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Abstract. One important class of screening designs is the search design first
proposed by Srivastava (1975). A new class of two-level factorial search de-
signs which are capable of estimating all main-effect plus two interactions is
provided. We first give a necessary and sufficient condition for the main-effect
plus two plan and then show that the proposed search design always satisfies
such a condition.
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1. Introduction

Ever since the pioneering work of Srivastava (1975), a substantial amount of
research has been done in the field of search designs. Recent research trends in
this area exhibit a considerable interest in the development of search designs
which, in addition to ensuring estimability of the parameters known to be
present, are capable of searching and estimating K possibly present param-
eters. In this connection, mention may be made to Shirakura (1991), Srivas-
tava and Arora (1987), Srivastava (1992), Chatterjee and Mukerjee (1986),
and Mukerjee and Chatterjee (1994).

Much work has been done for constructing search designs for K = 1. See,
for example, Ghosh (1980) and Gupta (1991). In this paper, we suggest a new
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class of search designs for two-level factorials which are capable of estimating
the grand mean and all the main effects and allow the searching and estimat-
ing of at least two interactions among all the two- or three-factor interactions,
assuming that four- and higher-order interactions are absent.

Consider the linear model below: Let Y be an N x 1 vector of observations
with

E(Y) =Xif, + Xop,, Disp(Y) = o’y (1

where X;, X; are the design matrices of order N x n; and N x ny, respectively;
B, B, are the vectors of parameters of order n; x 1 and n; x 1, respectively;
and Iy is an identity matrix of order N. Furthermore, only K elements of f,
are assumed to be non-zero, where K is relatively small compared to n>. Here,
the objective is to provide a design which will estimate the grand mean and all
the main-effects (8,) and permit the detection and estimation of the non-zero
elements of §,. In this paper, we will consider the “noiseless” case with a2 =0,
as in Srivastava (1975). The main theorem in this field is provided by Srivas-
tava (1975), as stated in Theorem 1.

Theorem 1. A necessary and sufficient condition that the above problem will be
completely solved is that for any submatrix X3 of X of order N x 2K, we have

rank[Xl,Xi‘] =nm +2K. -

2. Notations and preliminaries

Consider a factorial experiment involving m factors Fy, F», . .., Fy €ach at two
levels. Let the levels of the factors be coded as 0,1 and a typical level combi-
nation of these factors be denoted by (f, f2,---, /), fi={0,1}, for I <i<m.
For any positive integer n, let I, denote the identity matrix of order n, and let
0, and 1, denote the n column vectors with all elements 0 and 1, respectively.
Let 1,4m and O,y denote the matrices of order n x m with entry values 1 and
0, respectively. For the simplicity of presentation, we may drop the subscripts
hereafter.

Suppose prior information is available regarding the absence of all inter-
actions involving four or more factors and it is known that among the two-
and three-factor interactions at most two are non-negligible, although these
interactions are not known a priori. Then, under model (1) by taking B, as
the grand mean and main effects and g, as the two- and three-factor inter-
actions, it is easy to see that if one observation is made for each of the

v = (2™) level combinations of Fy, F, ..., F, the resulting design matrix will
be of the form
X= llw U, W, ... Uy, W2y -y Uy i, 123, - . - )um—-z,m—l,mL (2)

where u; is a vector of +1 for 1 <i < mand
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U = W; * Wy, l<i<j<m

U =00k, 1 <i<j<ks<sm,

and ‘¢’ denotes the Hadamard product. The Hadamard product of two
vectors w = (u1,uz,...,un) and v= (v1,v2,...,0m) is defined as wxv=
(4301, U202, . . ., UmDm)'. Observe that in the above, 1, corresponds to the
grand mean, u; corresponds to the main effect F; (1 <i<m), u; corre-
sponds to the two-factor interaction FiF; (1 <i <j<m), and finally, uj
corresponds to the three-factor interaction F;F;Fy (1 <i<j < k < m). It fol-
lows that

X, = [lhulv“Zv' . ,“m] = [1v1Ul] and

X2 = [ W2, - s Wnel,m W1235 - - - Um—2,m—1,m] = [U2, Us].

Let Q be a subset of N level combinations of Fy, F,...,Fn with the corre-
sponding submatrices of X; and X, as

X;’=[1N,n’,’,n;,...,u;,]=[lN,U,"] and

* __ [aa* * * * — * *
Xy = [uly ey Uy i35 -+ 7“m—2,m—l,m] = [U3,U3].

respectively. Clearly, a minimum requirement for choosing N runs is that
rank(X}) = m + 1. Then, analogous to Theorem 1, we have the following
theorem. In the next section, we will provide a new class of the search designs
that satisfies such a requirement.

Theorem 2. A necessary and sufficient condition that Q represents a search de-
sign for estimating all main-effects and searching and estimating the possibly
present interactions of at most two of the two- and three-factor interactions if
the following holds: for any submatrix X5* of X3 of order N x 4, we have a Sull-
rank matrix (X7, X3']. That is,

rank{X{,X3'] = m +5.

3. A new class of two-level search designs

Define the following m x N matrnx

Q = [0m7 lnn Rm]: (3)

. m ] ey -
where R,, 1s a m x ( 2) matrix with its column vector ry = 1,, — ¢; — ¢;,
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where e;, ¢; are the i-th and j-th unit vectors. The matrix Ry, consists of col-
umns with 0 in the i, j-th position and 1 in the other positions for 1 <i <
m
2

Each column of Q corresponds to a level combination of m factors
Fy, F,. .., F,. Therefore, the design corresponding to the matrix Q is

j < m. Consequently, the number of columns in Qis N =1+m+ (

1. For the first run, set all m factors to low.
2. For the next m runs, for i = 1,2,...,m, set factor F; to high and set other
factors to low.

3. For the next (';) runs, for 1 < i < j < m, set factors F; and F; to low and
- other factors to high.
We next present some properties of such a Q matrix and then prove that a

search design based on Q will always satisfy Theorem 2.
For example, when m = 8, Ry is the 8 x 28 matrix

00000001 11111t111111111r11111ll1l
060111111000000111111111111111
1011111011111000001111111111
11011111011110111100001 11111
1110111110111101110111000111
111101111101 1110111011011001
1111101111101 111011101101010
11111101 11110111101110110100

and therefore Q = [0g,Is,Rgjand N =1+8+ (8) = 37. The design matrix
in (3) can be written as 2

X' = [1N7U;7U;’U;}7 (4)

where

*Up= [“i, IR w,), where u; = 2q; - 1 ‘and q; is a column vector of Q'
* U2 = [“IZ’ i ’“m—],m]’ where “,:’- =u; * llj .

* * * * ¥ * *
* U3 - [“123’ T ’um—Z,m—l,m]’ where “ijk =u; * “j * Uy

Since u? = 2q; — 1, we have q; = (u; + 1)/2. That is, the column vectors in
U; can be transformed into column vectors in

0l
m

Q,Z Iy | = [ql"hv--’qm]'
R,,
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Note also that uj = (2q; — 1) * (2q; — 1) = 4q; * q; — 2(q; + q;) + 1. There-
fore, (u} +2(q; +9q;) — 1)/4 = q; * q;. The entry value of g; * g; is 1 only when
the corresponding entries of both ¢; and g; are 1. The column vectors in U;
can be transformed into column vectors in

1
%)
Omx('g) = [ql ¥y Qg * qm]»
V)
. m m .
where Vy = [vj2,...,Vu-1,m] is 2 ( 2) X 2) matrix and the value of the

entry of v; (1 < i <j < m) will be 1 when both i-th and j-th factors are set to

be 1. Otherwise, the value will be 0. Note that there are exactly (m 2— 2)

entries of each v; vector that are 1 with the remaining entries equal to 0.
Similarly, it is straightforward to see that

~(uj —2(q+ ) +1)/4 = —2q; * @ * @ + (q; * 4+ @ * G+ G * &) =Py

We can see that py;, value is 1 for the cases of (q;,q;,9;) = (0,1, 1),(1,0,1),
(1,1,0),(1,1,1) and is 0 otherwise. In other words, the entry value of py is 1
only when two or more of the corresponding entries of g;, g; and g, have value
1. Therefore, within this vector all the entries corresponding to 0, and I, in
Q = 0,,.,1,,,,R,,,]' will be 0. Thus, the column vectors in U; can be trans-
formed into column vectors in

07.,
(3)
Omx (’;’) )
V2
. m m .
where Vo = [Wi23, ..., W2 m—1,m} iS5 @ 5 X ( 3 ) matrix and the value of

the the entry of wy, (1 <i<j < ¢ <m) will be 1 when exactly two of i-th,
j-th and g-th factors are set to be 0. Otherwise, the value will be 0. Note
that the 3 factors cannot all be ‘0’ for the runs defined by R,,. Hence, there
are exactly 3 entries of each w;, vector that are 0, and the remaining en-
tries are 1.

Performing the elementary column operations as described above on the
matrix in (4), the resulting matrix is

b % %

M= L I, O O] (5)
1m(m~—l)/2 R,'” V] V,

-
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From the structure of the matrix M and Theorem 2, we need to show that any
selection of 4 columns from [V}, V5] is of full column rank.
~ Define, foralll <i < (m-3),

Pi=(Q; * 9159 * Qiz2s - - 1 0 * Am)>

Pu-2 = (@2 * Un—-19m—2 * Dy Am-1 * im)
Q; = (941, %i+2> - - -1 4m) and

Q-2 = Q-3 = (-2, n—1-m)-

Note that V; =[P,Py,...,Pn] and Q,Q,...,Q,_, are submatrices
of Q' = [q,,4,- - - ,4,)- The number of columns in P; and Q; is m — i, for
1 <i < (m — 3). The number of columns in P,_ and Q,,_; is 3.

In addition, we define B; to be the block of rows in q, with values 0 and B;
to be the block of rows in g, with values 0 when those of q; are 1. Similarly,
we can define B; to be the block of rows in q; with values 0 when those of
q,,q, are 1, and so on. It is easy to see that the number of rows in B; is m — i,
for 1 <i < (m—3), and the number of rows in B,_» is 3. Also, for 1 <i <
(m — 3), the i-th diagonal block of V; defined by B; and P; is a zero matrix of
(m — i) x (m —i). The (m — 2)th diagonal block of V; defined by B2 and
P,,—> is a zero matrix of 3 x 3.

Lemma 1. V, is a nonsingular matrix.

From Lemma 1, it is clear that the proposed search design can be used to
estimate all the main effects as well as all the two-factor interactions, if three-
and higher-factor interactions are assumed to be absent.

4. Main theorem

We are going to use the following properties of the proposed search design:

* For any 4 columns selected, it is always possible to find rows with value 1.
That is, we can always find a row vector (1,1,1,1) in the submatrix for
m2=35. :

* For any of the runs defined by R, there are exactly two factors with
level ‘0’; the remaining factors have level ‘1°. Specifically, the rows of R,,
can be identified by the set of index {i, j} and the corresponding row is
r; =1, —e —ej with ‘0’ in the i-th and j-th position and ‘1’ in the other
positions.

* V; = [Vi2,.--,Vm-1,m] and the value of the entry of v; (1 <i<j < m) will
be 1 when both i-th and j-th factors are set to be 1. Otherwise, the value will
be 0.

¢ As shown in Lemma 1, V; is a full-rank matrix.
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* Vo= [Wi23,...,Wn_2,m-1,m] and the value of the the entry of wy, (1 <i <
j < g < m) will be 1 when exactly two of i-th, j-th and g-th factors are set to
be 0. Otherwise, the value will be 0.

The following theorem shows that Q as defined in (3) satisfies Theorem 2
and thus can be used to estimate the grand mean and all main effects and
correctly identify at least two of the interaction effects among all two- and
three-factor interactions.

Theorem 3. The columns of the matrix Q, interpreted as the level combinations
of the factors F\,F,,...,F,, gives the required search design in N runsflevel
combinations.

Theorem 3 suggests that the matrix Q presented in this section provides a
search design in N = 1 + m + m(m — 1)/2 runs, m being the number of fac-
tors involved which allow the estimation of the grand mean and all the main
effects and allow the detection and estimation of at most two interactions
among all the two- and three-factor interactions.

5. Conclusion

Much work has been done on the “main effect plus one” search design
after the important work of Srivastava (1975). In this paper, we first give
the necessary and sufficient conditions for the “main effect plus two” search
design and then provide a new class of search designs that fulfills such a
condition.

If a larger number of factors is under investigation and if only a small
portion of interaction effects are expected (say, only two interaction effects are
active among all two- and three-factor interactions), the search design given in
this paper can be very useful.

To illustrate the run size issue, a brief run size comparison with a two-level
Resolution VII plan is given in Table 1. Resolution VII is needed in order to
estimate all two- and three-factor interactions. It is clear that the design in (3)
can save a considerable experimental cost.

Table 1. Run size consideration for Resolution VII and search designs

Number of ' Resolution Design in
factors (m) VII* design @yt

5 32 16

6 64 22

7 64 29

8 128 37

9 256 46
10 256 56

+ Resolution VII plan can estimate all main effects and all two- and three-factor interactions.
(These run sizes are derived from Draper and Lin, 1990, Table 4.)
++ Design in (3) can estimate all main effects and correctly identify two interaction effects.
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Appendix: Proofs

Proof of Lemma 1: Let P;, Q, and B; be as defined before.

Because of the construction of Q’ (exactly two 0 in each row of Q’), we
have

q +q9+q+---+q, = ('"‘2)1(';)-
Therefore, for any 1 < i < m, we have
G* (@ + @ +q+ 0+ G,) = (m=2)g;.
Using the fact that q; * q; = q;, we have
@ (Z q,-) [m~3) =q.
J#i
Hence, any column vector in Q’(q;) can be written as a linear combination of

columns in V;. Therefore, the column transformations on V, by columns in Q’
will not affect the rank of Vi.

Consider the following column transformation on V, by columns in Q":
P-Q; i=1,....m—2.
Note that, for i = m — 2, the (m — 2)th block matrix of the matrix P> —

Qm—z is

0 -1 0 |=Jdno
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which is a clearly a nonsingular matrix. Note also that, fori=1,...,m— 3,
we have

Pi—Q;=((q;— 1) *gq;,(q; - 1) *Q0,..-,(q—1) *q,)-

The j-th block of the matrix P; —Q; is a zero matrix for i <j<m. The i-th

block of the matrix P; — Q; is J;, which is a (m — i) x (m — i) matrix with 0 on

its diagonal and —1 for off-diagonal entries. Clearly, J; is a nonsingular matrix.
Therefore, the resulting matrix is a block (upper) triangular matrix

(.‘]:;*** *\

J * * *
O 0 . x * ,
O 0 . =« *
\O 0 - 0 J,.,)

where the J;, (1 <i < m - 2), are block diagonal matrices which are all non-
singular matrices. Hence the matrix is a nonsingular matrix. [

Proof of Theorem 3: From the structure of the matrix M in (5), Theorem 3 can
be proved if any selection of 4 columns from [Vj, V] is of full column rank.
There are 5 cases in choosing 4 columns from matrix [V;, V,]: the number
of columns chosen from V, and V; are (4,0),(3,1),(2,2),(1,3), and (0,4),
respectively. In each case, we need to show that we can always find certain
identified rows from the given 4 columns so that the submatrix has rank 4.
We will denote C = A4 — B as the set of all elements in set 4 and not in set B.

Case 1: X3 = [viljn ’ vizjz’visj.nvi‘ti-c]'

It follows easily from Lemma 1 that V, is a full-rank matrix.
Case 2: x;‘ = [vilh 7viziz9visi31wi4j4fl4]'

Since {ij, j;} # {i2, j»}, We can always choose i € {i, j,} — {i1,j;}. Once i
is chosen, we can choose j such that j ¢ {i;, j;} and {i, j} & {ia, js,9a}. Then,
the row of X5* indexed by {i, j} is

1 0 a 1

() (ij2) (i3j3) (iajaqa),
where a can be 0 or 1.

‘Similarly, choose i € {i}, j;} — {2, j»}. Once i is chosen, we can choose j
such that j ¢ {i>, j,} and {i, j} & {ia, j4,q4}- Then, the row of X3* indexed by
{i,j}1s

0 1 b 1

() (22) (Bj3) (iajaga),

where b can be 0 or 1.




Applying the same argument for sets {i1, j;} and {i, j3}, we can find two
rows

0 c 1 1
1 d 0 1
(afr) (iaj2) (B343) (iajaqa),

where ¢,d can be 0 or 1.
Therefore, we have identified the following rows

1 0 a 17
01 b1
S=|0 ¢ 1 1
1 401
1 1 1 1

Clearly, S has rank 4 if and only if f(a,b,¢,d) = det(S'S) # 0. In fact,
fl(a,b,¢c,d) = a*(2c® —4c +2d*> —4d + 4)
~2a(b(c - V)(d+ D)+ —c(d+3)+2d> —d +2)
+26%(d? —d + 1) — 2b(c(d — 2) +2d* — 3d +4)
+2¢? 4 ¢(2d — 8) +4d* — 4d + 8.
It can be shown that S has rank 4 for all 2% choices of (a, b, c,d), except the

combination (a, b,c,d) = (0,1,1,0). When (a,b,c,d) = (0,1,1,0), however,
S becomes

»n

I
— O D
—0 e e O
S == O
bt et

! 11

We can remove the two duplicated rows (3rd and 4th) and add an additional
row from sets {i, j,} and {i3, j;} (using a similar argument as above):

e 0 1 1
(j)) (2j2) (i3j3) (iajaga),
where e can be 0 or 1. Therefore, we have the following submatrix

1 00

bt b et pwesd

1 1
01
1 1

-_—n O

with det(S) = —1 which does not depend on the value of e.
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Case 3: X3" = [V ji, Vi 2> Wis jrgs» Wia jnaa]-

We can choose i € {i2, j»} — {i1, j; } and then choose j such that j ¢ {i1, j, }.
{i, j} & {i3, j5, 93} and {i, j} & {ia, js,ga}. Then, the row of X3" indexed by
{i,j}is

1 0 1 1

(i) (2j2) (i3j3g3)  (iajaqa)-

Similarly, by symmetry, we can find the row
0 1 1 1
(1) (ij2) (i3j3g3)  (isjaga).

Finally, we choose i € {is, j4,9a} — {i3, j3,¢3} and then choose j such that
{i,j} < {ia, j4, 94} Then, the row of X3* indexed by {i, j} is

a b 1 0
(1) (2f2) (B3j3g3) (isjaqa),

where a, b can be 0 or 1. Therefore, we have found a submatrix

—_—n O e
)
——
— D e

whose determinant is always 1, independent of the values of a, b.

Case 4: X;‘ = [V,'I Jis Wi jogny Wis iagy Wi, j““].
If we choose ie{i,j,} and j such that {i,j} ¢ {i2,/2 42}
{ia j} & {i31 j37 q3}a {la j} ¢ {i47 j47 q4}a we can find a row
0 1 1 1
(i) (i2jaq2) (3j393) (isjaga)-
Next, choose {i,j} such that {i,j} < {iz, .2}, {i,J} & {i3, j3,93}, and
{i, j} & {ia, j4, 94}, we can find a row
a 0 1 1
(1) (i2j2g2) (i3J3q3)  (iajaga),
where @ can be 0 or 1. Similarly, choose {i, j} such that {i, j} < {is, j3, 3},
b 1 0 1
(1) (ijaq2) (i33g3)  (iajaga)-
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Hence, we have found a submatrix

- R O
— s D
-

1
1
0
1

whose determinant is always 1, independent of the values of a, b.

Case 5: X5’ = [wiljl‘ll » Wiz g2 Wiy jsgs Wi jaaa -
We need to consider two subcases (complementary to each other):

(5-a) {i1,ji,q1} has at most one element in common with some of the sets

{iZaj27q2}; {i3,j3,¢I3}, {i47j4_’q4}- .
(5-b) {i1, j1,q1} has two elements in common with each of the sets {i2, j, 42},

{is, j3, 43}, {ias jar 94}

For subcase (5-a), without loss of generality (rearrange the columns, if neces-
sary), assume that {is, j4,q4} and {i1, j),¢1} have at most one element in com-
mon. In this case, choose {i, j} such that {i, j} = {i1, ji, 1}, {i, j} & {i2, j2, 92},
{i,j} ¢ {i3, j3, 93}, and, because of the condition that {is, j, 94} and {41, jy, i}
can’t have two elements in common, {i, j} & {is, j4,g4}. Therefore, we find 2
row

0 1 1 1

(@) (i2j292) (i3j3g3)  (iajaga).
Next, using a similar argument as in Case 4, we can also find two rows with

a 0 1 1
b 1 0 1

() (2j2q2) (i3J3q3)  (isjaga),
where a and b can be 0 or 1. Therefore, we find a submatrix

01
0
1
1

e i e
g et b e

a
b
1

whose determinant is always 1, independent on the values of a, b.

For subcase (5-b), we need to further divide the argument into three parts
depending on the value of s, which is the maximum number satisfying the
condition that the intersection of the set {iy, j;,q1} with the intersection of s
sets taken from [{is, 5,92}, {i3, /3, 43}, {is, 4, 94}] is @ non-empty set with rwo
elements. Clearly, under (5-b), 1 <5< 3. :

Without loss of generality (rearrange the columns, if necessary), we may
assume the sets corresponding to s are adjacent to {i, j;,q1}.
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~ If s=1, then Z = {i1, j;,q1} 0 {i2, j»,42} is non-empty (hence, with 2 ele-
ments), Z ¢ {is, j3,q3}, and Z ¢ {is, j4,qa}. Therefore, choosing {i, j} =
{ir, ji,»q1} N {2, j», g2} will yield a row with (0,0, 1, 1). Similarly, choosing
{‘yf} = {ilathl} ﬁ{i3,j3,q3} will y1€1d a row with (011’07]) Fman}':
ChOOSing {iaj} = {ihjl,ql} n {i41j4)q4} will y1€1d a row with (O, la 1)0)
Therefore, we find a submatrix

0

-0 O ©
— e O
— D e e

1
1
1

whose determinant is —1.

—~ If s=2, then Z = {iy, j;,q1} N {82, j2,92} 0 {i3, j3,¢3} is a non-empty set
with exactly two elements. Choosing {i, j} = Z, we have a row (0,0,0,1).
Next, choosing i€ Z and then j e {i2, j5,q2} — {i1, j1,q1} will yield a
row (1,0, 1,a), where a can be 0 or 1. Similarly, choosing i € Z and then
j € {is, 3,3} — {ir, j1,q1} will yield a row (1,1,0,b), where b can be 0
or 1. Therefore, we find a submatrix

0 0

01
1 a
0 b
11

ek puash e

0
1
1

whose determinant is always —1, independent on the values of a, b.

- Ifs=3,then Z = {ihjlyql} N {i21j27 qZ} N {i37j3’ Q3} N {1'4’.1'43 q4} is non-
empty with two elements. In this case, choosing i € {i1, j;,41} — Z and then
j€ Z —{i} will yield a row (0,1,1,1). By symmetry, we can find three
other rows (1,0,1,1), (1,1,0,1), and (1,1,1,0). Therefore, we found a
submatrix

L ]

1 1
0 1
1 1
1 0

— D e

whose determinant is —3.

We have shown in Case 1-Case 5 that we can indeed find a submatrix of
X3* which is of rank 4. Thus, the proof of Theorem 3 is complete. [




