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Abstract

In this paper, the D- and Ds-optimal design problems in linear regression models with a
one-dimensional control variable and a k-dimensional response variable are considered. The
response variables are correlated with a known covariance matrix. Some of the D- and Ds-optimal
designs with polynomial models for k =2 are found explicitly. It is noted that the number of
support points for the D- and Ds-optimal designs highly depend on the correlation between the
two response variables except on some special cases. c© 2001 Elsevier Science B.V. All rights
reserved.
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1. Background

Shadow is an important component of a cathode-ray tube, which is a main part
in a monitor or TV set. The quality of the shadow mask a�ects the quality of the
screen image of its primary product. Since 1984, L-G Micros Co. has produced shadow
masks for computer monitors and color TV sets. It has become one of the leading
manufacturers of shadow masks. In general, the shadow mask manufacturing process
consists of four major steps: coating, exposing, developing and etching. Coating is a
process to remove impurities such as oil and dirt from the iron plate (the raw material)
and to coat the plate with photosensitive �lm. Exposing is a process to print the shape of
the mask on the coated plate using light and mask patterns. Developing is a process to
remove the unexposed area during exposing process, using developing liquids. Etching
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is the �nal process to make holes on the plate by eroding the exposed area, using
eroding liquids. Finally, the iron plate is trimmed into a series of �nal form of shadow
masks.
The major interest is the process yield, namely, the percentage of “good” masks

produced. In one of the criteria to determine the goodness of a produced mask, two
response variables, the size of the hole (y1), measured by the radius of circle on
the surface of the hole, and the depth of the hole (y2), were evaluated to see if
they meet the target values. It is of interest to �nd the optimal setting of line speed
(the input variable X ) which can make the two response variables meet the target
ranges. In order to do so, it is important to understand the relationships between the
response variables and the input variable, although the function forms describing the
regression relationships between them are complicated. The engineers believe that at
the current settings x0, f1(x0)=f2(x0) and f′

1(x0)=f
′
2(x0). That is, equality of the

rate of changes for the response at x0 can be assured. We are interested in �nding an
optimal experimental design for the company.

2. Preliminaries

After taking the Taylor expansion of the response functions at the point x0 up to
order r and m, respectively, we have the following dual response polynomial models
with common intercept and slope as

E(y1)= �1(x; #)= �0 + �1x + �2;1x2 + · · ·+ �r;1xr;
E(y2)= �2(x; #)= �0 + �1x + �2;2x2 + · · ·+ �m;2xm;

(2.1)

where x∈
= [− 1; 1], and

Cov(Y )=�=

(
1 �

� 1

)
; −1¡�¡ 1:

The responses �i(x; #); i=1; 2, are linear regression functions and can be represented as
�i(x; #)=fTi (x)#, with #T = (�0; �1; �2;1; : : : ; �r;1; �2;2; : : : ; �m;2), fT1 (x)= (f

T
11(x);

fT12(x); 0
T
m−1) and fT2 (x)= (f

T
11(x); 0

T
r−1; f

T
22(x)) where fT11(x)= (1; x); f

T
12(x)=

(x2; : : : ; xr); fT22(x)= (x
2; : : : ; xm) and 0j is a j-dimensional zero vector.

A design � in this case is a probability measure with �nite support on 
. If de-
sign � has �nite support points x1; x2; : : : ; xn ∈
 and concentrates masses �(xi)=wi at
xi; i=1; : : : ; n, where wi N = ni are integers, i=1; : : : ; n, then the design � is called an
exact design; if ni is not restricted to be an integer, then � is called an approximate
design and will be denoted hereafter as

�=

{
x1 x2 · · · xn
w1 w2 · · · wn

}
:



F.-C. Chang et al. / Journal of Statistical Planning and Inference 93 (2001) 309–322 311

Denote a matrix F(x)= [f1(x); f2(x)]. The information matrix for a design � with
�nite support points is

M(�)=
∫


F(x)�−1FT(x) d�(x);

where � is the common covariance matrix of jj =(�1j; : : : ; �kj)′ and observations that
belong to di�erent experimental runs are assumed to be independent. Let #̂ be the
Gauss–Markov estimator of #, then

Cov(#̂)˙M−1(�):

Without loss of generality, we consider only designs with nonsingular information
matrices here (see also Section 4 below).
A design �∗ is called �p-optimal if �∗ maximizes �p function of the information

matrix M(�) among the class of all designs with nonsingular matrices, that is

�p(M(�∗))= max
�
�p(M(�)); −∞¡p6 1;

where

�p(M(�))=



(
1
‘
trMp(�)

)1=p
(−∞¡p6 1; p 6=0);

(detM(�))1=‘ (p=0);

where ‘ is the number of parameters in the model.
The equivalence theorem for the �p-criterion, −∞¡p6 1 states that a design �∗

is �p-optimal if and only if for all x∈X,

trM−1+p(�∗)F(x)�−1FT(x)6 trMp(�∗): (2.2)

Moreover, equality in (2:2) is attained at the support points. The most commonly
used criterion is probably the one with p=0, known as D-optimality. More details
about the theory of optimal designs for linear regression models can be found in
Pukelsheim (1993).
In Section 3, some results of D-optimal designs for certain low degree polynomial

models in dual response variables are presented, where the polynomial models for the
dual responses have special forms to incorporate the special feature appearing in our
example. The Ds-optimal design is typically used for testing if certain parameters are
equal to zero (see Studden, 1980). This will be discussed in Section 4. In Section 5,
a case where the D- and Ds-optimal designs are independent of the covariance matrix
is discussed and some useful characteristics of the D-optimal designs with general k
response models are presented. Some concluding remarks are given in Section 6.

3. D-optimal designs

A close look at model (2:1) indicates that if both responses exhibit strong linear
relationship with the input variable x, then according to the assumptions of our model,
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they both are simple linear regression models and are exactly the same. The case
with general k responses having exactly the same models will be discussed in Sec-
tion 5. In this section we will only discuss cases with (r; m)= (1; 2) or (1; 3). The
case (r; m)= (1; m) with m¿ 1, for example, represents that the �rst response function
may have shown a strong linear pattern but the second response function may have a
curvilinear pattern. Thus, a second- or higher-order polynomial approximation to the
true functions of the second response model may be used.
For model (2:1) with (r; m)= (1; m), the information matrix of a design � is sym-

metric and can be written as

M(�)=
1

1− �2
(
2(1− �)M11(�) (1− �)M12(�)

· M22(�)

)
;

where

M11(�)=
∫ 1

−1
f11(x)fT11(x) d�(x)= (ci+j−2)16 i; j6 2;

M12(�)=
∫ 1

−1
f11(x)fT22(x) d�(x)= (ci+j)16 i6 2; 16 j6m−1;

M22(�)=
∫ 1

−1
f22(x)fT22(x) d�(x)= (c2+i+j)16 i; j6m−1;

(3.1)

where cj =
∫ 1
−1 x

j d�(x) is the jth moment of the design �.
From the equivalence theorem introduced in Section 2, for any design �, denote

d0;�(�; x)= tr[M−1(�)F(x)�−1FT(x)]. Then design �(r;m)0;� is D-optimal if and only if

d0;�(�
(r;m)
0;� ; x)6 (m+ r); ∀x∈
; (3.2)

where (m + r) is the number of the unknown parameters, and equality holds at the
support points. In the following, the D-optimal designs with (r; m)= (1; 2) or (1; 3) for
di�erent values of � are given in Theorems 3:1 and 3:2, and the proofs are given in
the appendix.

Theorem 3.1. Consider model (2:1) with (r; m)= (1; 2). For a given �, |�|¡ 1, �(1;2)0;�
is D-optimal if either

(1) �¿ − 1
3 and �

(1;2)
0;� =

{
−1 1
1
2

1
2

}
,

(2) �¡− 1
3 and �

(1;2)
0;� =

{ −1 0 1
2

3(1−�)
−1−3�
3(1−�)

2
3(1−�)

}
.

Theorem 3.2. Consider model (2:1) with (r; m)= (1; 3). For a given �, |�|¡ 1, �(1;3)0;�
is D-optimal if either

(1) �¿ − 1
2 and �

(1;3)
0;� =

{
−1 1
1
2

1
2

}
,
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Table 1
Values of the corresponding p2, p4,

√
u and (1− �)=2 for the D-optimal designs �(1;3)0;� with �¡− 2=3

� p2 p4
√
u 1−�

2

−0:70 0.742568 0.963538 0.164546 0.132298
−0:75 0.728790 0.908734 0.257903 0.145267
−0:80 0.711210 0.854497 0.321688 0.161062
−0:85 0.689242 0.801938 0.369476 0.179943
−0:90 0.662791 0.752396 0.405104 0.201706
−0:95 0.632561 0.707082 0.430452 0.225503

(2) − 2
36 �¡− 1

2 and �
(1;3)
0;� =

{ −1 0 1
3

4(1−�) − 1+2�
2(1−�)

3
4(1−�)

}
,

(3) �¡− 2
3 and �

(1;3)
0;� =

{
−1 −√

u
√
u 1

�
2

1−�
2

1−�
2

�
2

}
,

where u=p2q4 and �=p2p4=(1− p2q4), for qi=1− pi (i=2; 4),

p4 =
−b+√

b2 − 4ac
2a

; (3.3)

where

a = 3q2[1− �+ (1 + �)p2];

b = [− 4 + (1− 4�− �2)p2 + (1 + �)(5 + �)p22];

c = −(1 + �)[1 + (2 + �)p2]p2 (3.4)

and p2 is a solution of the following equation:

3a1 + 2a2p2 + 5a3p22 + 3a4p
3
2 = 0; (3.5)

where

a1 = p24(2− p4 + �p4);
a2 = p4[2(1 + �)− (1− �)(5 + �)p4 + 2(1− 3�)p24];
a3 = q4p4(q4 + 2�+ �2 − 3�p4);
a4 = (1 + �)q24(1 + �− 2p4):

Table 1 provides numerical results for D-optimal designs by solving Eq. (3.5) for
(r; m)= (1; 3). It is interesting to �nd that as � → −1, the corresponding D-optimal
design �(1;3)0;� converges to the D-optimal design for the cubic polynomial model on
[− 1; 1].
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4. Ds-optimal designs

If the main interest is to test whether the expected values of the two responses y1
and y2 are the same, in the case of r=1, the problem would lead to test whether all
the parameters in #s=(�r+1;2; : : : ; �m;2)′ are equal to 0. It is natural to �nd designs
that minimize the con�dence ellipsoid of the estimator #̂s, that is to minimize the
value of the determinant of the corresponding submatrix D22(�) of D(�)=M−1(�).
The submatrix D22(�) is proportional to the inverse of

C22(�)=M22(�)−M21(�)M−1
11 (�)M12(�);

and the problem is equivalent to maximizing det(C22(�)). If det(M (�)) 6=0 and
det(M11(�)) 6=0, then det(C22(�))= det(M (�))=det(M11(�)) (see Graybill, 1983,
Theorem 8:2:1). The design �Ds is called a Ds-optimal design if

det(C22(�Ds)= max
�
det(C22(�)) (4.1)

among all designs de�ned on [− 1; 1].
Now for model (2:1), the design �(r;m)Ds;� is Ds-optimal if and only if

ds;�(�
(r;m)
Ds;� ; x)=d0;�(�

(r;m)
Ds;� ; x)−

2
1 + �

fT11(x)M
−1
11 (�

(r;m)
Ds;� )f11(x)6m− r (4.2)

for all x∈ [− 1; 1]. Moreover, the equality holds at the support points.
In (4:2), it is assumed that det(M(�(r;m)Ds;� )) 6=0 and det(M11(�

(r;m)
Ds;� )) 6=0, but in some

cases, Ds-optimal designs may be degenerate. In those cases, generalized inverses of
M(�(r;m)Ds;� ) and M11(�

(r;m)
Ds;� ) are considered. Here a matrix B

− is said to be a generalized
inverse of a matrix B, if BB−B=B. Moreover if G is any solution to the system
B2G=B, the matrix GTBG is a generalized inverse of B (see Graybill, 1983, Corollary
6:5:2). These are used in some cases in verifying the Ds-optimality of some designs. The
following theorems provide Ds-optimal designs for the cases (r; m)= (1; 2) or (1; 3).
Their proofs can be obtained by following similar arguments to the proofs given in
the appendix for D-optimality and thus are omitted.

Theorem 4.1. Consider model (2:1) with r=1 and m=2. For a given �, |�|¡ 1,
�(1;2)Ds;� is Ds-optimal if either

(1) �¿ 0 and �(1;2)Ds;� =

{
−1 1
1
2

1
2

}
, or

(2) �¡ 0 and �(1;2)Ds;� =

{ −1 0 1
1

2(1−�)
−�
1−�

1
2(1−�)

}
.

Theorem 4.2. Consider model (2:1) with r=1 and m=3. For a given �, |�|¡ 1,
�(1;3)Ds;� is Ds-optimal if either

(1) �¿ − 1
3 and �

(1;3)
Ds;� =

{
−1 1
1
2

1
2

}
, or
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Table 2
Values of the corresponding p2, p4,

√
u and (1− �)=2 for the Ds-optimal designs �

(1;3)
Ds;�

with �¡− 3=5

� p2 p4
√
u 1−�

2

−0:65 0.79778 0.947051 0.205527 0.105570
−0:70 0.758162 0.896037 0.280750 0.131265
−0:75 0.715092 0.847915 0.329780 0.159837
−0:80 0.66991 0.803546 0.362776 0.190058
−0:85 0.624354 0.763362 0.384377 0.220384
−0:90 0.580118 0.727383 0.397681 0.249380
−0:95 0.53844 0.695304 0.405044 0.276072

(2) − 3
56 �¡− 1

3 and �
(1;3)
Ds;� =

{ −1 0 1
2

3(1−�) − 1+3�
3(1−�)

2
3(1−�)

}
, or

(3) �¡− 3
5 and �

(1;3)
Ds;� =

{
−1 −√

u
√
u 1

�
2

1−�
2

1−�
2

�
2

}
,

where u=p2q4 and �=p2p4=(1− p2q4) for qi=1− pi (i=2; 4); p4 is the same as
de�ned in (3:3) and p2 is a solution of the following equation:

4a1 + 3a2p2 + 8a3p22 + 5a4p
3
2 = 0 (4.3)

with the restriction that 0¡p2¡ 1, and ai; i=1; : : : ; 4, are as de�ned in
Theorem 3:2.

Some numerical results for Ds-optimal designs obtained by solving Eq. (4.3) for
di�erent �, �¡− 3

5 , are listed in Table 2. Similarly as in Section 3, the limit of the
Ds-optimal designs should converge to the usual Ds-optimal design on [ − 1; 1] for
estimating the last two parameters.

5. Some extensions

In this section we �rst discuss the special case when regression functions for both
responses are of same degree, i.e. r=m in (2:1). This model arises when the degrees
of the response functions are uncertain but do exhibit similar curvilinear patterns. We
then approximate both of them by polynomials of the same degree through Taylor
expansion. It is interesting to note that in this case, unlike the results give in Section
3, all D- and Ds-optimal designs are independent of the value of �, and are given below.
Then for model (2:1) with r=m¿ 2, the information matrix of a design � is sym-

metric and can be written as

M(�)=
1

1− �2



2(1− �)M11(�) (1− �)M12(�) (1− �)M12(�)
(1− �)MT

12(�) M22(�) −�M22(�)
(1− �)MT

12(�) −�M22(�) M22(�)


 ;

where Mij(�); 16 i6 j6 2 is as de�ned in (3:1).
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Theorem 5.1. For model (2:1) with r=m, the D- and Ds-optimal designs are inde-
pendent of �.

Corollary 5.2. For model (2:1) with r=m=2, then �(2;2)0;� and �(2;2)Ds;� are D- and
Ds-optimal designs; respectively; where for all |�|¡ 1,

(1) �(2;2)0;� =

{
−1 0 1
3
8

1
4

3
8

}
,

(2) �(2;2)Ds;� is Ds-optimal with �
(2;2)
Ds;� =

{
−1 0 1
1
3

1
3

1
3

}
.

Now, let d=(d1; : : : ; dk) denote the vector of degrees in the k response model.
Next, we present an important invariance property of D-optimal designs for general k
response polynomial regression which holds for k =1.

Corollary 5.3. For the k response model with d=(d1; : : : ; dk), the D-optimal design
is scale invariant; i.e. the D-optimal designs on the scaled design space [ab; b] can be
calculated from the optimal designs on the interval [a; 1] by multiplying the support
points by b.

Proof. Let �(x) be a design on [a; 1] with support x1; : : : ; xn and �a;b(bx)= �(x) a
design on [ab; b]. Note that the information matrix of �a;b(x) has the form

M(�a;b(x))=
n∑
i= 1

�(xi)F(bxi)�
−1FT(bxi)=DM(�(x))D;

where D=diag(1; b; : : : ; bd1 ; b2; : : : ; bd2 ; : : : ; b2; : : : ; bdk ). The desired property is estab-
lished by the fact detM(�a;b(x))= (detD)2 · detM(�(x)).
Note that for the multiresponse polynomial regression model d=(d1; : : : ; dk); k ¿ 1,

the D-optimal design is not translation invariant. Furthermore, we o�er the following
results.

Corollary 5.4. Suppose that all the k response functions in a k response model with
covariance matrix � are the same; i.e. F(x)= (f(x); f(x); : : : ; f(x)). Then the design
�∗ is simultaneously D-optimal for the models f(x) and F(x).

Proof. Let �−1 = (�ij). Then the information matrix is of a form

M(�∗)=
∑
�∗(xi)F(xi)�−1FT(xi)=

(∑
ij
�ij

)
·∑�∗(xi)f(xi)fT(xi)

which is proportional to that for the single response model f(x). Thus the desired
property is proved.

In particular, the D-optimal design �∗ for the polynomial regression of degree m on
the interval [−1; 1] has equal masses at the m+1 zeros of the polynomial (x2−1)P′

m(x)
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where P′
m denotes the derivative of the mth Legendre polynomial(see Fedorov, 1972,

Theorem 2:3:3). The D-optimal design �∗a;b on the interval [a; b] can be obtained from
�∗ by the linear transformation �∗a;b= �

∗((2x − b− a)=(b− a)).
Note that the model presented in Corollary 5.4 can also be thought of as the ran-

dom block-e�ects model as discussed in Cheng (1995) with general block size k, but
the design points are restricted to be the same for all k response variables. Then by
Corollary 5.4 the D-optimal design problem for the random block-e�ects model with
general block size k can be reduced to be a univariate D-optimal design problem.

6. Discussions

Kra�t and Schaefer (1992) studied multiresponse linear regression models, where the
parameters in each response were di�erent. They proved that multiresponse D-optimal
designs under their models do not depend on the covariance matrix of the response
variables. A related problem was also discussed in Bischo� (1995). Recently, Cheng
(1995) and Atkins and Cheng (1997) derived the exact D- and A-optimal quadratic
regression designs under random block-e�ects models for any block size and block of
size 2, respectively.
In this work, we have found the D- and Ds-optimal designs for dual response poly-

nomial models with some common parameters and known covariance structure. The
optimal design problems for this type of multiresponse model have not been considered
before, and it is interesting to observe that the D- and Ds-optimal designs do depend
on the correlation of the two responses except for some special cases. This di�ers
from results by Kra�t and Schaefer (1992) and Bischo� (1995); under their models
the optimal designs are independent of the covariance structure.
Note that for �¿ 0, all D- and Ds-optimal designs obtained in Sections 3 and 4

are the same – both are supported equally on the two boundary points only. This
reminds us of the work of Abt et al. (1997, 1998) which discussed optimal design
problems for parameter estimation and growth prediction under linear and quadratic
growth curve model with intraclass and autoregressive correlation structures. The results
found there indicated that in many situations there is essentially no di�erence between
the independent and the correlated error structures. In other words, from Abt et al.
(1997), the optimal design for the linear growth model is quite robust against correlated
error structure when �¿ 0.
In this paper, we used elementary analysis based on the equivalence theorem and

some of the basic properties of the canonical moments to �nd the optimal designs for
polynomial models of degree three or less. More investigations are needed for �nding
general patterns for the D- and Ds-optimal designs in higher degree polynomial models.
It is clear that the optimal designs would become more complicated as the polynomial
degree increases because there would be more critical regions corresponding to the
correlation coe�cient � and the number of support points for the optimal designs
would change accordingly. Also, a natural extension is to investigate optimal designs
for the general �p; (−∞¡p¡ 1) criteria.
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As discussed in Dette (1997a,b), the general �p criteria, −∞¡p¡ 1; (p 6=0) de-
pend on the variances of the least-squares estimator for the individual parameters.
These variances are of di�erent scale in the polynomial models. Therefore, averaging
might not be an appropriate operation in �nding optimal designs. Also, except for
p=0, the optimal designs found under the general �p-criteria are not invariant under
a�ne transformations. Dette (1997a,b) proposed to use some standardized criteria to
�x this problem. With our model, we will need to �nd optimal designs for estimating
each individual coe�cient �rst. This would provide suitable standardization constants
in obtaining a properly standardized A-optimal design. This approach will be studied
in future research.
Another possible extension would be to consider models with more than two re-

sponses. We believe that the optimal designs will usually be heavily dependent on the
covariance structure of the responses. Theorem 5.1 provides an exception where the
D- and Ds-optimal designs are independent of � values in the covariance matrix. This
case can be easily extended to k¿ 3 response polynomial models of the same degree,
but with the �rst r parameter coe�cients being the same and the rest unrestricted.
Although a general solution may be di�cult to �nd, we hope that the results given in
this paper will be helpful in studying these general cases.
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Appendix

For any design �, by the strictly concave property of log det(M (�)) in � (see Fedorov,
1972, Section 5.1), it is easily seen we can restrict our attention to symmetric designs.
Moreover, in model (2:1) for D-optimality, the corresponding dispersion function

d(�; x) is a polynomial of degree 2m for any design �. Thus, by the equivalence
theorem (2.2), the D-optimal design has at most m + 1 support points. Moreover, if
the optimal design has m+ 1 support points, it must contain the two boundary points
{−1; 1}. The result also holds for Ds-optimality. Now we are ready to prove the main
theorems.

Proof of Theorem 3.1. In model (2:1) with r=1 and m=2, the determinant of the
information matrix of a symmetric design �s can be expressed as

det(M(�s))=
4

(1 + �)3(1− �)c2
(
c4 − 1− �

2
c22

)
:
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In order to maximize det(M(�s)), it is easy to see that we need c4 = c2. Furthermore,
det(M(�s))c4 = c2 = 4(c

2
2 − [(1 − �)=2]c32)=[(1 + �)3(1 − �)] attains its maximum when

c2 = 4=3(1 − �). But when �¿ − 1
3 , the value 4=3(1 − �)¿ 1; thus, it takes c2 = 1

to maximize det(M(�s))c4 = c2 . Therefore, if �¿ − 1
3 , det(M(�s)) attains its maximum

when c2 = c4 = 1. Thus the D-optimal design �
(1;2)
0;� must be supported at −1 and 1.

Since �(1;2)0;� is symmetric, when �¿ − 1
3 ,

�(1;2)0;� =

{
−1 1
1
2

1
2

}
:

If �¡ − 1
3 , det(M(�s)) attains its maximum when c2 = c4 = 4=3(1 − �). Thus the

D-optimal �(1;2)0;� must be supported at −1, 0, 1 and �(1;2)0;� (1)= 2=3(1− �). Then when
�¡− 1

3 ,

�(1;2)0;� =

{ −1 0 1
2

3(1−�)
−1−3�
3(1−�)

2
3(1−�)

}
:

Proof of Theorem 3.2. From the equivalence theorem, it is clear the D-optimal design
can only be supported by 2, 3, or 4 points:

1. Suppose the D-optimal design is a two-point design and we consider a symmetric
design �s(u):

�s(u)=

{
−u u
1
2

1
2

}
; 0¡u6 1:

The determinant of the information matrix of �s(u) is

det(M(�s(u))) =
u12

(1− �)2(1 + �)2

6
1

(1− �)2(1 + �)2 = det(M (�s(1))):

Thus, the design �s(1) maximizes det(M(�)) among all two-point designs on
[− 1; 1].
By (3:2), �s(1) is D-optimal if and only if

g�(x)=d0;�(�s(1); x)=
2(1 + x2)[1− (1− �)x2 + x4)

1 + �
6 4 (A.1)

for all x∈ [ − 1; 1]. It can be easily veri�ed using (A.1) that the design �s(1) is
D-optimal when �¿ − 1

2 . When �¡ − 1
2 , the D-optimal design is not supported

by two points.
2. When �¡− 1

2 , suppose the D-optimal design is a three-point design. Thus, consider
a three point symmetric design

�s(u; �)=

{
−u 0 u
�
2 1− � �

2

}
;



320 F.-C. Chang et al. / Journal of Statistical Planning and Inference 93 (2001) 309–322

where 0¡u6 1 and 0¡�¡ 1. The determinant of the information matrix of
�s(u; �) is

det(M(�s(u; �)))=
�3(2− �+ ��)
(1− �)2(1 + �)3 u

12:

To maximize det(M(�s(u; �))), it is easy to see that we need u=1. Moreover,
det(M(�s(1; �)))= [1=(1− �)2(1 + �)3]�3(2− �+ ��) attains its maximum at �∗� =
3=2(1−�). Hence, when �¡− 1

2 , the design �s(1; �
∗
�) maximizes det(M(�)) among

all three-point designs on [− 1; 1].
By (3:2), the design �s(1; �∗�) is D-optimal if and only if

h�(x) = d0;�(�(1; �∗�); x)

=
4[3(1 + �)− (1− �)(2 + 3�)x2 + (1− �)(1 + 3�)x4 + (1− �)x6]

3(1 + �)

6 4 (A.2)

for all x∈ [ − 1; 1]. Thus, when �¿ − 2
3 , it can be easily checked that h�(x)

has a unique local maximum on [ − 1; 1] and �s(1; �∗�) is indeed D-optimal when
− 2
36 �¡− 1

2 . When �¡− 2
3 , h�(x) has a local minimum at x=0, so �s(1; �∗�) is

not D-optimal.
3. When �¡− 2

3 , the D-optimal design is a four-point design. The determinant of the
information matrix of a four-point symmetric design �s can be expressed as

det(M(�s))=
[2c4 − (1− �)c22][2c2c6 − (1− �)c24]

(1− �)2(1 + �)4 : (A.3)

In Studden (1980), canonical moments corresponding to a design have been de�ned
and used to �nd Ds-optimal designs for polynomial regression. Since it is a very
useful tool which can take away the restrictions among the ci’s, we use it here to
simplify the computation of the D-optimal design. Now, let c+i and c

−
i denote the

maximum and minimum of the ith moment
∫ 1
−1 x

i d�(x) among the set of designs
on [− 1; 1] whose moments up to the order i− 1 coincide with the given moments
ci−1 = (c1; : : : ; ci−1). The canonical moments are de�ned by pi=(ci − c−i )=(c+i −
c−i ), i=1; 2; : : :. Then for a symmetric design �s with four points de�ned on [ −
1; 1], from Studden (1980), it can be seen that c2i−1 = 0; p2i−1 = 1=2; i=1; : : : ; 3,
as well as correspondence between c2i and p2i ; i=1; : : : ; 3 with 06pi6 1, and
qi=1 − pi(i=2; 4; 6). For additional details about canonical moments, see Dette
and Studden (1997). Since �s is a four-point design, 0¡p2; p4¡ 1. Thus (A.3)
can be represented as

det(M(�s))=
1

(1− �)2(1 + �)4 × �(p2; p4; p6);
where

�(p2; p4; p6) = p32[2q2p4 + (1 + �)p2]

×{q2p4[2q4p6 − (1 + �)(p2p4 − p4 − 2p2)] + (1 + �)p22}:
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In order to maximize det(M(�s)), it is easy to see that we need p6 = 1 and to
maximize �(p2; p4; 1) under the restriction 0¡p2; p4¡ 1. Therefore, p2; p4 must
satisfy (@=@p2)�(p2; p4)= 0 and (@=@p4)�(p2; p4)= 0. Under the restriction that
0¡p2; p4¡ 1, for �xed p2, solving (@=@p4)�(p2; p4)= 0 with respect to p4, it
yields

p4 =
−b+√

b2 − 4ac
2a

; (A.4)

where a; b; c are as de�ned in Theorem 3.2. Now substitue p4 into (@=@p2)�(p2; p4)
= 0, then p2 is a solution of Eq. (3.5) under the restriction that 0¡p2¡ 1. There-
fore, when �¡− 2

3 , the D-optimal design �
(1;3)
0;� is as stated in Theorem 3.2.

Proof of Theorem 5.1. Recall that the information matrix for model (2:1) with r=m
is

M(�)=
1

1− �2



2(1− �)M11(�) (1− �)M12(�) (1− �)M12(�)

· M22(�) −�M22(�)
· · M22(�)


 ;

where Mij(�); 16 i6 j6 2 is as de�ned in (3:1).
Simple calculation of the determinant of M(�) yields

det(M (�)) = (2(1− �))2(1− �2)−(m+1)(det(M22(�)))2

×det(M11(�)−M12(�)M−1
22 (�)M

T
12(�));

which indicates that the D-optimal design is independent of �. In the case of Ds-
optimality, we need to maximize

det(M(�))=det(2(1− �)M11(�))

= (1− �2)−(m+1) det(M22(�)) det(M22(�)−MT
12(�)M

−1
22 (�)M12(�));

which is also independent of �.

Proof of Theorem 5.2. Note that for r=m=2, only the �rst four moments of design
� appeared in the information matrix. Also by the symmetry argument of the D- and
Ds-optimal designs and majorization argument of a matrix, the optimal designs should
have c1 = c3 = 0, and c4 = c2. Then it is easy to see that the D- and Ds-optimal designs
are supported only on −1; 0; 1 with corresponding weights as given in Theorem 5:2.

References

Abt, M., Ga�ke, N., Liski, E.P., Sinha, B.K., 1998. Optimal designs in growth curve models: II Correlated
model for quadratic growth: optimal designs for parameter estimation and growth prediction. J. Statist.
Plann. Inference 67, 287–296.



322 F.-C. Chang et al. / Journal of Statistical Planning and Inference 93 (2001) 309–322

Abt, M., Liski, E.P., Mandal, N.K., Sinha, B.K., 1997. Optimal designs in growth curve models: I Correlated
model for linear growth: Optimal designs for slope parameter estimation and growth prediction. J. Statist.
Plann. Inference 64, 141–150.

Atkins, J.E., Cheng, C.S., 1997. Optimal regression designs in the presence of random block e�ects. Technical
Report. University of California, Berkeley.

Bischo�, W., 1995. Determinant formulas with applications to designing when the observations are correlated.
Ann. Inst. Statist. Math. 47, 385–399.

Cheng, C.S., 1995. Optimal regression designs under random block-e�ects models. Statist. Sinica 5, 485–497.
Dette, H., 1997a. Designing experiments with respect to ‘standardized’ optimality criteria. J. Roy. Statist.
Soc. B 59, 97–110.

Dette, H., 1997b. E-optimal designs for regression model with quantitative factors – a reasonable choice?.
Cand. J. Statist. 25, 531–543.

Dette, H., Studden, W.J., 1997. The Theory of Canonical Moments with Applications in Statistics, Probability
and Analysis. Wiley, New York.

Fedorov, V.V., 1972. Theory of Optimal Experiments. In: Studden, W.J., Kilmko, E.M. (Trans. and Ed.)
Academic Press, New York.

Graybill, F.A., 1983. Matrices with Applications in Statistics, 2nd Edition. Wadsworth International Group,
Belmont, CA.

Kra�t, O., Schaefer, M., 1992. D-optimal designs for a multivariate regression model. J. Multivariate Anal.
42, 130–140.

Pukelsheim, F., 1993. Optimal Design of Experiments. Wiley, New York.
Studden, W.J., 1980. Ds-optimal designs for polynomial regression using continued fractions. Ann. Statist.
8, 1132–1141.


