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Sensitizing Rules are commonly applied to Shewhart Charts to increase their effective-
ness in detecting shifts in the mean that may otherwise go unnoticed by the usual “out-
of-control” signals. The purpose of this paper is to demonstrate how well these rules
actually perform when the data exhibit autocorrelation compared to non-correlated
data. Since most control chart data are collected as time series, it is of interest to
examine the performance of Shewhart’s # Chart using data generated from typical time
series models. In this paper, measurements arising from autoregressive (AR), moving
average (MA) and autoregressive moving average (ARMA) processes are examined us-
ing Shewhart Control Charts in conjunction with several sensitizing rules. The results
indicate that the rules work well when there are strong autocorrelative relationships,
but are not as effective in recognizing small to moderate levels of correlation. We con-
clude with the recommendation to practitioners that they use a more definitive measure
of autocorrelation such as the Sample Autocorrelation Function correlogram to detect
dependency.

Keywords: Autoregressive; Moving Average; Runs Tests; Shewhart Control Charts:
Statistical Process Control; Time Series.

1. Introduction

The standard analysis and interpretation of a Shewhart  Chart assumes that the
data are normally and independently distributed (NID) with mean p and standard
deviation o which remain constant over time. It is common to apply runs tests in the
analysis to increase the chart’s effectiveness in detecting small shifts in the process.
Such tests are referred to as sensitizing rules® and are widely used in practice as
they are easy to apply.® Some of these tests are found in Table 1.

The sensitizing rules make use of exclusive and exhaustive zones which divide
the area between the upper and lower control limits into three regions. The zones
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Table 1. Some sensitizing rules for Shewhart Control Charts.

Rule 1 A point falls outside the 3 sigma limit

Rule 2 8 points in a row in zone C or beyond on the same side of the center line

Rule 3 6 points in a row increasing or decreasing

Rule 4 14 points in a row alternating up and down

Rule 5 2 out of 3 points in a row in zone A or beyond on the same side of the center line
Rule 6 4 out of 5 points in a row in zone B or beyond on the same side of the center line
Rule 7 15 points in a row in zone C

Rule 8 8 points in a row not in zone C

Standard DeMations from Mean
0 1

Fig. 1. Shewhart Chart with zones.

refer to the region between the center line and the +1 sigma limits as zone C:
between the +1 sigma limits and +2 sigma limits as zone B: and between the +2
and +3 sigma limits as zone A. Figure 1 displays the zones graphically. Using these
rules increases the chance of detecting changes in the process mean, but may lead
to a greater Type I error rate.

Since the data for Shewhart’s Z Chart are collected as a time series, we show how
sensitizing rules identify a violation of the independency assumption by simulating
linearly autocorrelated data generated from conventional time series models. This
paper describes the autocorrelation structures which are used in the simulation
demonstrating the sensitizing rules and provides an interpretation of the results of
the simulation followed by a study of the impact of series length on the probability of
false positives. We conclude with a discussion of the outcomnes and recommendations
for practitioners.

2. Autocorrelatgd Data

The standard assumptions associated with the use of control charts include the data
being generated by an NID (, o) process with the parameters fixed but unknown.®
This assumption is often invalid as time series data is frequently correlated. When
a series drifts over time, it is said to be autocorrelated. The level of autocorrelation
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is measured using the autocorrelation function:

_ Cov(zy, z24-1)

Pk = Var(zy) k=0,1....

and estimated using:

" (@ = &) (2ek — 7)
N —

where NV is the length of the time series. As a general rule, the first K < N/4

samples are computed.”

In this study, autocorrelated data are simulated using Linear Gaussian Models
as the generating process. Linear Gaussian Models are frequently used in time series
analysis to explain the movement of a series as a function of its past performance
plus random shocks. We will use the Linear Gaussian Models described below to
induce correlation in the data.

The first type of linear model studied will be the autoregressive process of order
p(AR(p)) that is characterized by

T =

Yt=C+¢]Yt—l+¢2},t—2+"'+¢th—p+ft-

The AR(p) is a weighted average of the past performance with weights ¢; and a
normal error term ¢, ~ N(0,0?). Such a model is used when the change in the
series at any point in time is linearly correlated with previous changes.

A second type of linear model that will be used in the analysis is the moving
average process of order ¢ (MA(q)) that is characterized by

Yi=pu+e —~016-1 — Orepq —--- — q€t—q -

The MA(qg) is a weighted average (with weights 6;) of random shocks (... €;)
spanning q periods. Each of the ¢;’s is assumed to follow a normal distribution with
mean 0 and standard deviation . A moving average model is used when there is
a linear dependence on past performance. It is interesting to note that the system
has a g-period memory meaning that a random shock persists for exactly ¢ periods.

Combining the two models above results in the mizred autoregressive-moving
average (ARMA(p, ¢)) process characterized by

Yi=c+dYimi+--+dpYip+e— b1 — -~ Oper—q.

This type of scheme is used when both moving average and autoregressive tenden-
cies are present.

3. Simulation Procedure

Our goal is to evaluate the ability of the sensitizing rules to detect dependency in
a series of observations, not to decide on an optimal batch size. Thus, we will only
look at series of individual observations (batch size of 1). For each model, a series of
100 data points was generated with Normal (0, 1) error terms. The NID case occurs
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when all parameter values of the AR, MA or ARMA model are set to zero and will
serve as a “benchmark” for comparison. In order to cover most typical cases, we
chose to use —0.9, —0.5, 0.1, 0.5, and 0.9 and their pairwise combinations as values
for ¢; and 6; in the models described in Sec. 2 to simulate time series. Shewhart
Control limits are then determined using the mean of the series as the center line
and the moving range of successive observations to determine the control limits.
The moving range is defined as MR, = |€;i —zi—1].% The mean of the moving range
is used to estimate the process variability. The interpretation of the chart is then
similar to that of the ordinary Shewhart-z Control Chart.

All eight sensitizing rules were then performed on the control chart noting when
each rule was violated. Ten thousand (10,000) sets of 100 data points were generated
via this process for the different linear models. The values reported are the fraction
of generated series found in violation of each rule and the percentage of series which
violated at least one of the rules. The series were generated and tested using the
statistical software package S-plus.

4. Results and Discussion

Tables 2 through 4 show the results from the simulations. In the following section we
study the results of each model simulation, examining each rule and its performance
under the various models.

Rule 1: A point falls outside the 3 sigma limit

Rule 1 corresponds to having an observation fall relatively far from the process
mean. Violation of this rule can indicate an out of control point or dependency
of the process. This rule is typically violated when the generating process has a
large autoregressive coefficient in absolute value or negatively large moving average
term. For example, AR(1)-6, AR(2)-25, MA(2)-1 and ARMA-21 are all examples of
models detected by this rule. However, models such as AR(1)-1, AR(2)-2, MA(1)-
6, MA(2)-16 and ARMA(1,1)-4 are not detected by this rule, as can be seen in
Tables 2, 3, and 4.

Rule 2: 8 points in a row in zone C or beyond on the same side of
the center line

Rule 2 corresponds to a trend in the data. Violation of this rule is indicative of
dependency in the data. This rule is typically violated when ¢ is large for the AR
schemes, when 6, and 6, are negatively large for the MA schemes and when ¢ is
large and 6, is negatively large for the ARMA scheme. Models AR(1)-6, AR(2)-20,
MA(2)-1 and ARMA-21 are examples where this rule is effective.

Rule 3: 6 points in a row increasing or decreasing

Rule 3 also corresponds to a trend in the data. Violation of this rule is indicative of
positive autocorrelation in the data. It is typically violated by AR(2) schemes when
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both coefficients are large and positive. For example, AR(2)-25 and ARMA-21 are
schemes that consistently violate this rule.

Rule 4: 14 points in a row alternating up and down

Rule 4 corresponds to a series that is mean reverting. This is characteristic of an
AR(1) scheme with negative coefficient. Thus, it is no surprise that this test is
most often violated by the AR(1) and ARMA(1,1) schemes with largely negative
autoregressive coefficients, by AR(2) schemes with largely negative ¢, and positive
¢2 and hardly ever by pure moving average schemes. Models AR(1)-1, AR(2)-5,
and ARMA-3 are examples where this rule is effective.

Rule 5: 2 out of 3 points in a row in zone A or beyond on the same side of
the center line

Rule 5 is an indicator of possible dependency. This rule is violated when a couple
of points close together are very large, either positively or negatively. It is typically
violated by AR(1) schemes when ¢ is large and in AR(2) schemes when |¢;| and
¢2 are large. For example, AR(1)-6, AR(2)-25, MA(1)-1, MA(2)-2 and ARMA-21
are schemes causing this rule to be violated.

Rule 6: 4 out of 5 points in a row in zone B or beyond on the same side of
the center line

Rule 6 is similar to Rule 5 in that it states that several points in a row were
large, either positively or negatively. This also is indicative of dependency. This
rule is typically violated by AR(1) schemes with a large coefficient and by AR(2)
schemes when both coefficients are positive. It is also frequently violated by MA
schemes with a largely negative 8; value as well as the combination of when ¢, is
large and 6y is negatively large for the ARMA processes. This rule is violated by
models such as AR(1)-6, AR(2)-25, MA(1)-1, MA(2)-1 and ARMA-21.

Rule 7: 15 points in a row in zone C

Rule 7 corresponds to the observations falling too close to the center line for an
extended period of time. This can be interpreted as an indication of dependency.
This rule is typically violated when ¢, is largely negative and infrequently when
applied to series with moving average structure. For example, models AR(1)-1,
AR(2)-5 and ARMA-3 cause this rule to be violated.

Rule 8: 8 points in a row not in zone C

Rule 8 can also be used to detect dependency in the data. It is typically violated
when ¢, is large for the AR(2) schemes and somewhat less frequently when 6 is
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negative for the ARMA schemes. AR(1)-6, AR(2)-25 and ARMA-21 are examples
of schemes that consistently violate this rule.

Overall, it appears that high levels of autocorrelation are effectively detected.
Strong negative coefficient moving average structures also tend to violate the rules
frequently. It is apparent, however, that series with weak to moderate dependencies,
such as schemes AR(1)-3, AR(2)-7, MA(1)-4, MA(2)-10 and ARMA-4, tend to slip
past the rules.

5. Recommendations

From the simulation results, it is evident that the sensitizing rules are not com-
pletely reliable for determining dependency. They do not pick up small degrees of
autocorrelation and have a relatively high rate of falsely rejecting a series that is
actually random. The original intent for these rules was to make it possible for a
person on a factory floor to quickly determine if a process was out-of-control or
not. However, with the current level of computer power, there exist more effective
techniques for doing this job.

A simple way to show the correlation structure of a series is by its Autocorre-
lation Function.” From correlograms of observed series, we can see how strong the
correlation is between time lags as well as how long it lasts. Such plots are useful
in determining what, if any, autocorrelation is inherent in a realized series of ob-
servations. A plot where the autocorrelations do not come down to zero reasonably
quickly indicates non-stationarity. The ACF of an MA(q) process “cuts off” at lag
g, while the ACF of an AR(p) process attenuates slowly. An ARMA(p, q) process
will also have an ACF plot that tends to decay out slowly.4

Figure 2 shows some autocorrelated series and their corresponding Sample Au-
tocorrelation and Partial Autocorrelation Function plots as described in Sec. 2.
The correlograms effectively show when a series’ observations are not independent
with significantly large spikes at some lags, as opposed to the NID case where there
should be no significant spikes or patterns in the autocorrelations.

6. Conclusion

Each of the rules applied has its place in detecting for structure in a time series.
No one rule is adequate in determining if the series is random or not. For instance,
Rule 1, the easiest to apply, is only effective for certain types of autocorrelation.
The rules that are effective simply look for characteristics of AR or MA schemes.
Hence, how well a rule does is dependent on how strong the characteristic is. For ex-
ample, the pattern searched for by Rule 4 is found in AR(1) models with a negative
coeflicient. The larger the negativity, the greater the proportion of violations found.

In conclusion, the sensitizing rules are not as effective in identifying moving
average processes as they are for autoregressive series. This is not completely sur-
prising as moving average processes are only correlated for a finite number q lags.
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Fig. 2. Control chart with corresponding SACF and SPACF plots.
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Most of the runs tests rely on a multi-point pattern as a means of violation detec-
tion. Through further experimentation, we also found that there is a high level of
falsely classifying a series as out of control when using the sensitizing rules on long
series. A possible alternative to the Shewhart Chart and sensitizing rules are SACF
and SPACF plots which identify significant correlation between lagged points of
the series. These plots are easy to obtain using almost any statistical package and
should be considered for use in practice.
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