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Two fractional factorial designs are called isomorphic if one can be obtained
from the other by relabeling the factors, reordering the runs, and switching the
levels of factors. To identify the isomorphism of two s-factor n-run designs is known
to be an NP hard problem, when n and s increase. There is no tractable algorithm
for the identification of isomorphic designs. In this paper, we propose a new algo-
rithm based on the centered L2-discrepancy, a measure of uniformity, for detecting
the isomorphism of fractional factorial designs. It is shown that the new algorithm
is highly reliable and can significantly reduce the complexity of the computation.
Theoretical justification for such an algorithm is also provided. The efficiency of the
new algorithm is demonstrated by using several examples that have previously been
discussed by many others. � 2001 Academic Press
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1. INTRODUCTION

Fractional factorial experiments have become important in all kinds of
studies. Two factorial designs are called isomorphic if one can be obtained
from the other by relabeling the factors, reordering the runs, or switching
the levels of factors. Two isomorphic designs are considered to be equiv-
alent because they share the same statistical properties in a classical
ANOVA model. Therefore, it is important to identify design-isomorphism.
Identifying whether two fractional designs are isomorphic has received a
great deal of attention in the literature (see, for example, Clark and Dean
(2000) and references therein).

Denote by d(n, q, s) a factorial design of n runs and s factors each having
q levels. A design d(n, q, s) is usually expressed as an n_s matrix with
elements 0, 1, ..., q&1. For identifying two d(n, q, s) designs, a complete
search compares n!(q!)s s! designs from the definition of isomorphism. For
example, it requires 13!12!212=1.22_1022 comparisons for two factorial
d(13, 2, 12) designs to see if these designs are isomorphic. The identification
of two factorial designs is considered to be a NP hard problem when the
number of runs or�and the number of factors increase.

A fractional factorial design that is constructed through defining rela-
tions among factors is called regular, otherwise nonreqular. For a qs&k

regular fractional factorial design D, let Ar (D) be the number of factorial
effects, involving r factors, which appear in the defining relation. The
sequence [A1 (D), ..., As (D)] is called the word-length pattern. The smallest
r for Ar (D)>0 is called the resolution of D. For a given (n, q, s) one
searches a design d(n, q, s) with highest resolution as it has less confound-
ing. When two d(n, q, s) designs D1 and D2 have the save level of resolu-
tion, there exists a r>0 such that Aj (D1)=A j (D2)=0 for all j<r and
Ar (Di)>0, i=1, 2. One wants to choose the design with smaller Ar ( } ). The
minimum aberration criterion is based on such an idea. For a detailed
discussion refer to Fries and Hunter (1980).

A necessary condition for two regular factorial designs to be isomorphic
is that they have identical word-length pattern. Draper and Mitchell (1968)
gave two L512 (212) orthogonal designs which have identical word-length
patterns, but are not isomorphic. Here, Ln (qs) denotes an orthogonal array
with n runs and s columns. Draper and Mitchell (1970) gave a more sen-
sitive criterion for isomorphism, called ``letter pattern comparison,'' and
tabulated 1024-run designs of resolution 6. Let aij be the number of words
of length j in which letter i appears in a regular design D and A=(aij) be
the letter pattern matrix of D. They conjectured that two designs D and D$
are isomorphic if and only if A=PA$, where P is a permutation matrix.
Obviously, two designs having identical letter pattern matrices necessarily
have identical word-length patterns. Chen and Lin (1991) gave two
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nonisomorphic designs 231�15 with identical letter pattern matrices and thus
showed that the criterion ``letter pattern matrix'' is not sufficient for design
isomorphism. Note that both the word-length and letter pattern matrix
are not easy to calculate and can be applied only to regular factorial
designs.

Recently, Clark and Dean (2000), denoted by [CD00] for convenience,
gave a sufficient and necessary condition for isomorphism of designs. Let
H=(dij) be the Hamming distance matrix of a design D, where dij is the
Hamming distance of the ith and jth runs of D and is defined as the number
of levels of the factors where they differ. This clever method is invariant
under the permutations of levels, but the complexity here makes the
calculation intractable. For example, it may require 12!12!12=2.75_1018

comparisons for two non-isomorphic d(13, 2, 12) designs.
In this paper we propose a necessary criterion for detecting non-

isomorphic (regular and nonregular) factorial designs based on uniformity,
a criterion that is crucial in space-filling designs for computer experiments
(Bates et al. (1996)) and in uniform designs (Fang and Wang (1994) and
Fang et al. (2000)). The centered L2 -discrepancy proposed by Hickernell
(1998) is employed as the measure of uniformity in this study and is
introduced in Section 2. An algorithm for detecting the isomorphism of
two-level d(n, 2, s) designs is also proposed there. Section 3 applies the
proposed algorithm to several examples that were discussed by others.
Section 4 discusses the extension to higher level designs, and an example is
given for illustration. The conclusion and further discussion are given in
Section 5.

2. ISOMORPHISM OF TWO-LEVEL DESIGNS

Recall that Clark and Dean (2000) algorithm is mainly based on the
following lemma. This will be called as the HD-method for convenience.
Also note that the HD-method requires to find the permutation [c1 , ..., cp]
and the permutation matrix R.

Lemma 1. Let D1 and D2 be two d(n, q, s) designs. Then D1 and D2 are
isomorphic if and only if there exist an n_n permutation R and a permuta-
tion [c1 , ..., cs] of [1, ..., s] such that for p=1, ..., s

H [1, ..., p]
D1

=RH [c1, ..., cp]
D2

R$,

where H [c1, ..., cp]
D is the Hamming distance matrix of the design formed by

columns [c1 , ..., cp] of design D.
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A design d(n, q, s) can be viewed as n points in the unit cube C s=[0, 1)s,
after proper coding, e.g., the q levels (0, 1, ..., q&1) O (0.5�q, 1.5�q, ...,
(q&0.5)�q). Let P=[u1 , ..., un] be a set of n points in C s. Many criteria
have been proposed for the measures of uniformity. We shall concentrate
on the centered L2 -discrepancy (CD2 for short) in our study here. The CD2

has some nice and unique properties, such as it is invariant under reordering
the runs, relabeling coordinates and reflections of the points about any plane
passing through the center of the unit cube and parallel to its faces. Further-
more, the CD2 captures uniformity over the unit cube as well as the uni-
formity over all projected subdimensions. Hickernell (1998) gave an analytical
formula for the CD2 as

(CD2 (P))2=\13
12+

s

&
2
n

:
n

k=1

`
s

j=1
\1+

1
2

|ukj&0.5|&
1
2

|ukj&0.5|2+
+

2s

n2 :
n

k=1

:
n

j=1

`
s

i=1 _1+
1
2

|uki&0.5|+
1
2

|uji&0.5|&
1
2

|uki&uji |& ,

(1)

where uk=(uk1 , ..., uks)$. Recently, Fang and Mukerjee (2000) show the
relationship between uniformity and aberration for two-level regular frac-
tions. Ma et al. (1999) found links between uniformity and orthogonality
for some factorials.

For a d(n, q, s) design D with levels 0, 1, ..., q&1, when we calculate
its CD2 -value we always assume to map its q levels into 1�2q, 3�2q, ...,
(2q&1)�2q. This understanding is useful in links among uniformity,
Hamming distance, distance distribution and weight distribution of a
design D.

Theorem 1. For a two-level d(n, 2, s) design D, we have

CD2
2 (D)=\13

12+
s

&2 \35
32+

s

+
1
n2 \5

4+
s

\n+2 :
n

i=1

:
i&1

j=1 \
4
5+

dH (ui , uj)

+ , (2)

where ui , i=1, ..., n are n runs of D and dH(ui , uj) is the Hamming distance
between ui and uj .

Proof. Note that the two levels are chosen as 1�4 and 3�4. The second
term on the right hand side of (1) becomes 2( 35

32)s. Consequently,

[1+ 1
2 |uki&0.5|+ 1

2 |uji&0.5|& 1
2 |uki&uji |]={5�4

1
if uki=uji ,
otherwise.
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Therefore, we have

`
s

i=1
_1+

1
2

|uki&0.5|+
1
2

|uji&0.5|&
1
2

|uki&uji |&=\5
4+

s&dH (ui , uj)

.

The theorem follows from (1).

For any d(n, q, s) design D, let Ei (D) be 1
n times the number of pairs of

two runs whose Hamming distance to be i, i.e.,

Ei (D)=
1
n

*[(c, d) | c, d # D, dH(c, d)=i],

where dH(c, d) is the Hamming distance between two runs c and d. The
sequence [E0 (D), ..., Es (D)] is referred to as the distance distribution of D.
From Theorem 1, we can establish a link between the distance distribution
and CD2 -value of a two-level design.

Theorem 2. For a d(n, 2, s) design D, we have

CD2
2 (D)=\13

12+
s

&2 \35
32+

s

+
1
n \

5
4+

s

:
s

k=0

Ek (D) \4
5+

k

. (3)

Comparing Eqs. (2) and (3), although both cost O(sn2), but the former
needs to compute n(n&1)�2 powers of 4

5 while the latter needs only s
powers of 4

5. The latter reduces the complexity of computation. In fact, if D
is a regular two-level design, the complexity can be further reduced into
O(ns). Let D=[x1 , ..., xn] be a regular factorial design with two levels 0
and 1. The weight distribution of D is defined by

Wk (D)=
1
n

*[xi } :
s

j=1

xij=k].

Theorem 3. Let D=[x1 , ..., xn] be a regular factorial design with two
levels 0 and 1. We have

CD2
2 (D)=\13

12+
s

&2 \35
32+

s

+
1
n \

5
4+

s

:
s

k=0

Wk (D) \4
5+

k

. (4)

Proof. Because runs of a regular design D must form a linear subspace
of the full design 2s over GF(2), (xi&x j) (mod 2) is also a run of D, i.e.,
[(xi&xj) (mod 2) | j=1, ..., n] are all the designs, D, for any i=1, ..., n.
The proof is completed by Eq. (3).
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To compute Ek (D), one needs to calculate n(n&1)�2 distances, but to
find Wk (D), one needs only n summations for the runs.

For two isomorphic d(n, 2, s) designs D1 and D2 they have the same set
of Hamming distances, the same sequences of Ek , and thus an identical
CD2 -value. Furthermore, they have the same CD2-value distribution for
each of their projection designs. For given k (1�k<s) there are ( s

k) sub-
designs for a design D(n, 2, s). The distribution of CD2 -values of these sub-
designs is called the k-dimensional CD2 -value distribution of D and we
denote it by Fk (D). The following necessary condition is thus obtained.

Uniformity Criterion for Isomorphism (UCI ) of Two-Level Designs. The
necessary conditions for two d(n, 2, s) designs D1 and D2 to be isomorphic
are a) they have the same CD2 -value; b) they have the same distribution
Fk (D1)=Fk (D2) for 1�k<s.

Based on the UCI we propose the following algorithm, called NIU algo-
rithm, for detecting isomorphic d(n, 2, s) designs. Let D1 and D2 be two
d(n, 2, s) designs.

NIU Algorithm.

Step 1. Comparing CD2 (D1) and CD2 (D2), if CD2 (D1){CD2 (D2) we
conclude D1 and D2 are not isomorphic and terminate the process,
otherwise go to Step 2.

Step 2. Let [x] be the integer part of a positive number x. For
k=1, s&1, 2, s&2, ..., [s�2], s&[s�2], comparing Fk (D1) and Fk (D2), if
Fk (D1){Fk (D2) we conclude D1 and D2 are not isomorphic and terminate
the process, otherwise this step goes to the next k-value.

We next apply the NIU algorithm to several examples that have been
studied by others. As will be seen, the NIU algorithm efficiently detects the
non-isomorphism of designs, typically at Step 1 or Step 2. Note that the
NIU algorithm needs O(n2s2s) operations to compare 2s+1 CD2-values in
the worst case. This is polynomial in n and exponential in s. This is a
significant improvement over the complete search (which takes n!s!2s com-
parisons and is superexponential in both n and s) and the HD-method
(which requires s(s!)2 comparisons and each comparison required O(n!)
operations in the worst case).

3. EXAMPLES OF TWO-LEVEL DESIGNS

In this section we apply the NIU algorithm to several designs that have
been studied in the literature and show that the new algorithm is very use-
ful. The calculation was carried on a PC-computer with double precision.
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Example 1. Consider two d(7, 2, 6) designs D1 and D2 . Their treat-
ment matrices are given below. All their treatments are the same except the
sixth treatment combination.

0 0 0 1 1 1 0 0 0 1 1 1

0 0 1 1 0 0 0 0 1 1 0 0

0 1 0 0 1 0 0 1 0 0 1 0

D1=\0 1 1 0 0 1+ , and D2=\0 1 1 0 0 1+ .
1 0 0 0 0 1 1 0 0 0 0 1

1 0 1 1 1 0 0 1 0 0 0 1

1 1 0 1 0 1 1 1 0 1 0 1

The designs D1 and D2 are non-isomorphic because CD2
2 (D1)=0.2792

while CD2
2 (D2)=0.4245. The process terminates at the first step.

Example 2. The three d(12, 2, 5) designs d1 , d2 and d3 considered in
Example 3.1 of [CD00] have different squared CD-values 0.1893, 0.1882,
and 0.1682. So they are non-isomorphic to each other.

Example 3. The NIU algorithm is applied to the three d(18, 2, 17)
designs, d9 , d6, 3 and d3, 3, 3 , discussed by Cohn (1994) (also given in
[CD00] as Examples 2.1 and 3.1). First of all, all three designs produce an
identical squared CD2 -value of 2.952. We next calculate their k-dimen-
sional CD2 -value distributions. For k=1, the F1 (D) distribution is identi-
cal for all three designs: 9 projection designs have CD2

2=0.0208 and 8
designs have CD2

2=0.0224; the F16 (D) distribution is also identical:
CD2

2=2.3877 (twice), CD2
2=2.3891 (6 times), CD2

2=2.3958 (6 times), and
CD2

2=2.3965 (3 times). For k=2, the F2 (D) distribution is identical for all
three designs: CD2

2=0.0469 (36 times), CD2
2=0.0484 (72 times), and

CD2
2=0.0503 (28 times). However, the F15 (D) distribution of d3, 3, 3 is dif-

ferent from the other two designs. For k=3, we found that the F3 (D) dis-
tributions are different between designs d9 and d6, 3 . Finally, we conclude
that the three designs are not isomorphic to each other.

Example 4. Consider the two L512 (212) designs, D1 and D2 , given in
Draper and Mitchell (1968, as designs 3.4 and 3.5 in Table I). They showed
that these two designs are not isomorphic but share an identical word-
length pattern. When applying NIU to these two designs, an identical
CD-value of 0.8609440 was obtained. Obviously, for k=1, 2, all the k-pro-
jection designs of D1 and D2 are isomorphic, because both designs are
orthogonal designs. However, F11 (D1){F11 (D2). We thus conclude that
they are not isomorphic. Specifically, F11 (D1) has CD2

2=0.7057277
(12 times); while F11 (D2) has CD2

2=0.7057209 (3 times), CD2
2=0.7057277
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TABLE I

The Distribution F12 for the Five Designs

D1 D2 D3 D4 D5

CD2
2 Freq. CD2

2 Freq. CD2
2 Freq. CD2

2 Freq. CD2
2 Freq.

0.97930 35 0.97930 19 0.97930 11 0.97930 7 0.97930 7
0.98407 420 0.98288 64 0.98288 96 0.98288 112 0.98288 112

0.98407 372 0.98407 348 0.98407 336 0.98407 336

(6 times) and CD2
2=0.7057345 (3 times). Note that it is not feasible to

apply the HD-method for such a large design.

Example 5. It is well known that the numbers of non-isomorphic
Hadamard matrices are 1, 1, 1, 5, 3, and 60 respectively for orders n = 4,
8, 12, 16, 20 and 24. We have successfully applied the NIU to all six of
these cases. The details for n=16 are given here.

Hall (1961) found that there exist exactly five non-isomorphic groups of
Hadamard matrices of order 16. After deleting the column of 1's from each
of the matrices after normalizing, the remaining matrices are denoted by Dj ,
j=1, ..., 5, respectively. All five designs have the same squared CD-values
of 1.8988504 and identical distributions of F14 and F13 when projected into
14 and 13 sub-dimensions. However, the different F12-distributions given in
Table I indicate the non-isomorphism of five designs, except designs D4 and
D5 . In the next step, we found that F11 (D4){F11 (D5), as shown in Fig. 1,
and thus concluded the non-isomorphism of five designs.

Example 6. Chen and Lin (1991, p. 97, Table 1) gave two non-
isomorphic L32768 (231) designs with the same letter pattern matrix. It
requires a large amount of computation to detect their non-isomorphism

FIG. 1. Plots of Distribution F11 for D4 and D5 .
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by any other existing algorithms, including the HD-method. The non-
isomorphism, however, can be easily detected by the NIU algorithm as
follows:

(1) two designs have the same CD2
2=18.30959;

(2) all the 30-dimensional projection designs have the same
CD2

2=15.86654;

(3) all the 29-dimensional projection designs have the same
CD2

2=13.73364;

(4) the F28 -distributions of the two designs are different as follows:

Design (a) Design (b)
CD2

2 Freq. CD2
2 Freq.

11.872776 155 11.872791 155
11.872806 4340 11.872796 465

11.872801 930
11.872806 1550
11.872811 1395

The conclusion that two designs are not isomorphic follows by implement-
ing only four steps of the algorithm.

4. FRACTIONAL FACTORIAL DESIGNS OF HIGHER LEVELS

In this section we consider the problem of detecting non-isomorphic
designs for high-level factorial designs. Let D be a d(n, q, s) design and
Ek (D)'s be its distance distribution defined in Section 2. Denote

Ba(D)= :
s

i=1

Ei (D) ai

as the distance enumerator of D (Roman, 1992, p. 226). For a two-level
design D we have from (3)

(Cd2 (D))2=
1
n \

5
4+

s

B4�5 (D)&2 \35
32+

s

+\13
12+

s
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which provides a link between the distance enumerator and uniformity. In
fact, the UCI is equivalent to the measure B4�5 (D) for two-level designs.
This measure can naturally be used for high-level factorial designs. Given
k (1�k�s), the distribution of Ba -values over all k-dimensional projec-
tion subdesigns is denoted by FBa, k

(D). We now can have an NIU version
for the high-level designs. As the parameter a is a pre-determined value, we
omit a from the notation for simplicity.

NIU Algorithm for High-Level Designs.

Step 1. Comparing B(D1) and B(D2), if B(D1){B2 (D2), we conclude
D1 and D2 are not isomorphic and terminate the process. Otherwise go to
Step 2.

Step 2. For k=1, s&1, 2, s&2, ..., [s�2], s&[s�2], compare FBk
(D1)

and FBk
(D2). If FBk

(D1){FBk
(D2), we conclude D1 and D2 are not

isomorphic and terminate the process, otherwise this step goes to the next
k-value.

For a simple illustration, consider the four L18 (37) in Table II, where
Design (a) is from Masuyama (1957), Design (c) is from Fang et al. (2000),
and Design (b) is from http:��www.research.att.com�tnjas�oadir�. Taking

TABLE II

Four L18(37) Designs

No. (a) (b) (c) (d)

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 3 2 1 3 1 2 1 2 1 2
2 1 2 2 2 2 2 2 1 1 2 3 2 3 2 1 3 1 1 2 1 2 1 1 2 3 1 3 1
3 1 3 3 3 3 3 3 1 2 1 3 3 2 2 1 1 2 3 2 2 3 2 2 2 3 2 1 3
4 2 1 1 2 2 3 3 1 2 3 2 1 3 3 1 3 2 3 1 3 1 1 2 3 1 1 2 2
5 2 2 2 3 3 1 1 1 3 2 2 3 1 3 1 1 3 2 3 3 2 3 1 3 1 2 3 3
6 2 3 3 1 1 2 2 1 3 3 1 2 2 2 1 2 3 2 1 1 3 1 2 1 1 2 1 1
7 3 1 2 1 3 2 3 2 1 1 2 3 3 2 2 1 1 3 1 1 2 1 3 2 2 2 3 2
8 3 2 3 2 1 3 1 2 1 3 3 1 2 3 2 2 1 3 3 3 3 2 3 1 1 3 3 1
9 3 3 1 3 2 1 2 2 2 2 2 2 2 1 2 2 2 2 2 2 2 2 1 3 2 2 1 1

10 1 1 3 3 2 2 1 2 2 3 1 3 1 1 2 3 2 2 3 1 1 3 3 1 3 2 2 2
11 1 2 1 1 3 3 2 2 3 1 3 2 1 3 2 1 3 1 1 2 1 3 2 2 2 3 2 1
12 1 3 2 2 1 1 3 2 3 2 1 1 3 2 2 3 3 1 2 3 3 1 3 3 2 3 1 3
13 2 1 2 3 1 3 2 3 1 2 1 3 2 3 3 1 1 2 2 3 1 2 2 3 3 3 3 2
14 2 2 3 1 2 1 3 3 1 3 2 2 1 2 3 3 1 2 1 2 3 3 3 3 3 1 1 1
15 2 3 1 2 3 2 1 3 2 1 1 2 3 3 3 1 2 1 3 1 3 1 1 1 3 3 2 3
16 3 1 3 2 3 1 2 3 2 2 3 1 1 2 3 2 2 1 1 3 2 2 1 1 2 1 1 2
17 3 2 1 3 1 2 3 3 3 1 2 1 2 1 3 2 3 3 2 1 1 3 2 1 2 1 3 3
18 3 3 2 1 2 3 1 3 3 3 3 3 3 1 3 3 3 3 3 2 2 2 3 2 1 1 2 3
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a=4�5, for example, the four designs have the same distance enumerator
6.685248. However, the distributions of distance enumerator of all 6-dimen-
sional projection designs are different as indicated below. Therefore, we
conclude that Designs (a), (c), and (d) are non-isomorphic. Note that an
exhaustive comparison indicates that Designs (a) and (b) are indeed
isomorphic.

B(a) Freq. B(b) Freq. B(c) Freq. B(d ) Freq.

7.6683 1 7.6683 1 7.6719 1 7.6737 3
7.6765 6 7.6765 6 7.6747 2 7.6765 4

7.6765 4

5. DISCUSSION

The uniformity criterion proposed in this paper is useful for detecting
design isomorphism. The HD-method gives a necessary and sufficient link
between the isomorphism and the Hamming distance matrices of two
designs. As a matter of fact, CD2 (D) is a function of the Hamming distance
matrix of D. Equations (3) and (4) can significantly reduce the computa-
tion efforts. This makes the NIU algorithm a powerful tool, as clearly seen
from Examples 1�7.

For the research on projection properties of a given fractional factorial
design, we need to classify all its projection designs. For example, Lin and
Draper (1992) studied the Plackett�Burman L12 (211) design and its projec-
tion designs. For the five-dimensional case they have classified 462 projec-
tion designs into two non-isomorphic groups. This is computationally-
intensive work, using definition of the isomorphism directly. Moreover,
many optimality criteria such as D-optimality, A-optimality, were used for
the classification of projection designs. Unfortunately, there is no analytic
link between isomorphism and D-optimality (or A-optimality), and many
non-isomorphic designs result in an identical information matrix, and thus
optimalities based on the information matrix, such as D- or A-optimality,
are inappropriate in detecting the design isomorphism. The NIU algorithm
proposed here provides a very efficient and meaningful way for classifying
projection designs.

The UCI is only a necessary condition for design isomorphism. We con-
jecture that UCI is also a sufficient condition, but fail to prove it at this
stage. If the conjecture is true, the computing complexity of comparing two
d(n, q, s) is polynomial in n and q and exponential in s. Nonetheless, it is
probably the most efficient algorithm for detecting non-isomorphism of
designs.
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