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Abstract. Computer-based simulation and analysis is used extensively in
engineering for a variety of tasks. Despite the steady and continuing growth
of computing power and speed, the computational cost of complex high-
fidelity engineering analyses and simulations limit their use in important
areas like design optimization and reliability analysis.  Statistical
approximation techniques such as design of experiments and response
surface methodology are becoming widely used in engineering to minimize
the computational expense of running such computer analyses and
circumvent many of these limitations. In this paper, we compare and contrast
five experimental design types and four approximation model types in terms
of their capability to generate accurate approximations for two engineering
applications with typical engineering behaviors and a wide range of
nonlinearity. The first example involves the analysis of a two-member frame
that has three input variables and three responses of interest. The second
example simulates the roll-over potential of a semi-tractor-trailer for different
combinations of input variables and braking and steering levels. Detailed
error analysis reveals that uniform designs provide good sampling for
generating. accurate approximations using different sample sizes while
kriging models provide accurate approximations that are robust for use with a
variety of experimental designs and sample sizes.
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NOMENCLATURE
APPROX approximation model type:
krg kriging approximation
mar multivariate adaptive regression splines
rbf radial basis functions
rs2 second-order polynomial response surface
DOE experimental design type:
hss Hammersley sequence sampling
lhd Latin hypercube
oay orthogonal array
rnd random design
uni uniform design
FCN function number for first example
MAX maximum absolute error
RMSE root mean square error
SAMP number of sample points in an experimental design
X design (input) variable
y actual output (response) value

¥ predicted output (response) value from approximation model

1. FRAME OF REFERENCE: COMPUTER EXPERIMENTS

Computer-based simulation and analysis is used extensively in engineering to predict
the performance of a system or product. For example, engineers use finite element models
to predict the performance of a structure, computational fluid dynamics models to
visualize the flow over a body, and Monte Carlo simulation to estimate the reliability of a
product due to uncertainty in loading conditions or material parameters. ‘Despite the
steady and continuing growth of computing power and speed, single evaluations of
aerodynamic or finite element analyses can take minutes to hours, if not longer. The high
computational costs of performing these analyses limit their use in design optimization
and reliability analysis.

Design of experiments (e.g., Montgomery, 1997) and statistical approximation
techniques such as response surface methodology (e.g., Box and Draper, 1987; Box, et al,,
1978, Myers and Montgomery, 1995) are becoming widely used in engineering to
minimize the computational expense of running such computer analyses (Barthelemy and
Haftka, 1993; Barton, 1992; Barton, 1994; Barton, 1998; Simpson, et al., 2001b;
Sobieszczanski-Sobieski and Haftka, 1997). The basic approach is to construct
approximations of the computationally expensive simulation and analysis codes to provide
surrogate models that are sufficiently accurate to replace the original code. These
surrogate models are then used in lieu of the original analysis or simulation code,
facilitating design space exploration, optimization, and reliability analysis. :

Building approximations for these computer simulations involves (a) choosing an
. experimental design to sample the region of interest and (b) constructing an approximation
model to the observed sample data as shown in figure 1. As shown in Figure la, the region
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of interest is often referred to as the “design space,” which is bounded by the upper and
lower limits of each of the design (input) variables being studied. Design of experiments
strategies are often used to sample the design space to generate sample data to fit an
approximate model to each of the output variables (responses) of interest. Experimental
designs can also be used for “screening” experiments to identify significant factors and
reduce the dimensionality of the problem (Box and Draper, 1987; Gangadharan, et al.,
1995; Goldsman and Nelson, 1998; Koch, et al., 1997; Welch, et al., 1992). In Figure 1b,
a second-order response surface is used to approximation the relationship between the
design (input) variables x1 and x2, and y, the output variable (response).
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Figure 1. Desig11 and Analysis of Computer Experiments

The growing use of computers in design optimization has given rise to considerable
research in the design and analysis of computer experiments. The primary research thrusts
are to improve:
1. the efficiency with which the design space is sampled either by using fewer sample
points or seeking better coverage of the design space, and
2. the accuracy of the resulting surrogate model by using more complex approximations
that are capable of fitting both linear and non-linear functions.
In this paper, we systematically compare several experimental design types and surrogate
model types, which are widely used in the engineering design community, in terms of
their capability to generate accurate approximations for computer experiments. In the
next section, an overview of experimental design strategies for computer experiments is
offered. This is followed in Section 1.2 with a summary of the different types of surrogate
models that are being used for approximating computer experiments. Descriptions of the
experimental design types and surrogate models employed in this study are given in
Sections 2.1 and 2.2, respectively. Sections 3 and 4 contain two example problems
wherein the different experimental design types and surrogate models are compared in
terms of their capability to generate accurate approximations. The first example involves
the design of a two-member frame subject to out-of-plane loading—it is a small three
variable problem that is relatively inexpensive to analyze yet is characteristic of many
engineering analyses used in structural optimization. The second example simulates roll-
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over of a semi-tractor-trailer for a given design and driving conditions—the computational
expense and size of this example (14 variables) yields a large complex problem, involving
a highly nonlinear response. Based on the results of these examples, recommendations for
efficient and accurate approximation model building are given in Section 5.

1.1 Experimental Designs for Computer Experiments

Properly designed experiments are essential for effective computer utilization.
Experimental design techniques, which were initially developed for physical experiments,
are finding considerable use for the design of computer experiments to increase the
efficiency of these analyses. In the “classical” design and analysis of physical
experiments (i.e., using central composite and factorial designs), random variation is
accounted for by spreading the sample points out in the design space and by taking
multiple data points (replicates) as shown in Figure 2a, Sacks, et al. (1989) state that the
“classical” notions of experimental blocking, replication, and randomization are irrelevant
when it comes to deterministic computer experiments; thus, sample points should be
chosen to fill the design space for computer experiments. Consequently, many researchers
advocate the use of “space filling” designs when sampling deterministic computer
analyses to treat all regions of the design space equally. For instance, Sacks, et al. (1989)
suggest minimizing the integrated mean squared error (IMSE) over the design region by
using an IMSE-optimal design as shown in Figure 2b. - .
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Figure 2. "Classic;T"‘and "Space Filling" Designs (Booker, 1998)

Koch, Mavris and Mistree (1998) investigate the use of a modified central composite
design (CCD) that combines half-fractions of an inscribed CCD with a face-centered CCD
to distribute points more evenly throughout the design space. Koehler and Owen (1996)
describe several Bayesian and Frequentist “space filling” designs, including maximum
entropy designs, mean squared-error designs, minimax and maximin designs, Latin
hypercubes, randomized orthogonal arrays, and scrambled nets. Minimax and maximin
designs were originally proposed by Johnson, Moore and Ylvisaker (1990) specifically for
use with computer experiments. Sherwy and Wynn (1987; 1988) and Currin, et al. (1991)
use the maximum entropy principle to develop designs for computer experiments. Tang
(1993; 1994) describes orthogonal array-based Latin hypercubes which he asserts are

more suitable for computer experiments than general Latin hypercubes. Park (1994)
introduces optimal Latin hypercube designs for computer experiments which either
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minimize IMSE or maximize entropy, spreading the points out over the design region.
Beattie and Lin (1997) present a method to construct Latin hypercubes via rotated
factorial designs. Fang and his co-authors (Fang, et al., 2000; Fang and Wang, 1994) use
number-theoretic methods to develop uniform designs for use with computer experiments.
Morris and Mitchell (Mitchell and Morris, 1992; Morris and Mitchell, 1992) propose
maximin distance designs found within the class of Latin hypercube arrangements since
they “offer a compromise between the entropy/maximin criterion, and good projective
properties in each dimension.” Owen (1992) advocates the use of orthogonal arrays as
suitable designs for computer experiments, numerical integration, and visualization.

1.2 Approximation Models for Computer Experiments

As with experimental designs, a variety of approximation models and techniques exist
for constructing “surrogates” of computationally expensive computer analysis and
simulation codes. Response surface methodology (see, e.g., Box and Draper, 1987; Box,
et al., 1978; Draper and Lin, 1990; Myers and Montgomery, 1995) and artificial neural
network methods (see, e.g., Cheng and Titterington, 1994; Haykin, 1994; Smith, 1993) are
two well-known approaches for constructing simple and fast approximations of complex
computer analyses. An interpolative model known as kriging is also becoming widely
used for the design and analysis of computer experiments (see, e.g., Barton, 1998; Booker,
1998; Currin, et al., 1991; Sacks, et al., 1989). Multivariate adaptive regression splines
(Friedman, 1991) and radial basis function approximations (Dyn, et al., 1986; Powell,
1987) are also beginning to draw the attention of many researchers. Radial basis functions
and multivariate adaptive regression splines are discussed in more detail in Section 2.2
along with response surface and kriging models. ,

In other work, Rasmussen (1990) offers an accumulated approximation technique for
structural optimization which refines the approximation of objective and constraint
functions by accumulating the function values of previously visited points. Similarly,
Balling and Clark (1992) describe weighted and gradient-based approximations for use
with optimization which utilize weighted sums of exact function values at sample points.
Wavelet modeling uses a special form of a basis function which is especially effective in
modeling sharp jumps in a response surface (Mallet, 1998). Friedman and Steutzle (1981)
introduce projection pursuit regression which works well in high-dimensional (< 50) data
and with large data sets (can handle 200,000+ data points). Projection pursuit regression
takes the data and generates different projections of it along linear combinations of the
variables; an optimizer finds the best projections and builds a predictor by summing them
together with arbitrary levels of precision. Multivariate Hermite approximations for
multidisciplinary design optimization are introduced in (Wang, et al., 1996). A
comprehensive review of applications of approximation models and techniques in
mechanical and aerospace systems can be found in (Simpson, et al., 2001b); a review of
metamodeling applications in structural optimization can be found in (Barthelemy and
Haftka, 1993) while applications in multidisciplinary design optimization can be found in
(Sobieszczanski-Sobieski and Haftka, 1997).

Despite the variety of approximations that are available, comparative studies of these
approaches are limited. Kriging methods are compared against polynomial regression
models for the multidisciplinary design optimization of an aerospike nozzle in (Simpson,
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et al,, 2001a); kriging models and polynomial regression models are compared using two
5 and 10 variable test problems in (Giunta and Watson, 1998). In (Varadarajan, et al.,
2000), artificial neural network methods are compared with polynomial regression models
for modeling the nonlinear thermodynamic behavior of an engine design problem. In
(Yang, et al.,, 2000), four approximation methods—enhanced multivariate adaptive
regression splines, stepwise regression, neural networks, and the moving least squares—
are compared for the construction of safety related functions in automotive crash analysis,
for a relative small sampling size. In (Jin, et al., 2000), response surface models, radial
basis functions, kriging models, and multivariate adaptive regression splines are
systematically compared on a variety of test problems based on multiple measures of
merit (e.g., accuracy, robustness, transparency, etc.). While no one approximation model
dominated, recommendations based on problem size, degree of nonlinearity, and
availability of sample data are given. The study conducted by Jin, et al. (2000) did not
account for different types of experimental design strategies—only different sample sizes;
therefore, our objective in this paper is to compare both experimental design strategies and
approximation model types. The details of our approach are described next.

2. TECHNICAL APPROACH

* Our objective in this paper is to systematically compare several experimental design
types and surrogate modeling techniques in terms of their capability to generate accurate
approximations of complex engineering analyses. In total, five experimental design types

and four surrogate model types are utilized to build approximations for two example
problems.

2.1 Experimental Designs

Four different types of “space filling” experimental design strategies are considered in
this study: (1) Latin hypercubes, (2) Hammersley sequence sampling, (3) orthogonal
arrays, and (4) uniform designs. A fifth type of design, namely, a set of randomly
generated points, is also considered for each example. To enable direct comparisons, each

design will employ comparable sample sizes. An overview of each experimental design
type is offered next. :

2.1.1 Latin Hypercubes

Latin hypercubes were the first type of design proposed specifically for computer
experiments (McKay, et al,, 1979). A Latin hypercube is a matrix of » rows and &
columns where n is the number of levels being examined and £ is the number of design
(input) variables. Each of the k columns contains the levels 1, 2, ..., n, randomly
permuted, and the k columns are matched at random to form the Latin hypercube. Latin
hypercubes offer flexible sample sizes while ensuring stratified sampling, i.e., each of the

input variables is sampled at n levels. These designs can have relatively small variance
when measuring output variance (Sacks, et al., 1989).
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2.1.2 Hammersley Sequence Sampling

Latin hypercubes are designed for uniformity along a single dimension where
subsequent columns are randomly paired for placement on a k-dimensional cube.
Hammersley sequence sampling provides a low-discrepancy experimental design for
placing n points in a k-dimensional hypercube (Kalagnanam and Diwekar, 1997),
providing better uniformity properties over the k-dimensional space than Latin
hypercubes. A low discrepancy implies a uniform distribution of points in space.

2.1.3 Orthogonal Arrays

An orthogonal array is a matrix of # rows and k columns with every element being one
of g symbols: 0, ..., g-I(Owen, 1992). An orthogonal array has an associated strength ¢
depending on the number of combinations of / levels appearing in any of the » columns of
the array. The strength of the array and the number of levels combine to form the number
~of samples within the array. Orthogonal arrays provide an attractive class of sparse
designs because they provide balanced (full factorial) designs for any projection into r
factors (Barton, 1994). '

2.1.4 Uniform Designs

A uniform design provides uniformly scatter design points in the experimental
domain. A uniform design is a type of fractional factorial design with an added
uniformity property; they have been popularly used since 1980 (see, Fang, 1980). If the
experimental domain is finite, uniform designs are very similar to Latin hypercubes.
When the experimental domain is continuous, the fundamental difference between these
two designs is that in Latin hypercubes, points are selected at random from cells, whereas
in a uniform design, points are selected from the center of cells. Furthermore, a Latin
hypercube requires one-dimensional balance of all levels for each factor, while a uniform
design requires one-dimensional balance and n-dimensional uniformity. Thus these
designs are similar in one-dimension, but they can be very different in higher dimensions.
Several uniform designs can be obtained from the website: <http://www.math.hkbu.edu.hk
/UniformDesign>; for a recent review of uniform designs and their applications, see
(Fang, et al., 2000). _

In addition to the four specific types of experimental designs, sets of randomly
generated points of equal sample size are considered for each example. The sample sizes
for each experimental design are chosen based on the number of design variables and are
discussed when each example problem is introduced. The approximation models
employed in this study are discussed next.

2.2 Approximation Models

Four types of approximation models are investigated in this study: (1) polynomial
response surfaces, (2) kriging models, (3) radial basis functions, and (4) multivariate

adaptive regression splines. An overview of each type of approximation model is given in
the following sections.
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2.2.1 Response Surfaces _
Originally developed for the analysis of physical experiments (Box and Wilson, 1951),
polynomial response surface models have been used effectively for building -

approximations in a variety of applications. A second-order polynomial response surface
model has the form:

y= ﬂa+2ﬂ,x,+2ﬂ.,1, +ZZﬂ,,xf Iz - @n

where the S parameters are computed using least squares regression. Least squares

regression minimizes the sum of the squares of the deviations of predicted values, y (x)
from the actual values, y(x), using the equation:

B = [X°X}-1X’y (2.2)

where X is the design matrix of sample data points, X’ is its transpose, and y is a column
vector that contains the values of the response at each sample point. Polynomial response
surface models can be easily constructed, and the smoothing capability allows quick
convergence of noisy functions in optimization; however, there is always a drawback

when applying polynomial response surfaces to model highly nonlinear or irregular
behaviors.

2.2.2 Kriging '
Originally developed for applications in geostatistics (see, e.g., Cressie, 1989; Cressie,

1993), a kriging model postulates a combination of a polynomial model and departures of
the form:

$=328,1,+2(, @3

where Z(x) is assumed to be a realization of a stochastic process with mean zero and
spatial correlation function given by:

Cov[Z(x;),Z(x;)] = o* R(x;, X;), (2.9)

where o’ is the process variance and R is the correlation. A variety of correlation
functions can be chosen; however, the Gaussian correlation function proposed in (Sacks,
et al., 1989) is the most frequently used. Furthermore, fi(x) is typically taken as a constant
term. In our study, we use a constant term for f(x) and a Gaussian correlation function
with p=2 and k © parameters, one 6 for each of the k dimensions in the design space.
Determining the maximum likelihood estimates of the k © parameters used to fit the model
is a k-dimensional optimization problem, which can require significant computational time
if the sample data set is large, see (Simpson, et al., 1998; Simpson, et al., 2001a) for more
details. The correlation matrix, R, can also become singular if multiple sample points are
spaced close to one another or if the sample points are generated from particular designs.
Fitting problems have been observed with some factorial designs and central composite
designs when using kriging models (Meckesheimer, et al., 2001; Wilson, et al., 2001).
Kriging methods are extremely flexible, however, due to the wide range of correlation
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functions that have small amount of unknown coefficients. They can provide accurate
predictions of highly nonlinear or irregular behaviors.

2.2.3 Radial Basis Functions
Radial basis functions were developed by Hardy (1971) and use linear combinations of

a radially symmetric function based on Euclidean distance or similar metric to build
approximation models. A simple radial basis function form is:

7= 4x)=3p x| @5)

where || « || represents the Euclidean norm, and the sum is taken over an observed set of
system responses, {(x’, Ax))}, i =1, ..., n. Replacing ¢ (x) with fx), and solving the
resulting linear system yields the £, coefficients. As commonly applied, the method is an
interpolating approximation. Radial basis function approximations have produced good

fits to arbitrary contours of both deterministic and stochastic response functions (Powell,
1987).

2.2.4 Multivariate Adaptive Regression Splines

Multivariate Adaptive Regression Splines (MARS) adaptively selects a set of basis
functions for approximating the response function through a forward/backward iterative
approach (Friedman, 1991). A MARS model can be written as:

~ M
y= 20,8, (x) , (2.6)

where a, is the coefficient of the expansion, and B,, the basis functions, can be
represented as:

Bu(x) ]ﬁl[s ko (xv(k,m) ~liem )h 2.7)

where K, is the number of factors (interaction order) in the m-th basis function, s; ,=+/-1,
Xvim is the v-th variable, /1< vk,m)< n, and Lm i1s a knot location on each of the

corresponding variables. The subscript ‘+’ means the function is a truncated power
function:

[s,,,m (xv( kmy ~im )]z - {[Sk,m (xv(k,m) ~lem )]q Skm (xv(k,m) ~lm )> 0 2.8)

0 otherwise

The major advantages of using the MARS procedure, however, appear to be accuracy
and a major reduction in computational cost associated with constructing the
approximation model. Compared to other techniques, the use of MARS for engineering

design applications is relatively new. The algorithm described in (Chen, 1999) is utilized
to build MARS models in this paper.

2.3 Assessing Model Accuracy

Since many of these approximation models interpolate the sample data, additional
validation points are collected for each example to assess the accuracy of each
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approximation model over the region of interest. For each set of validation points, the
maximum absolute error (MAX) and root mean square error (RMSE) are computed as:

MAX =max {|y; - Jil}iw,...Berror (2.9)

n

Pepror _5y2
RMSE:\/ZH 0 -y) (2.10)

error

where N.q is the number of additional validation points. While RMSE provides good
estimates of the “global” error over the region of interest, MAX gives a good estimate of
the “local” error by measuring the worst error within the region of interest, where a good
approximation will have low RMSE and low MAX values. Finally, the average absolute
error and the correlation determination (R?) were also computed using the additional
validation points. Error analysis revealed that average absolute error and R? were both
highly correlated with RMSE for these two examples; therefore, neither measure is
included in this paper, and only RMSE and MAX are used when analyzing the results.

3. EXAMPLE 1: STRUCTURAL ANALYSIS OF A TWO-MEMBER FRAME

3.1 Overview of Two-Member Frame Example

Our first example for testing the five experimental design and four surrogate modeling
types comes from (Arora, 1989) and is a typical engineering analysis conducted during
structural optimization. This example involves the design of a two-member frame subject
to out-of-plane loads as shown in Figure 3. There are three design variables of interest:
frame width (d), height (h) and wall thickness (t). The length, L, of each member is 100 in,
and the load at node n; is P = -10,000 lbs. The stresses are calculated using the finite
element method where U is the vertical displacement at node n,, U, is the rotation about
bar n3-n; and Uj is the rotation about bar n;-n,.

7

7,

NN
N
SRR

o

Figure 3. Two-Member Frame
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The objective is to minimize the volume of the frame subject to stress constraints and
bounds:

Min. V(d, h, t) = 2L(2dt + 2ht — 4t (3.1)

d,h,t
st gi(d,h, )=1—oep/Omx>0 (3.2)
g2(d, h, ) =1 - o /omax > 0 (3.3)

25mm.<d<10in.
25in.<h<10in.
0.1in.<t<1.01in.

The maximum allowable stress Omax= 40,000 psi, and the effective stresses at nodes m

and n,, Oe,n, and Oe,n,, are determined using finite element analysis as detailed in (Arora,
1989).

The objective is to build surrogate approximations of the objective function, Eqn.
(3.1), and the two stress constraints, Eqns. (3 -2) and (3.3), that are sufficiently accurate to
be used in place of the original finite element analyses. Three-D grid plots of each
~equation are shown in Figure 4 to gain insight into their behavior over the region of

interest. In all six plots, the horizontal axes are 4 and d varied over their range of interest
(i.e., 2.5 to 10) while ¢ is fixed at its lower (0.1) and upper bound (0.9).

() Constraint 2 [FCN = 3], t=0.1 (d) Volume [FCN=1], t=0.9
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(e) Constraint 1 [FCN = 2], t=0.9 : (f) Constraint 2 [FCN = 3], t=0.9

Figure 4. 3-D Grid Plots of Objective Function and Constraints

From Figure 4, we see that the volume is a fairly smooth function, increasing
gradually as ¢ increases. Meanwhile, the two stress constraints are fairly flat for large
values of 7 (i.e., the constraints are well satisfied since the stresses are low when ¢ is large);

“however, for small values of ¢, there is a steep drop-off in one corner of the design space.
The magnitude of the drop-off for the first stress constraint is nearly double that of the
second (compare Figure 4b and 7c).

3.2 Experimental Set-Up for Two-Member Frame

As stated previously, the objective in this first example is to construct approximation
models for the volume and the two constraints. There are three design variables—h, d,
and +—whose ranges of interest are listed in the previous section. The experimental
designs and approximations used in this first example are summarized as follows.

e  Experimental Design (DOE): 5 types — Hammersley sequence (hss), Latin hypercube
design (1hd), orthogonal array (oay), random set of points (rnd), uniform design (uni).
Sample size (SAMP): 6 sizes -9, 16, 25, 32, 49, 64. '
Approximation Model (APPROX): 4 types — kriging model (krg), radial basis function
(rbf), second-order response surface (rs2), multivariate adaptive regression splines
(mar).

e Function (FCN): 3 types — volume, stress constraint 1, stress constraint 2.

Note that a total of (5)(6)(4)(3) = 360 approximation models are constructed for this
example based on the number of experimental design types, sample sizes, approximation
model types, and functions being approximated. The number of sample sizes is based on
available sample sizes of the orthogonal arrays and the minimum number of points needed
to fit a second-order polynomial response surface. For the 9 point designs, the response
surface models consist of only first-order effects and two-factor interactions since there is
insufficient data to fit a full second-order model. So for each SAMP size and each DOE
type, four different APPROX models are constructed for each of the three functions. To
validate each approximation a set of 8000 additional validation points is used to compute
MAX and RMSE, using Eqns. (2.9) and (2.10). The entire data set is available on the web
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at <http://edog.me.psu.edu/IJORA/>. In the next section, each function is examined

independently of the other functions in terms of MAX and RMSE due to the different
magnitudes of each response.

3.3 Analysis of Results

Bubble plots for RMSE and MAX are given in Figure 5. In these plots, the strip
across the top of each quadrant indicates the conditioning factor (i.e., SAMP size), and the
size of the circle qualitatively depicts the magnitude of the corresponding value of RMSE
or MAX. Since we desire minimum values of both error measures, smaller circles
indicate a more accurate fit. We will first make some preliminary observations from the
bubble plots and then provide in-depth interpretations through detailed analyses.

Consistent trend of sample size: As an initial consistency check, we note in Figure 5 that
metamodel accuracy improves as sample size increases—the size of the circles in each
graph get smaller and smaller as sample size increases from 9 to 64. This trend is most
noticeable in the plots for RMSE, but also exists in the plots for MAX as the smallest
circles occur at the large sample sizes, namely, 49 and 64. Overall, this trend is consistent

with intuition as the accuracy of the metamodel should improve as more sample data
becomes available. ‘ ’

Comparison of RMSE and MAX results: In Figure 5a and Figure 5b, we note that the
combinations of SAMP size, DOE type, and APPROX type that yield low RMSE values
for volume (FCN=1) also yield low MAX values. The same does not hold true for the
other two functions, however. For instance, while the RMSE values for the 49 and 64
point designs for FCN=2 are low regardless for all DOE and APPROX types, only the
orthogonal array (oay) designs yield consistently low MAX values for the 49 and 64 point
designs as indicated by the smaller circles in Figure 5d. Meanwhile, the remaining designs

yield sporadic results in that no DOE type dominates, nor does any combination of DOE
type and APPROX type dominate.

Factors contributing to accuracy: Regarding APPROX type, it appears that all four
types yield low RMSE and MAX values for FCN=1 except for the multivariate adaptive
regression splines with the lowest sample size. Based on the smoothness of the volume as
noted in Figure 4a, it is not surprising to have most APPROX types accurately model this
function. However, the performance of the metamodels for the two stress constraints is
not nearly as good. As noted earlier, SAMP size has a very strong impact on the accuracy.
The type of DOE also appears to have some impact on accuracy; the Hammersley
sampling sequence (hss) designs and uniform (uni) design tend to yield the smallest
circles, while the random (rnd) sets of points and Latin hypercube designs (lhd) yield
some of the largest circles. The response surface (rs2) models tend to do well regardless
of SAMP size and DOE type, except for the smallest sample size. The kriging (krg)
models approximate the stress constraints well, particularly in terms of RMSE; however,
the MAX values appear to be about the same as those obtained from the other model
types. The multivariate adaptive regression splines (mar) appear to perform very well for
large sample sizes, particularly in terms of RMSE. The radial basis functions (rbf), on the
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other hand, give spotted performance and yield some of the largest MAX values even for

1, see Figure 5b. More detailed analysis of the impact of each factor and their

interactions on metamodel accuracy is presented in Figures 6-9.
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Contributions of individual factors: The individual factor contributions for each of the
three functions are plotted in figure 6. On the left-hand side of Figure 6, we plot the
average effect of each factor on RMSE; on the right-hand side, we plot the average effect
of each factor on MAX. For both measures, a lower value indicates a better fit. Our

observations on the trend of sample size, the consistency between RMSE and MAX
results, and the impact of various factors on accuracy from Figure 6 are consistent with the

trends observed in Figure 5.
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Impact of DOE type: We notice that DOE types are tightly spaced in terms of RMSE for
all functions and MAX for FCN=1; however, a much wider spread exists in the impact of
DOE type on MAX for two stress constraints. The uniform (uni) designs and
Hammersley sampling sequences (hss) are consistently among the best performers at
providing accurate models with low RMSE. However, as noted in the plots for MAX in
Figure 6, the orthogonal arrays (oay) tend to yield the most accurate approximations with
the Hammersley sampling sequences giving the worst or next to worst performance in all
cases. The uniform (uni) designs tend to be average performers for the stress constraints
when measured by MAX value. As expected, the random sets of points (rnd) give some -
of the worst results, particularly for RMSE. This is primarily because the random points
do not guarantee good coverage of the design space when compared to a uniform design,
Hammersley sampling sequence, or orthogonal array. Meanwhile, while a uniform design
and Hammersley sampling sequence provide good coverage of the design space, and
hence low RMSE, they do not position points at the corners as one finds in an orthogonal
array. This is the main reason why the resulting approximations from these two designs
do not capture the drop-offs of the two stress functions which lead to higher MAX errors,
_even though the global accuracy indicated by the low RMSE values is still good. This
also accounts for the fairly tight grouping for RMSE—all of the DOE types provide
reasonably accurate approximations from a global perspective (i.e., low RMSE value)

with specialized designs (e.g., uniform designs) offering slight improvements over random
sets of points and Latin hypercubes. '

Impact of sample size: The overall effect of SAMP size is consistent with intuition (i.e.,
larger sample sizes yield more accurate models). A few discrepancies among the 32, 49,
and 64 sample sizes are more difficult to explain and are investigated in more detail when
discussing the interactions in Figure 8 and Figure 9. In Figure 6 we observe that the 9 and
16 point designs tend to yield the worst RMSE values for all three functions while the 64
point designs yield the best. The improvement gains in RMSE appear to lessen as sample
size increases above 25 points, with the biggest gains occurring when moving from 9 to 16
to 25 points. The 25, 32, and 49 point designs alternate their rank ordering in terms of
their impact on RMSE and MAX. It is also interesting to note that the 32 point designs
yield some of the lowest MAX values. This is primarily due to the superior performance
of the orthogonal arrays for this sample size as indicated by the small circles in the bubble
plot Figure 5. We believe that the poor performance of the 49 and 64 point designs is due
primarily to over-fitting the functions because they are so smooth—had the volume and
stress constraints been more nonlinear, taking more sample points would most likely
continue to improve the accuracy of the approximation.

Impact of approximation type: From Figure 6 we note that the kriging (krg) models tend
to yield the most accurate approximations as measured by both RMSE and MAX. The
second-order response surface (rs2) models yield very accurate predictions for FCN=1
since Eqn. 25 is quadratic; however, as expected, their performance in modeling the stress
constraints is not as good, particularly in terms of MAX. The radial basis functions (rbf)
yield some of the worst approximations, compared to the other APPROX types, especially
when MAX is considered. Finally, it is interesting to note that the multivariate adaptive
regression splines (mar) provide much better approximations for the stress constraints
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(FCN=2 and 3) than they do for volume, and they yield the lowest MAX values for both

stress constraints. This is consistent with previous observations regarding the bubble plots
in Figure 5.

_ Contributions of Interactions between Factors: Having looked at the individual factor
contributions, the next step is to examine the interactions between different pairs of
factors. Three interactions are studied: (1) DOE and APPROX, (2) DOE and SAMP, and
(3) APPROX and SAMP, and the effect of each interaction is plotted in Figure 7, Figure
8, and Figure 9, respectively. The first set of interactions—APPROX type and DOE
type—plotted in Figure 7, shows the impact of each APPROX type for a given DOE type,
averaged over all sample sizes. The results are segmented by RMSE value and MAX
value and plotted independently for each function to be consistent with previous graphs.

Interaction between DOE and APPROX type (Figure 7): We first notice the tight
grouping of DOE types for the response surface (rs2) models in Figures 7a and 7b. This
indicates that the response surface models accurately approximate the volume (FCN=1)
independent of DOE type, which is not surprising given the quadratic nature of Eqn. 25.
No other DOE-APPROX combination is as tightly grouped as found for volume. Looking
at DOE types, the uniform designs (uni) appear to provide the least variation among
APPROX types, yielding a nearly horizontal line for stress constraint 1 (Figure 7c). All of
the DOE types appear to fluctuate when looking at MAX values; however, the orthogonal
arrays are consistently among the best performers, independent of APPROX type, as seen
previously in Figure 6. It also appears that the Hammersley sampling sequences (hss)
work particularly well with the multivariate adaptive regression splines (mar) to yield
fairly low RMSE and MAX values for all three functions. The parallel lines in Figure 7d
and Figure 7f indicate that the interaction effect of DOE and APPROX type on MAX
values is very small for both constraint functions. We also notice that the multivariate
adaptive regression splines (mar) method is very DOE type dependent, indicating that it is
the least robust method with respect to different DOE types.

Interactions between DOE and SAMP (Figure 8): Despite some jumpiness, the general
trend for each DOE type in Figure 8 is to improve accuracy as the SAMP size increases;
this is particularly noticeable in the RMSE plots for all three functions. The sharp spike
for the 49 point OA seen in Figure 8a is primarily due to poor randomization within the
orthogonal array and subsequently poor approximations as indicated by the slightly larger
circles in Figure 6a. The Latin hypercube designs (lhd) and random sets of points (rnd)
yield some of the worst RMSE and MAX values, regardless of sample size. This can be
attributed to the random positioning of points in both types of designs. For instance, we
see that the random sets of points (rnd) perform very poorly for low sample sizes when
MAX is considered; they also yield high MAX values even with large SAMP sizes for the
two stress constraints. Meanwhile, the orthogonal arrays (oay) yield the lowest MAX
values for the two stress constraints. In Figure 8, the uniform (uni) designs offer some of
the lowest RMSE values for many SAMP sizes; however, their performance in terms of
MAX is not as good due mainly to the positioning of points within the design space as
discussed previously. The Hammersley sampling sequences (hss) are average performers
for low sample sizes, but they start to perform quite well for large SAMP sizes (25 and
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above). Finally, we note that capability of most designs to yield further improvements in
RMSE tends to start to level off at 25 and 32 points, i.e., taking more than 25 or 32 points
does not yield significant gains in the overall accuracy of the resulting approximation.
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Interaction between APPROX type and SAMP size (Figure 9): As a first check, all
APPROX types seem to improve as SAMP increases in Figure 9, providing consistency
with previous findings and intuition. Of all the APPROX type, however, the multivariate
adaptive regression splines (mar) are the most affected by SAMP size—the multivariate
adaptive regression splines are among the worst performers at small SAMP sizes but are
among the best performers at large SAMP sizes based on RMSE and MAX. We also
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notice that the kriging models perform well at low SAMP sizes as do the radial basis
functions (rbf), which yield the most accurate RMSE values for the two stress constraints
Meanwhile, the performance of the response surface (rs2)
models tend to level off for SAMP sizes greater than 9 when looking at RMSE values, and
this is due to the inability to fit a full second-order model when only 9 points are available.
Only ten sample points are required to fit a full second-order model for 3 variables, but it
appears that once we are able to fit a full second-order response surface (rs2) model that

at the lowest SAMP size.

Sampling Strategies for Computer Experiments: Design and Analysis

little improvement in RMSE is obtained by increasing SAMP size further.
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To determine if similar trends exits for larger problems containing many design

variables (>10) and a highly nonlinear response, a fourteen variable problem involving the
analysis of semi-tractor trailer roll-over is next. X

4. EXAMPLE 2: ROLL-OVER ANALYSIS OF A SEMI-TRACTOR TRAILER

Our second example is a real engineering problem that analyzes vehicle design to
improve a vehicle’s handling characteristics, particularly the prevention of roll-over
(Chen, et al., 1999). The simulator used is the integrated computer tool ArcSim (ArcSim,
1997; Sayers and Riley, 1996) developed at the University of Michigan for simulating and
analyzing the dynamic behavior of 6-axle tractor-semitrailers. Each simulation takes more
than three minutes to run on a Sun UltraSparc 1 workstation; therefore, using ArcSim
during optimization imposes heavy computational costs. An overview of ArcSim is given
in the next section; details of the example and experimental set-up are discussed in Section
4.2 with result analysis in Section 4.3.

4.1 Overview of ArcSim Example

ArcSim can simulate responses of tractor-semitrailers to user-defined steering and
braking inputs on both flat and inclined surfaces (ArcSim, 1997). The program contains a
nonlinear 3-D mathematical model with 91 state variables, a nonlinear tire model, and a
detailed steering system model with major compliance effects. ArcSim also considers
solid-axle suspensions and major suspension effects. In this study, 14 input variables are
considered which include nine suspension and vehicle parameters as design variables and
five uncontrollable (i.e., noise) factors for steering and braking. The response of interest
is the vehicle handling performance, which is measured by the roll-over metric. The
previous studies (Chen, et al., 1999) indicate that the roll-over metric has a highly
nonlinear dependence on the control and noise variables, especially for different
combinations of brake and steering levels. A description and the range of interest for each
of the 14 input parameters are summarized in Table 1. All of the variables except
brake_end have a range of +/- 20 % from their nominal values (i.e., the values for the
baseline design); brake end varies by +/- 15% to avoid overlap with the steering
parameters.

In most cases, roll-over occurs due to extreme steering and braking inputs; therefore,
the steering and braking parameters are taken as noise factors. Five noise factors are
chosen: three corresponding to the braking inputs, and two corresponding to the steering
inputs. Their ranges are also listed in Table 1. The ranges of brake_start and brake are +/-
15% from their nominal values to avoid overlap of the two parameters, whereas the other
parameter ranges are +/- 20% from their nominal values. The level of braking is the
amount of braking pressure applied. The level of steering is the angle the steering wheel

is turned. The starting and ending times define total time of braking and steering,
respectively.
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Table 1. ArcSim Variables and Ranges of Interest

Design Variable Description Lower Bound Upper Bound
HHI Height of Hitch above ground 51.21in 76.8 in

KHX1 Hitch roll torsional stiffness 8¢5 in-lb/deg  1.2¢6 in-lb/deg
LTS11 Distance between springs on Axle 1 304 in 45.6 in
LTS123 Distance between springs on Axles 2 & 3 304 in 45.6 in
LTS2123 Distance between springs on Axles 4,5 & 6 304in . 45.6in

Mil Laden load for Axle 1 11540 Ibm 17310 1bm
M2123 Laden load for Axles 4, 5 and 6 162744 Ibm 24411.6 I1bm
KT2123 Axles 4, 5 & 6 tire stiffness 4139.20 Ib/in  6208.80 Ib/in
SCFS11 Axle 1 spring stiffness scale factor 0.8 12

Noise Variables Description Lower Bound Upper Bound
brake_start Time at which braking is applied 1.02 sec 1.38 sec
brake_level Level of braking that is applied 70 psi 100 psi
brake_end Time after which braking is no longer applied 1.53 sec 2.07sec
steer_level Level of steering that is applied 60 deg 100 deg
steer_end Time after which steering is no longer applied 2.16 sec 3.24 sec

In terms of the vehicle handling response, it is assumed that if the roll-over angle becomes
greater than 45°, roll-over will occur. The roll-over metric is one of ArcSim’s outputs and

is defined as the square root of the integral of the square of the roll-over angle in a 5-
second period:

R =\/jgroll__angle2dt “.1)

Five seconds is chosen as the upper limit of the integration based on previous studies
(Chen, et al,, 1999). The square of the roll-over angle is used as the metric since the roll-
over angle can take negative or positive values depending on whether roll-over is to the
left or the right. Based on this definition, we note that the value of the roll-over metric is
desired to be as small as possible. The plot of roll-over metric versus brake level and
steering level shown in Figure 10 illustrates the high non-linearity, which is further

complicated by the high dimensionality of the problem. The experimental design set-up
used for this example is described next.

Level (ps'i)30 100 Steer
60 80 level (degree)

Figure 10. 3-D Plot of Roll-Over Metric Versus Brake Level and Steering Level
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4.2 Experimental Set-Up for ArcSim Example

The objective in this second example is to construct an accurate approximation mode]
for the roll-over metric computed by ArcSim. There are a total of fourteen input variables
as listed in Table 1, and the ranges of interest for each variable are also listed in Table 1.
The factors and levels considered in this example are summarized as follows.

o Experimental Design (DOE): 5 types — Hammersley sequence (hss), Latin hypercube
design (Ihd), orthogonal array (oay), random set of points (rnd), uniform design (uni)
Sample size (SAMP): 4 sizes — 128, 169, 256, 361

Approximation Model (APPROX): 4 types — kriging model (krg), radial basns function

(rbf), second-order response surface (rs2), multivariate adaptive regression splines
(mar)

o Function (FCN): 1 type — rol]-pver metric

Notice that a total of (4)5)(4)(1) = 80 approximation models are constructed for this
example based on the number of experimental design types, sample sizes, approximation
model types, and functions being approximated. The sample sizes are based on available
sample sizes of the orthogonal arrays and the minimum number of points needed to fit a
second-order polynomial response surface. For each approximation of the roll-over
metric, a set of 1000 additional validation points is used to compute MAX and RMSE,
using Eqns. 9 and 10. The analysis of the results is next; the complete data set is avallable
on the web at <http://edog.me.psu.edu/IJORA/>.

4.3 Analysis of ArcSim Results

Following a similar order to that in Section 3.3, a bubble plot of the effects of DOE,
- APPROX, and SAMP on RMSE and MAX is shown in Figure 11. Blank spaces in the
bubble plot indicate that an approximation model could not be fit for that particular
combination of DOE and SAMP. For instance, all of the Hammersley sequence sampling
(hss) designs yielded singular design matrices (X’X), preventing a second-order response
surface (rs2) model from being fit. Meanwhile, several of the multivariate adaptive
regression splines yielded extremely poor approximations due to numerical round-off
error and were consequently removed from the data set. This trend is consistent with

previous results wherein large sample sizes are needed in order to fit accurate multivariate
adaptive regression splines.

Factors contributing to accuracy: Looking at the data in Figure 11, the radial basis
functions (rbf) and kriging (krg) models appear to offer good approximations for a wide
variety of DOE and SAMP sizes. These two approximation models provide the majority
of the lowest RMSE and MAX values (i.e., smallest circles) for the roll-over metric.
Meanwhile, the multivariate adaptive regression splines (mar) and response surface
models only yield accurate approximations for large sample sizes. The Latin hypercube
designs (lhd) and random sets of points (rnd) yield some of the least accurate models as
indicated by the large circles associated with many of the approximations constructed
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from these two DOE types. The orthogonal arrays (oay) appear to be the most robust,
yielding accurate approximations for a variety of SAMP sizes and APPROX types. The
orthogonal arrays are followed closely by the uniform (uni) designs, and the Hammersley
sampling sequences based on the sizes of the circles for RMSE and MAX. To further
understand the impact of each DOE type, APPROX type, and SAMP size on modeling
accuracy, the individual factor contributions for modeling the roll-over metric are shown
in Figure 12.

Impact of DOE type: Since we want to minimize both MAX and RMSE, the orthogonal
array (oay) and uniform designs (uni) appear to be the experimental designs of choice,
followed closely by Hammersely sampling sequences (hss) and Latin hypercubes (lhd).
The worst possible DOE types, as expected, is the random sets of points (rnd). It is again
reassuring to note that both MAX and RMSE decrease as the sample size increases.
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Figure 11. Effects of DOE, APPROX, and SAMP on RMSE and MAX
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Impact of APPROX type: The radial basis function (rbf) and kriging models (krg) both
perform well in terms of MAX and RMSE as shown in Figure 12. The radial basis
function models offer a slight improvement in MAX error over the kriging (krg) models,
while both approximations yield similar RMSE values. The second-order response
surface (rs2) models yield average results for both error measures while the multivariate
adaptive regression splines (mar) are the most inaccurate, particularly when small sample
sizes are used. This is consistent with previous results (Jin, et al., 2000).

Interaction between DOE and SAMP (Figure 13): Consistent with the previous figure,
most of the lines in Figure 13 are negatively sloped, indicating increased accuracy as
sample size increases; however, there are some exceptions. Most notably, the MAX
values for the uniform design (uni) rise slightly as sample size increases, but the
corresponding RMSE values tend to decrease. Meanwhile, the Hammersley sampling
sequences (hss) show the most pronounced increase in MAX and RMSE when moving to
the 361 point designs, while the other DOE types level off at the higher sample sizes.
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Figure 13. Interaction of DOE and SAMP

Interaction between DOE and APPROX (Figure 14): We see from Figure 14 that both
the kriging (krg) and radial basis function (rbf) models yield good results, regardless of
DOE type; the same does not hold true for the response surface (rs2) models or the
multivariate adaptive regression splines (mar). Of the five design types available, the
uniform designs (uni) and orthogonal arrays (oay) seem to work well with both
multivariate adaptive regression splines (mar) and radial basis functions (rbf) while the
random points provide the worst data set for fitting accurate approximations.

Interaction between APPROX type and SAMP size: The interaction between APPROX
and SAMP is not plotted for this example because the only interaction that exists has
already been captured, namely, as SAMP size increases, each APPROX yields more

accurate results. There are no big jumps in accuracy for any particular APPROX type as
observed previously.
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Figure 14. Interaction of DOE and APPROX

5. RECOMMENDATIONS AND CLOSING REMARKS

Based on the comparative study results for two engineering example problems, one
small dimension (k = 3) with both low-order and higher-order nonlinear functions, and the
other large dimension (k=14) with higher-order nonlinear behavior, some general

conclusions can be drawn regarding the selection of DOE type, the approximation type
and the sample size. :

For DOE type, we find that good design space coverage afforded by the uniform designs
and Hammersley sampling sequences tend to yield more accurate approximations globally
as indicated by the consistently low RMSE values associated with them. The uniform
designs tend to perform well at low sample sizes while the Hammersley sampling
sequences tend to fair better when large sample sizes can be afforded, but both offer
improvements over standard Latin hypercube designs and random sets of points. The
orthogonal arrays do particularly well at giving low MAX values because these designs
place points at the corners of the design space which is critical when trying to approximate
the two stress constraints in the first example. This type of behavior may not always be
present in a system, and we recommend a design that provides good overall coverage (and
therefore lower RMSE) be chosen over one that yields low MAX—validation of the
approximation during use can always help correct large MAX values.

For APPROX type, the kriging (krg) and radial basis function (rbf) models tend to offer
more accurate approximations over a wide range of DOE types and SAMP sizes. The
performance of the multivariate adaptive regression splines (mar) is the least stable; its
performance varies quite a lot when different sample sizes or DOE types are available. In
both examples, large sample sizes are néeded to fit accurate multivariate adaptive
regression splines. The second-order response surfaces yield average results and perform
particularly well when approximating low-order non-linear functions.
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For SAMP size, larger sizes generally improve the accuracy, however, for low-order non-
linear functions, we also find that taking large samples for many approximation types,

with the exception of the multivariate adaptive regression splines, does not improve
accuracy that much.

ACKNOWLEDGEMENT

We thank the reviewers for their helpful comments. Dr. Simpson acknowledges
support from Dr. Kam Ng, ONR 333, through the Naval Sea Systems Command under
Contract No. N00014-00-G-0058. The work by Dr. Lin is partially supported by the
NSF/DMS-9704711 and National Science Council of ROC via Contract NSC 87-2119-M-
001-007. Dr. Chen acknowledges support from NSF/DMII 9896300.

REFERENCES

ArcSim, (1997), ArcSim User's Guide, PDF version can be downloaded from
http://arc.engin.umich.eduw/sw_distri/ARCSIM/arcsim.html, The  University of
Michigan, Ann Arbor, MI.

Arora, J. S., (1989), Introduction to Optimum Design, McGraw-Hill, New York.

Balling, R. J. and Clark, D. T., (1992), A Flexible Approximation Model for Use with
Optimization, 4th AIAA/USAF/NASA/OAI Symposium on Multidisciplinary Analysis
and Optimization, Cleveland, OH, AIAA, 2, 886-894. AIAA-92-4801-CP.

Barthelemy, J.-F. M. and Haftka, R. T., (1993), Approximation Concepts for Optimum
Structural Design - A Review, Structural Optimization, 5, 129-144.

Barton, R. R,, (1992), Metamodels for Simulation 'Input-Output Relations, Proceedings of
the 1992 Winter Simulation Conference (Swain, J. J., Goldsman, D., et al., eds.),
Arlington, VA, IEEE, 289-299.

Barton, R. R., (1994), Metamodeling: A State of the Art Review, Proceedings of the 1994
Winter Simulation Conference (Tew, J. D., Manivannan, S., et al., eds.), Lake Beuna
Vista, FL, IEEE, 237-244.

Barton, R. R., (1998), Simulation Metamodels, Proceedings of the 1998 Winter
Simulation Conference (WSC'98) (Medeiros, D. J., Watson, E. F., et al., eds.),
Washington, DC, IEEE, 167-174. ’

Beattie, S: D. and Lin, D. K. J, (1997), Designing Computer Experiments: Rotated
Factorial Designs, Technical Report No. 97-06, Department of Statistics, The
Pennsylvania State University, University Park, PA.



236 Sampling Strategies for Computer Experiments: Design and Analysis

Booker, A. J., (1998), Design and Analysis of Computer Experiments, 7th
AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis & Optimization,
St. Louis, MO, AIAA, 1, 118-128. AIAA-98-4757.

Box, G. E. P. and Draper, N. R., (1987), Empirical Model Building and Response
Surfaces, John Wiley & Sons, New York.

Box, G. E. P., Hunter, W. G. and Hunter, J. S., (1978), Statistics for Experimenters: An
Introductzon to Design, Data Analysis, and Model Bulldzng, John Wiley & Sons, New
York.

Box, G. E. P. and Wilson, K. B., (1951), On the Experimental Attainment of Optimal
Conditions, Journal of the Royal Statistical Society, Vol. Series B, 13, 1-38 (with
Discussion).

Chen, V. C. P, (1999), Application of MARS and Orthogonal Arrays to Inventory

Forecasting Stochastic Dynamic Programs, Computatlonal Statistics and Data
Analysis, 30,317-341.

Chen, W., Garimella, R. and Michelena, N., (1999), Robust Design for Improved Vebhicle
' Handling under a Range of Maneuver Conditions, Advances in Design Automation,
Las Vegas, NV, ASME, Paper No. 99-DETC/DAC-8580.

Cheng, B. and Titterington, D. M., (1994), Neural Networks: A Review from a Statistical
Perspective, Statistical Science, 9(1), 2-54.

Cressie, N., (1989), Geostatistics, The American Statistician, 43(4), 197-202.

Cressie, N. A. C,, (1993), Statistics for Spatial Data, Revised, John Wiley & Sons, New
York.

- Currin, C., Mitchell, T., Morris, M. and Ylvisaker, D., (1991), Bayesian Prediction of
Deterministic Functions, With Applications to the Design and Analysis of Computer
Experiments, Journal of the American Statistical Association, 86(416), 953-963.

Draper, N. R. and Lin, D. K. J., (1990), Connections Between Two-Level Designs of
Resolutions Il and V, Technometrics, 32(3), 283-288.

Dyn, N, Levin, D. and Rippa, S., (1986), Numerical Procedures for Surface Fitting of
Scattered Data by Radial Basis Functions, SI4M Journal of Scientific and Statistical
Computing, 7(2), 639-659.

Fang, K. T., (1980), Experimental Design By Uniform Distribution, Acta Mathematice
Applicatae Sinica, 3, 363-372.




Timothy W. Simpson, Dennis K. J. Lin and Wei Chen 237

Fang, K.-T., Lin, D. K. J., Winker, P. and Zhang, Y., (2000), Uniform Design: Theory and
Application, Technometrics, 42, 237-248.

Fang, K.-T. and Wang, Y., (1994), Number-theoretic Methods in Statistics, Chapman &
Hall, New York.

Friedman, J. H.,, (1991), Multivariate Adaptive Regression Splines, The Annals of
Statistics, 19(1), 1-67.

Friedman, J. H. and Steutzle, W., (1981), Projection Pursuit Regression, Journal of the
American Statistical Association, 76(376), 817-823.

Gangadharan, S. N., Haftka, R. T. and Fiocca, Y. L., (1995), Variable-Complexity-
Modeling Structural Optimization Using Response Surface Methodology, 361h
AIAA/ASME/ASCE/AHS/ASC  Structures, Structural Dynamics, and Materials

Conference and AIAA/ASME Adaptive Structures Forum, New Orleans, LA, ATAA,
ATAA-95-1164.

Giunta, A. and Watson, L. T., (1998), A Comparison of Approximation Modeling
Techniques: Polynomial Versus Interpolating Models, 7th AIA4/USAF/NASA/ISSMO
Symposium on Multidisciplinary Analysis & Optimization, St. Louis, MO, AIAA, 1,
392-404. AIAA-98-4758.

Goldsman, D. and Nelson, B. L., (1998), Statistical Screening, Selection, and Multiple
Comparison Procedures in Computer Simulation, Proceedings of the 1998 Winter
Simulation Conference (WSC'98) (Medeiros, D. J, Watson E. F., et al, eds.),
Washington, DC, IEEE, 159-166.

Hardy, R. L., (1971), Multiquadratic Equations of Topography and Other Irregular
Surfaces, Journal of Geophysical Research, 76, 905-1915.

Haykin, S., (1994), Newral Networks: A Comprehensive Foundation, Macmillan
Publishing, New York.

Jin, R., Chen, W. and Simpson, T. W., (2000), Comparative Studies of Metamodeling

Techniques under Muitiple Modeling Criteria, 8th AI4A/NASA/USAF/ISSMO
Symposium on Multidisciplinary Analysis and Optimization, Long Beach, CA, AIAA,
ATAA-2000-4801.

Johnson, M. E., Moore, L. M. and Ylvisaker, D., (1990), Minimax and Maximin Distance
Designs, Journal of Statistical Planning and Inference, 26(2), 131-148.

Kalagnanam, J. R. and Diwekar, U. M., (1997), An Efficient Sampling Technique for Off-
Line Quality Control, Technometrics, 39(3), 308-319.



238 Sampling Strategies for Computer Experiments: Design and Analysis

Koch, P. N.; Allen, J. K., Mistree, F. and Mavris, D., (1997), The Problem of Size in

Robust Design, Advances in Design Automation, Sacramento, CA, ASME, Paper No.
DETC97/DAC-3983.

Koch, P. N., Mavris, D and Mistree, F., (1998), Multi-Level, Partitioned Response
Surfaces for Modeling Complex Systems, 7th AIAA/USAF/NASA/ISSMO Symposium
on Multidisciplinary Analysis & Optimization, St. Louis, MO, AIAA, 3, 1954-1968.

Koehler, J. R. and Owen, A. B., (1996), Computer Experiments, Handbook of Statistics
(Ghosh, S. and Rao, C. R., eds.), Elsevier Science, New York, 261-308.

Mallet, C. G., (1998), A Wavelet Tour of Signal Processing, Academic Press, Boston, MA.

McKay, M. D., Beckman, R. J. and Conover, W. J,, (1979), A Comparison of Three
Methods for Selecting Values of Input Variables in the Analysis of Output from a
Computer Code, Technometrics, 21(2), 239-245.

Meckesheimer, M., Barton, R. R., Simpson, T. W., Limayem, F. and Yannou, B., (2001),
Metamodeling of Combined Discrete/Continuous Responses, 4144 Journal, to appear.

Mitchell, T. J. and Morris, M. D., (1992), Bayesian Desigh and Analysis of Computer
Experiments: Two Examples, Statistica Sinica, 2, 359-379.

Montgomery, D. C., (1997), Design and Analysis of Experiments, Fourth Edition, John
Wiley & Sons, New York.

Morris, M. D. and Mitchell, T. J., (1992), Exploratory Designs for Computer Experiments,
ORNL/TM-12045, Oak Ridge National Laboratory, Oak Ridge, TN.

Myers, R. H. and Montgomery, D. C., (1995), Response Surface Methodology: Process

and Product Optimization Using Designed Experiments, John Wiley & Sons, New
York.

Owen, A. B., (1992), Orthogonal Arrays for Computer Experiments, Integration and
Visualization, Statistica Sinica, 2, 439-452.

Park, J.-S., (1994), Optimal Latin-Hypercube Designs for Computer Experiments, Journal
of Statistical Planning and Inference, 39(1), 95-111.

Powell, M. J. D., (1987), Radial Basis Functions for Multivariable Interpolation: A

Review, Algorithms for Approximation (Mason, J. C. and Cox, M. G., eds.), Oxford
University Press, London.

Rasmussen, J., (1990), Accumulated Approximation-A New Method for Structural
Optimization by Iterative Improvement, 3rd Air Force/NASA Symposium on Recent



Timothy W. Simpson, Dennis K. J. Lin and Wei Chen 239

Advances in Multidisciplinary Analysis and Optimization, San Francisco, CA, 253-
258.

Sacks, J., Welch, W. J, Mitchell, T. J. and Wynn, H. P., (1989), Design and Analysis of
Computer Experiments, Statistical Science, 4(4), 409-435.

Sayers, M. W. and Riley, S. M., (1996), vaodeling Assumptions for Realistic Multibody
~ Simulations of the Yaw and Roll Behavior of Heavy Trucks, SAE Paper No. 960173,
Society of Automotive Engineers, Warrendale, PA.

Shewry, M. C. and Wynn, H. P., (1987), Maximum Entropy Sampling, Journal of Applied
Statistics, 14(2), 165-170.

Shewry, M. C. and Wynn, H. P., (1988), Maximum Entropy Sampling with Application to
Simulation Codes, Proceedings of the I12th World Congress on Scientific
Computation, IMACS8, 2, 517-519.

Simpson, T. W., Allen, J. K. and Mistree, F., (1998), Spatial Correlation Metamodels for
Global Approximation in Structural Design Optimization, Advances in Design
Automation, Atlanta, GA, ASME, Paper No. DETC98/DAC-5613.

Simpson, T. W., Mauery, T. M., Korte, J. J. and Mistree, F., (2001a), Kriging Metamodels
for Global Approximation in Simulation-Based Multidisciplinary  Design
Optimization, 4144 Journal, to appear: 40(1).

Simpson, T. W., Peplinski, J., Koch, P. N. and Allen, J. K., (2001b), Metamodels for

Computer-Based Engineering Design: Survey and Recommendations, Engineering
with Computers, 17(2), 129-150.

Smith, M., (1993), Neural Networks Jor Statistical Modeling, von Nostrand Reinhold,
New York.

Sobieszczanski-Sobieski, J. and Haftka, R. T, (1997), Multidisciplinary Aerospace

Design Optimization: Survey of Recent Developments, Structural Optimization, 14,
1-23.

Tang, B., (1993), Orthogonal Array-Based Latin Hypercubes, Journal of the American
Statistical Association, 88(424), 1392-1397.

Tang, B., (1994), A Theorem for Selecting OA-Based Latin Hypercubes Using a Distance
Criterion, Communications in Statistics, Theory and Methods, 23(7), 2047-2058.

Varadarajan, S., Chen, W. and Pelka, C., (2000), The Robust Concept Exploration Method

with Enhanced Model Approximation Capabilities, Engineering Optimization, 32(3),
309-334.



240 Sampling Strategies for Computer Experiments: Design and Analysis

Wang, L., Grandhi, R. V. and Canfield, R. A., (1996), Multivariate Hermite
Approximation for Design Optimization, ternational Journal for Numerical
Methods in Engineering, 39(5), 787-803.

Welch, W. J., Buck, R. J., Sacks, J., Wynn, H. P., Mitchell, T. J. and Morris, M. D.,

(1992), Screening, Predicting, and Computer Experiments, Technometrics, 34(1), 15-
25.

Wilson, B., Cappelleri, D. J., Frecker, M. 1. and Simpson, T. W., (2001), Efficient Pareto

Frontier Exploration Using Surrogate Approximations, Optimization and Engineering,
2(1), 31-50.

Yang, R. J., Gu, L., Liaw, L., Gearhart, C., Tho, C. H., Liu, X. and Wang, B. P., (2000),
Approximations for Safety Optimization of Large Systems, ASME 2000 Design
Engineering Technical Conferences - Design Automation Conference (Renaud, J. E.,
ed.), Baltimore, MD, ASME, Paper No. DETC-2000/DAC-14245.




