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When studying both location and dispersion effects in unreplicated fractional factorial designs, a “stan-
dard” procedure is to identify location effects using ordinary least squares analysis, fit a model, and then
identify dispersion effects by analyzing the residuals. In this paper, we show that if the model in the
above procedure does not include all active location effects, then null dispersion effects may be mistakenly
identified as active. We derive an exact relationship between location and dispersion effects, and we show
that without information in addition to the unreplicated fractional factorial (such as replication) we can
not determine whether a dispersion effect or two location effects are active.

Introduction

SCREENING experiments are often used in industry
to identify factors having an important impact
on a response or responses. The intent is to re-
duce a relatively large list of potential factors to a
manageable few. The 2%-7 fractional factorials are
screening designs where each factor is studied at 2
levels, but only a fraction of all factor-level combi-
nations are run. Traditionally, the primary use of
these designs has been in detecting and modeling lo-
cation effects (changes in the mean response). An as-
sumption of constant variance is usually made. Many
techniques have been designed to address this prob-
lem. Examples of various approaches are presented
by Daniel (1959, 1978), Box and Meyer (1986a), Juan
and Pefia (1992), Lenth (1989), and Ye, Hamada, and
Wu (2001). See Hamada and Balakrishnan (1998) for
an overview and comparison of different methods.
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Several papers have described techniques for
studying dispersion effects in replicated experiments
where r > 2 observations are obtained at each design
setting. See Davidian and Carroll (1987) and Nair
and Pregibon (1988) for examples. For unreplicated
fractional factorials however, there is no estimate of
variation available at each design setting, making the
study of dispersion effects more difficult. In their pi-
oneering work, Box and Meyer (1986b) developed an
informal method for identifying dispersion effects in
unreplicated experiments by studying the logarithm
of the ratio of residual variances. They noted the
importance of first identifying location effects before
studying dispersion effects. Montgomery (1990) ex-
tended this method by plotting these statistics on a
normal probability plot in order to discriminate small
dispersion effects from large effects. Wang (1989)
developed a test statistic that has an approximate
x? distribution for a large sample size. Ferrer and
Romero (1993a, b) used the residuals (or an appro-
priate transformation of the residuals) as a response
to study dispersion. More recently, Bergman and
Hynén (1997) developed an exact dispersion test us-
ing a statistic having an F distribution.

In this paper, we study the relationships derived
in Box and Meyer (1986b) in more detail and derive
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an ezplicit relationship between location and disper-
sion effects. This relationship explains why failure
to remove location effects before studying disper-
sion can produce spurious dispersion effects. Fur-
thermore, we show that without information in ad-
dition to the unreplicated fractional factorial we can
not determine whether a dispersion effect or two lo-
cation effects are active. Finally, suggestions about
additional information that can help to resolve this
confounding are made.

An Example

Montgomery (1990) analyzed data from an injec-
tion molding experiment where the response to be
optimized was shrinkage. The factors studied are
mold temperature (A), screw speed (B), holding time
(C), gate size (D), cycle time (E), moisture content
(F), and holding pressure (G). The design is a 2,3
fractional factorial, meaning it is a resolution IV,
1/2% fraction of a 27 design (See Box, Hunter, and

Hunter (1978)). The generators of this design are
E=ABC, F=BCD, and G=ACD. The data are shown
in Table 1.

The least squares regression coefficients are ob-
tained from fitting a saturated model. Figure 1 is
a normal probability plot of the estimated regres-
sion coefficients (8;s). In 2¥~P experiments, “effects”
are calculated as the average difference in the re-
sponse at the +1 and —1 levels of the column. Here,
effect; = 2f3;. Montgomery uses a normal probabil-
ity plot of the estimated effects and determines that
columns 1, 2, and 5 (A, B, and AB) produce active
location effects. He fits this location model, which
we denote M1.

(M1) Y= 273125+ 6.93754
+17.8125B + 5.9375AB
The estimated residuals under M1 are (—2.50, —0.50,

-0.25, 2.00, —4.50, 4.50, —6.25, 2.00, —0.50, 1.50,
1.75, 2.00, 7.50, —5.50, 4.75, —6.00).
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FIGURE 1. Injection Molding Experiment: Normal Plot of Location Coefficients
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TABLE 1. Design Matrix and Response for Injection Molding Experiment

A B C D E G F
il j— 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 yum
1 1 -1 -1 -1 -1 1 1 1 1 1 1 -1 -1 -1 -1 1 6
2 1 1 -1 -1 -1 -1 -1 -1 1 1 1 1 1 1 -1 -1 10
3 1 -1 1 -1 -1 -1 1 1 -1 -1 1 1 1 -1 1 -1 32
4 1 1 1 -1 -1 1 -1 -1 -1 -1 1 -1 -1 1 1 1 60
5 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 1 -1 4
6 1 1 -1 1 -1 -1 1 -1 -1 1 -1 -1 1 -1 1 1 15
7 1 -1 1 1 -1 -1 -1 1 1 -1 -1 -1 1 1 -1 1 26
8 1 1 1 1 -1 1 1 -1 1 -1 -1 1 -1 -1 -1 -1 60
9 1 -1 -1 -1 1 1 1 -1 1 -1 -1 -1 1 1 1 -1 8
10 1 1 -1 -1 1 -1 -1 1 1 -1 -1 1 -1 -1 1 1 12
11 1 -1 1 -1 1 -1 1 -1 -1 1 -1 1 -1 1 -1 1 34
12 1 1 1 -1 1 1 -1 1 -1 1 -1 -1 1 -1 -1 -1 60
13 1 -1 -1 1 1 1 -1 -1 -1 -1 1 1 1 -1 -1 1 16
14 1 1 -1 1 1 -1 1 1 -1 -1 1 -1 -1 1 -1 -1 5
15 1 -1 1 1 1 -1 -1 -1 1 1 1 -1 -1 -1 1 -1 37
16 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 52

As a measure of the dispersion effect magnitude
for column j, Montgomery calculates the statistic
F} = fn(s?,/s2_), which is the natural logarithm
of the ratio of the sample variances of the residuals
at the +1 and —1 levels of column j. Note that Box
and Meyer (1986b) point out this statistic is approz-
imately normally distributed with mean 0. Mont--
gomery compares these statistics to an appropriate
normal quantile to determine significance. He also
uses a normal plot of these statistics. Using either
the normal quantile or the probability plot, it is evi-
dent that column 3 (C) has a dispersion effect with

2
. S34 1M1 32.44
Fipn = ens§ ” = oo =250

Thus, Montgomery (1990) concludes that factors A
(mold temperature) and B (screw speed) impact the
mean shrinkage of the mold, and that factor C {(hold-
ing time) impacts the variation in shrinkage. By
studying the interaction between mold temperature
and screw speed, it is apparent that the low screw
speed is better for reducing mean shrinkage and that
the setting of mold temperature is not crucial at this
speed. To reduce the variation in shrinkage, holding
time should be set at its low level.

This logical procedure has become a standard
practice. However, the identification of dispersion
effects is quite sensitive to the location model that is
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fit. To illustrate, note that another reasonable inter-
pretation of Figure 1 is that columns 7 and 13 have
active location effects in addition to columns 1, 2,
and 5. This is even more apparent if a half-normal
plot is used as shown in Figure 2 (see Daniel, 1959).

We denote this model with five location effects
(columns 1, 2, 5, 7, and 13) as M2.

(M2) §=27.3125+ 6.93754
+17.8125B + 5.9375AB
- 2.6875CG — 2.4375G.

Due to the confounding associated with this design,
column 13 represents the factor G main effect and
interactions of three or more factors. The AD, CG,
and EF interaction effects appear in column 7, and
the interaction of columns 7 and 13 appears in col-
umn 3. So while the model may be represented many
ways, we use the labels CG and G for columns 7 and
13, respectively, to emphasize that their interaction
is in column 3, i.e. C.

The residuals from model M2 are (—2.250, —0.750,
0.000, 1.750, 0.625, —0.625, —1.125, —3.125, —0.750,
1.750, 1.500, 2.250, 2.375, —0.375, —0.375, —0.875).
From this model we have the F}-‘ statistic for column
3,

2.42

558 ~ 006

s§+|M2
* — —
F3IM2 ={n ] =€

S3-1Mm2
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FIGURE 2. Injection Molding Experiment: Half-Normal Plot of Location Coefficients

Here, it is apparent that there is no dispersion effect
associated with column 3 (factor C), since the sample
variance of residuals is quite similar at the —1 and
+1 levels of column 3.

So we have two feasible models for mold shrink-
age, M1 and M2. M1 shows two factors important
for determining the location (mean) of the response,
and it also includes another factor that is important
for controlling the variation in the response. M2 in-
cludes four factors that affect the mean response and
no dispersion factors. Which model is more appro-
priate? Is one model better than the other? Some
additional information may be helpful.

The experiment actually included four center runs
(25, 29, 24, 27) in addition to the fractional factorial.
From these center runs, we have an estimate of the
variance of the response, o2, of 32 = 4.92. M1 pro-
duces 5%, = 20.73 and M2 produces 53,, = 3.81, so
we see the M2 estimate is in much better agreement
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with the center point estimate. As mentioned by one
referee, if M1 is the “true” model, there is no com-
mon variance to be estimated so 5%,, is meaningless.
However, we would expect the variance of all resid-
uals to equal the average of the variances at the +1
and -1 levels of a column if all location effects have
been removed.

Therefore, a reasonable conclusion based on model
M2 is that there are four important factors: mold
temperature, screw speed, holding time and holding
pressure (G). If this experiment is truly a screening
experiment, then fitting M1 may have eliminated a
potentially important factor, holding pressure.

So we have two distinctly different possibilities:

¢ Failing to include a pair of location effects cre-
ated a spurious dispersion effect, or

¢ Failing to account for a dispersion effect created
two location effects.
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These spurious dispersion effects are not uncommon.
We show that the exclusion of a pair of active loca-
tion effects will create an apparent (spurious) disper-
sion effect in the interaction of these two columns.
Box and Meyer (1986) and Bergman and Hynén
(1997) both note a relationship between location and
dispersion effects. We derive the exact relationship.
In the next section, we provide a theoretical expla-
nation showing that failure to include two location
effects in a model before calculating residuals can
produce a spurious dispersion effect.

Spurious Dispersion Effects

Assume some method is used to identify m active
location effects in an unreplicated fractional factorial
design. A model is fit and residuals are estimated,
but we assume that there are two active location ef-
fects that are excluded from this model. Let the
excluded active location effects be in columns X; and
xj, and let x4 be the column associated with the
interaction of xj and xj. Then z,;z;; = z;4. Let Bj
and EJ" be the usual least squares estimators of g,
and B;, the regression coefficients associated with X;j
and x;j- respectively. We show that failure to include
B; and B; in the regression model will create a dif-
ference in the expected value of the sample variances
at the +1 and —1 levels of x4.

Define the following sets of rows using the conven-

tional P for ‘plus’ and M for ‘minus’:
M={i::z:,-d=—1}, P={i:$id=+1}.

A dispersion effect occurs when the variance of the
response, independent of the location effects, or
equivalently, the variance of the residuals from a
known location model, is higher at one level of a col-
umn than the other. We can compare sample vari-
ances of the residuals at the plus and minus levels of
a column to determine if it has a dispersion effect.

Let
s34 = 2 Z(€i°é)2
¥ n_2i€P ’
and
Sg = 2 Z(ei"ém)2,
B n—2i€M
where
2 — 2
'm=—Zeiandép=—Zei.
N em Ly
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It is shown in the Appendix that, under the assump-
tion that the errors are independently distributed
such that Ele;] = 0 and Varle;] = 02, the expected

sample variance of the residuals when z;y = —1
(ieM)is
E [32 ] =F [—2—-— Z(ei - ém)z]
d- n—2:
ieEM
-1- n
=z To?+ (B — Bi)?. (1)

n-—2 n—2

When z,4g = +1 (i € P),
: . ]
Bl =2 |1 T o]
n—2:
ieP
n - 1 -m 2 n 2
— . ). (2
g 0t +8)% (2)
From Equations (1) and (2) we have

E [33_,_] -E [sﬁ_’] = n—‘lj—z-ﬂjﬂj'.- (3)

Consider the following three scenarios involving 3;
and ﬁjlt

e If B; = B = 0, then these two location ef-
fects are not active and E [s3_] = E [s2,] =
(n-1-m/n-2)o?and E[s3, ] -E[s3_] =
0. Thus, any difference is just random error so
there will be no spurious dispersion effect.

e If only one of the coefficients is nonzero, then
Equation (3) is still zero as mentioned in
Bergman and Hynén (1997), although both are
biased upwards as estimates of o2.

e If 3; and Bjs # 0, the residuals will have differ-
ent expected variance at the —1 and +1 levels of
X4. Thus, excluding two location effects from
a mode!l and then studying residuals can create
a spurious dispersion effect.

Returning to the injection molding example, if we
assume columns 7 and 13 produce active location
effects but were left out of the model, we then have

E [33+|M1] -E [33_'M1] = —5bbis
- (i)lg_ﬁ)(-zsssx-uss)
— 20.95.

Recalling that 3§—|M1 = 2.66 and s§+lM1 = 32.44,
we have
S34)p1 — Sa—p1 = 29.79.
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134 RICHARD N. MCGRATH AND DENNIS K. J. LIN

So the observed difference in sample variances is al-
most the same as that caused by not including 57
and B3 in the model. This seems to indicate that
the dispersion effect detected by fitting model M1
is spurious. Of course, as previously mentioned, we
can not determine this with certainty. In the next
section, we show an example of both an apparently
spurious and an apparently real dispersion effect.

A Second Example

In Box and Meyer (1986b), an unreplicated 2377
fractional factorial experiment is analyzed. The data
from this welding experiment performed by the Na-
tional Railway of Japan are originally analyzed in
Taguchi and Wu (1980) and are shown in Table 2.
The response is observed tensile strength of a weld.

clearly indicates active location effects in columns 14
and 15 (factors B and C) as found by Box and Meyer.

They pointed out that comparing the sample vari-
ances of the response at the high and low levels of
each column falsely indicates the presence of a disper-
sion effect in column 1 (factor D). Note that column
1 is the interaction of the two active location effects
(14 and 15). Denote the null model BM1 as

(BM1) §=14.

Calculating the variance of the residuals from this
model (or equivalently the variance of the observed
responses) at each level of column 1 results in
f?_aam = 0.5342 and 825, = 8.1421. There-
ore,

s§+|BM] _ £n8'1421

We have labeled the columns in the same manner as Fl'I By =fn o 05342 = 2.72
Box and Meyer. 1-|BM1 :
. : and
The' normal propabxhty plot of the 15' regression - $2 2 76079,
coefficients (excluding the overall mean) in Figure 3 1+|BM1 ™ °1-|BM1
15,
n
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FIGURE 3. Welding Experiment: Normal Plot of Location Coefficients
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TABLE 2. Design Matrix and Response for Welding Experiment

D H G A -F -E J B -~C
il j— 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 yw
1 1 -1 -1 -1 -1 1 1 1 1 1 1 -1 -1 -1 -1 1 43.7
2 1 I -1 -1 -1 -1 -1 =1 1 1 1 1 1 1 -1 -1 40.2
3 1 -1 1 -1 -1 -1 1 1 1 -1 1 1 1 -1 1 -1 424
4 1 1 1 -1 -1 1 -1 -1 1 -1 1 -1 -1 1 1 1 447
5 1 -1 -1 1 =1 1 -1 1 -1 1 -1 1 -1 1 1 -1 424
6 1 1 -1 1 -1 -1 1 -1 1 1 ~1 -1 1 -1 1 1 459
7 1 -1 1 1 -1 -1 -1 1 1 -1 -1 -1 1 1 -1 1 422
8 1 1 1 1 -1 1 1 -1 1 -1 -1 1 -1 -1 -1 -1 406
9 1 -1 -1 -1 1 1 1 -1 1 -1 -1 -1 1 1 1 -1 424
10 1 1 -1 -1 1 -1 -1 1 1 -1 -1 1 -1 -1 1 1 45.5
11 1 -1 1 -1 1 -1 1 -1 1 1 -1 1 -1 1 -1 1 436
12 1 1 1 -1 1 1 -1 1 -1 1 -1 -1 1 -1 -1 -1 406
13 1 -1 -1 1 1 1 -1 -1 1 -1 1 1 1 -1 -1 1 440
14 1 1 -1 1 1 -1 1 1 1 -1 1 -1 -1 1 -1 -1 402
15 1 -1 1 1 1 -1 -1 -1 1 1 1 -1 -1 -1 1 -1 425
16 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 465

Using Equation (3) with the estimated coefficients
we obtain

A
E [5:1’+|BM1] E [33-|BM1] =

= 7.6171.

Again, the difference between these two estimates of
the difference between variances is quite small. This
provides substantial evidence that there is not a dis-
persion effect in column 1. It seems this spurious
dispersion effect is caused by not removing the loca-
tion effects in columns 14 and 15.

Box and Meyer then fit a model with the active
location effects in columns 14 and 15. We denote this
model BM2 as

(BM2) = 42.9625 + 1.075B — 1.550C.

In their analysis of residual variance, they find a dis-
persion effect in column 15, not in column 1. The
sa.mple variances of the re51duals from model BM2
are s15 iem2 = 0.0284 and 315+|BM2 = 0.5241.
Therefore,

0.5241

Sis+iaM2 = fn
0.0284

Flsgst = Zns = 2.92

15— |BM2
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and
s¥5+|BM2 - 3%5_|BM2 = 0.4957.

There are seven pairs of columns that have their
interaction appear in column 15. These pairs are
1:14, 2:13, 3:12, 4:11, 5:10, 6:9, and 7:8. Of these
pairs, 6:9 have the largest coefficients. Assuming (s
and B35 # 0 and using Equation (6) on the residuals,
we have

/\

. an -~ ~
E [sfsﬂsmz] -E [3§5-|BMz]

ﬂeﬂg

(4)(16)
= 2 (2)(:2125)
=0.1943.

Of course this is not a formal test. Without a stan-
dard error for ﬂsﬁg, we can not determine statisti-
cal significance. However, the observed difference in
sample variances of the residuals is much larger than
can be attributed to excluded possibly-active loca-
tion effects. This seems to imply that column 15 has
an active dispersion effect. We thus conclude that
the presence of this dispersion effect violates the ho-
mogeneity of variance assumption. This can cause
some problems when studying location effects. For-
tunately, the variance of each estimate is the same,
because each coefficient is a linear combination (+
and —) of the same responses.
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So we have seen that studying dispersion effects
in the presence of location effects can be misleading.
A pair of active location effects that are not included
in the location model can cause a spurious disper-
sion effect in their interaction column. Techniques
that model the variance of the response without first
removing location effects are likely to identify fac-
tors as dispersion-active when they actually do not
produce a dispersion effect. One last look at the in-
jection molding experiment reinforces this concept.

Figure 4 is a normal probability plot of the F;
values calculated from the observations, i.e. without
fitting any model first. Note that columns 1, 2, and
5 all appear to have dispersion effects. All three of
these columns have highly significant location effects
that have not been removed in this case. Also, each
of these columns is the interaction of the other two.
As shown earlier, these dispersion effects disappear
when we study residuals from a model including the

active location effects. Thus, it is evident that lo-
cation effects should be studied and removed from
the data, at least in a preliminary manner, before
studying dispersion effects.

Discussion and Future Research

We have shown that there is a specific relationship
between dispersion and location effects and that our
suggested analysis may help avoid incorrectly iden-
tifying inactive dispersion effects as active. We rec-
ommend, as do Box and Meyer (1986), that location
effects be identified and residuals from this location
model be used to identify dispersion effects. If a dis-
persion effect is detected, then Equation (3) can be
used with estimated location coefficients to estimate
how much of the observed dispersion effect is due to
the excluded location effects. As summarized below,
this method can provide guidance, but it will not
result in definitive conclusions.

20

1.5

F*
1.0

0.5

0.0

0 1

Quantiles of Standard Normal
FIGURE 4. Injection Molding Experiment: Normal Plot of F™* Based on Observations
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e In the injection molding example, there are two
possibilities: 1) there are two location effects
excluded from the model; or 2) there is one dis-
persion effect. We find that s2 M2~ sg_l A2 =

29.79 and (4n/n — 2)B,B13 = 29.95. As these
two quantities are almost equal, we conclude
that we actually have two location effects, not
a dispersion effect. Additionally, a separate es-
timate of variance is available from center runs,
allowing us to confirm this conclusion.

¢ In the second (welding) example, it is shown
that there is an active dispersion effect. Here
we have s2, +IBM2 sfs—l M2 = 4957 and

(4n/n — 2)BsfBo = .1943. As these two quanti-
ties differ substantially, it appears that column
15 does produce a dispersion effect.

e However, in some cases, we can not distinguish
which effects (one dispersion or two location)
are active. This occurs if the values of s2, —
s3_ and (4n/n — 2)3,B;: are neither “close” nor
“far apart.” The dispersion effect and the two
location effects are confounded. Critical values
based on distribution theory will be helpful in
removing this confounding. Theoretical work
in this direction is currently in progress by the
authors. In the interim, we leave the decision to
the knowledgable team leading the experiment.

We have described a method to help distinguish
whether a single dispersion effect or two location
effects are active. Box and Meyer develop an ap-
proach for detecting dispersion effects based on resid-
uals that does not have a formal method of testing.
Bergman and Hynén develop a formal test for dis-
persion effects using linear combinations of all the
estimated location effects. They also suggest an ap-
proach of analyzing two 1/2 fractions of the experi-
ment, using the dispersion effect as a branching col-
umn to create the half fractions. This is an adapta-
tion of a more general approach suggested by Gold-
feld and Quandt (1965). These methods and others,
however, do not address how to separate location ef-
fects from dispersion effects as our method does.

We have provided an exact confounding relation-
ship between location and dispersion effects in un-
replicated fractional factorials. Without additional
information this confounding can not be removed. If
possible, an experiment should be replicated in order
to study dispersion effects. If complete replication is
not feasible due to resource constraints, then the ad-
dition of center runs can provide some guidance to
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help separate location effects from dispersion effects.
Alternatively, a follow-up experiment can be run fix-
ing all factors except the suspected dispersion effect.
If k runs are made at each level of this factor, then a
simple F' test with k—1 and k — 1 degrees of freedom
can be used to test for the dispersion effect.

Some preliminary work done by the authors shows
that a dispersion effect produces a correlation among
pairs of location effects. Analysis of this correlation
structure may provide additional help in removing
the confounding between location and dispersion ef-
fects. We are continuing research in this area.

Appendix

In an n = 2*~P design, there are n/2 pairs of
columns (xj,xj) such that TijTijs = Tig for i =
1,...,n. Werefer to these pairs as alias pairs. Define
the following:

A= {j:B; is in the fitted model, j # 0},
A® = {j: B; is not in the fitted model, j # 0},
& =Y —¥i =yi—37—zl‘ij§j,
JEA
& =(2/n)) e,
i€EP
Em=(2/n) ) e
i€EM
Then
& =(2/n)Y (w-9- ;B

iepP JEA
= Ed - Z Z zijﬁj
i€P jeA
=Bs—(2/n)Y_ B >z
JEA i€P

But, Y .cpzi; = 0 for j # d and (n/2) for j = d.
Therefore, 34 being in the model implies & =0 1If

Ba is not in the model, then &, = (4. Using a similar
argument for &,,, we have
& = Bal(pieac)y  &m = —Balig,cac).

If B4 is in the model, then € =0 and

2
2 2
Sd+ = 'j;ei
2
2 _ ~
=55 (w-9- Tl
ieP JEA

http://jqt.asq.org/



138 RICHARD N. MCGRATH AND DENNIS K. J. LIN

(A1)

-5x (i)

i€P \jeAc

Suppose there are g pairs of effects, (E(f ) ﬂ(f )) with
f=1,...,9, such that x; and xy are ahases and both

ﬂJ(.f ) and ﬂJ(f ) are in not the model. Furthermore,

suppose there are t effects, Eq, such that £, is not in
the model but its alias is. Then Equation (A1) can
be written as

e = s z(z (=B

1€P
+zz,-ng) .
q=1

Using z;; = z;j» for i € P we have

:L‘ij'ﬁ](-if))

¢ 2
+crossprods + (Z x,-,,ﬁ,,) ] .

q=1

Now

D Tz =0 forj#j #u

i€P
so the crossproducts drop out when summing over
i € P. Similarly, when summing over i € P, Equa-
tion (A2) tells us that all crossproducts within each
summation also drop out so we have

2 g t
sg+=n_2ieP (;(ﬂ ’U)) +q=zl q)

g t

(A2),

f=1 =1

(A3)

If 3, is not in the model, then

2
2 _ -~ -~
s?H = n—_2 (yi -Yy- Z-’Bij,@j - ﬁd)
i€P

JjeA

55z

2
2:;B; + TiaBa — Bd)
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2
2 ~
) Z (je;—-dxijﬂj) :

i€P
The proof follows as before where it is understood
that ¢ # d. Similarly,

t
o= (E (8" - A‘,”) + ZB};’) (Ad)
f=1 1

Subtracting Equation (A4) from Equation (A3) re-
sults in

an f)
Sar = Si- = n—2 Z 3
=1

Under the equal variance hypothesis, §; ~
N(B;,0%/n) independently. Thus, if of the coef-
ficients considered to be inactive exactly one pair
(B, Bjr) is actually active, then

4
E[s3, —si ] = n—gﬂjﬂj'

A

E[s§+—s§_] = n 55

5P

2 n A2
Bl =5 (B |2 (B +AP)

f=1

= ig_+2taz + n'_'2 [i (E [gj(_f) +51g)])2

=1
-\ 2
+3 (e [a))]
9=
n—-1l-m ,
n-—2
9
+ h_r—f—z' (g (ﬂ(f) ﬂ(n) +Zl(ﬁq ) .
(A5)
Using a similar argument,
9 t
= (- 80) + 3 6?)
n-2 f=1 q=1
(A6)
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Again, if exactly one pair (8;, 8;/) is actually active,
then Equations (A5) and (A6) become

n—-1-m n

E[si] = — 50"+ =5 (6; + 6;)°
n—-1—-m n

= o’ + 2(,31' - Bj)*.

n—2 n-—

Acknowledgments

We would like to thank the previous editor, Geoff
Vining, and two anonymous referees for their helpful
comments. In addition, we would like to thank Dr.
Thomas Ryan, University of Michigan, for his sugges-
tion to improve the proof in the Appendix. Dennis
Lin is partially supported by National Science Foun-
dation via Grant DMS-9704711 and National Science
Council of ROC via Contract NSC 87-2119-M-001-
007.

References

BERGMAN, B. and HYNEN, A. (1997), “Dispersion Effects
From Unreplicated Designs in the 2P Series”. Techno-
metrics 39, pp. 191-198.

Box, G. E. P.; HUNTER, W. G.; and HUNTER, J. S. (1978).
Statistics for Ezperimenters. John Wiley, New York, NY, pp
375-384.

Box, G. E. P. and MEYER, R. D. (1986a). “An Analysis
for Unreplicated Fractional Factorials”. Technometrics 28,
pp. 11-18. )

Box, G. E. P. and MEYER, R. D. (1986b). “Dispersion Effects
From Fractional Designs”. Technometrics 28, pp. 19-27.

DanieL, C. (1959). “Use of Half-Normal Plots in Interpret-
ing Factorial Two-Level Experiments”. Technometrics 1,
pp. 311-341.

DaNIEL, C. (1978). Applications of Statistics to Industrial Ez-
perimentation. John Wiley, New York, NY.

Davipian, M. and CaRroLL, R. J. (1987). “Variance Func-

tion Estimation”. Journal of the American Statistical Asso-
ciation 82, pp. 1079-1091.

FERRER, A. J. and ROMERO. R. (1993a). “Small Samples Es-
timation of Dispersion Effects From Unreplicated Data”.
Communications in Statistics—Simulations 22, pp. 975
995.

FERRER, A. J. and ROMERO, R. (1993b). “A Simple Method
to Study Dispersion Effects from Non-necessarily Repli-
cated Data in Industrial Contexts”. Quality Engineering 7,
Pp. 747-755.

GOLDFELD, S. M. and QUANDT, R. E. (1965). “Some Tests
for Homoscedasticity” Journal of American Statistical As-
sociation 60, pp. 539-547.

HaMADA, M. and BALAKRISHNAN, N. (1998). “Analyzing Un-
replicated Factorial Experiments: A Review with Some New
Proposals” (with discussion). Statistica Sinica 8, pp. 1-38.

JuaN, J. and PENa, D. (1992). “A Simple Method to Identify
Significant Effects in Unreplicated Two-Level Factorial De-
signs”. Communications in Statistics— Theory and Methods
21, pp. 1383-1403.

LENTH, R. (1989). “Quick and Easy Analysis of Unreplicated
Factorials”. Technometrics 31, pp. 469-473.

MONTGOMERY, D. C. (1990). “Using Fractional Factorial De-
signs for Robust Process Development”. Quality Engineering
3, pp. 193-205.

NAIR, V. N. and PREGIBON, D. (1988). “Analyzing Disper-
sion Effects From Replicated Factorial Experiments”. Tech-
nomeirics 30, pp. 247-257.

TagucHl, G. and Wu, Y. (1980). An Introduction to Of-
Line Quality Control Nagoya, Japan: Central Japan Quality
Control Association.

WAaNG, P. C. (1989). “Tests for Dispersion Effects From Or-
thogonal Arrays”. Computational Statistics and Data Anal-
ysis 8, pp. 109-117.

YE, K. Q.; HAMADA, M.; and Wu, C. F. J. (2001). “A Step
Down Lenth Method for Analyzing Unreplicated Factorial
Designs”. Journal of Quality Technology 33, pp. 140-152.

Key Words: = Confounding, Dispersion, Fractional
Factorial Designs, Scale Parameter.

Vol. 33, No. 2, April 2001

http://jqt.asq.org/



