had much higher p values, indicating little, if any,

evidence of signi� cance. As shown by the simulations, small
dispersion effects may increase the other dispersion-effect esti-
mates, thus increasing the probability of falsely detecting null
effects when using DBH. Therefore, we conclude that D and
DE do not have signi� cant dispersion effects or have effects
of relatively small magnitude.

In Example 2, we � t several different models and calcu-
lated DBH for each column. Based on these statistics, AB and
E were mildly signi� cant with p values .05. Only seven
columns can be tested for dispersion using F ML because of the
speci� c form of the location model here. F ML

AB does not indi-
cate a signi� cant dispersion effect and, unfortunately, E cannot
be tested. So we conclude that AB does not have a signi� -
cant dispersion effect. Based on the F ML results, none of the
seven columns tested have signi� cant dispersion effects. Of
the remaining eight columns, only E seems to be signi� cant
using DBH. So here it appears that E has a mildly signi� cant
effect and it seems reasonable to trust the DBH results for E.

This last example shows that it is wise to use DBH in con-
junction with F ML. The DBH statistics can be used to tenta-
tively identify dispersion effects, and F ML can be used to study
them simultaneously. Note, however, that it does not seem
possible to independently test all columns for dispersion when
residuals are used. ( In fact, it is possible, with a large number
of location effects that are not interactions of each other, that
F ML cannot be calculated.) So we see that there are choices
in how to perform dispersion-effect testing:

1. If we are con� dent that at most one dispersion effect
exists, then the DBH test of Bergman and Hynén (1997) may be
used. If the normality assumption is not plausible, the nonpara-
metric SSDR test of McGrath and Lin (1999) may be used.
However, it must be noted that the null effects have in� ated

signi� cance levels and therefore have an increased probability
of false detection.

2. If we suspect that there may be more than one dis-
persion effect, then we can use F ML and test several dis-
persion columns independently, assuming that the untested
columns do not produce dispersion effects. The columns that
can be tested are determined, to some extent, by the location
model.

Other tests seem to work only when there is a single dis-
persion effect present. Even then, the signi� cance level of null
effects is in� ated by this lone effect. F ML, as described in
this article, allows independent testing of multiple dispersion
effects (under normality) as long as all columns having active
dispersion effects have their location effects included in the
� tted model. Although this article has studied only unrepli-
cated n D 2kƒp D 16 run designs, the extension to 2kƒp designs
with n > 16 is immediate.
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APPENDIX: PROOF OF EQUATION (6)

Assume, without loss of generality, that C1 Pj , C2 Pj ,
C3 Mj , and C4 Mj . Now W D ds2

1=‘ 2 �2
d , X D ds2

2 =‘ 2

�2
d , Y D‘ 2=ds2

3 �ƒ2
d , and Z D‘ 2=ds2

4 �ƒ2
d , independently,

where �ƒ2
d is the inverse �2

d distribution. Then F ML
j can be

written as

F ML
j

D 4s2
1 s2

25=4s2
3s2

4 5
1=2 D W 1=2Y 1=2X1=2Z1=2

and

E4W 1=2Y 1=25

D
Z ˆ

0

Z ˆ

0
8â6d=2724d=259ƒ1w1=2w4d=25ƒ1 exp4ƒw=25

� 8â6d=2724d=259ƒ1y1=2yƒ4d=25ƒ1 exp4ƒ1=2y5 dw dy

D â64d C 15=2724dC15=28â6d=272d=29ƒ1

�
Z ˆ

0
8â64d C 15=2724dC15=29ƒ1w4dC15=2ƒ1 exp4ƒw=25 dw

� â 64d ƒ 15=2724dƒ15=28â6d=272d=29ƒ1

�
Z ˆ

0
8â64d ƒ 15=2724dƒ15=29ƒ1yƒ4dƒ15=2ƒ1 exp4ƒ1=2y5 dy

D â64d C 15=27â 64d ƒ 15=27â ƒ26d=270

Similarly E4X1=2Z1=25 D â64d C 15=27â 64d ƒ 15=27â ƒ26d=27.
Then, by the mutual independence of W 1 X1 Y 1Z, we have

E4F ML
j 5 D E4W 1=2Y 1=2X1=2Z1=25

D E4W 1=2Y 1=25E4X1=2Z1=25

D 4â64d C 15=27â 64d ƒ 15=27â ƒ26d=27520
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The same procedure may be used to prove the general case
given in (9).

[Received June 1999. Revised November 2000.]
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