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A uniform design (UD) seeks design points that are uniformly scattered on the domain. It has
been popular since 1980. A survey of UD is given in the first portion: The fundamental idea and
construction method are presented and discussed and examples are given for illustration. It is shown
that UD’s have many desirable properties for a wide variety of applications. Furthermore, we use
the global optimization algorithm, threshold accepting, to generate UD’s with low discrepancy.
The relationship between uniformity and orthogonality is investigated. It turns out that most UD’s

obtained here are indeed orthogonal.
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1. INTRODUCTION

Classical experimental designs are mostly based on (anal-
ysis of variance) ANOVA-type models that typically involve
-main effects, interactions, and random error. A two-way
ANOVA model with two factors A and B, for example,
can be expressed as

Yijk = p+ ai + B + (aB)ij + €ijr, (L.1)
where a;, 3;, and (af);; are the main effects of A and B
and interaction between A and B, respectively; p is the
grand mean; and ¢;;; is the random error. The objective of
an experimental design is then to provide a good estimate
for all parameters with a suitable number of experiments.
When the number of factors increases, the number of pa-
rameters in the corresponding ANOVA model increases ex-
ponentially, as does the required number of experiments. A
common approach to this problem is to assume that the
high-order interactions are negligible. Thus, a fractional
factorial design, which allows estimation of all main ef-
fects and low-order interactions, can reduce the number of
experiments significantly.

The optimal regression design (or optimal design, for
short), on the other hand, is based on a prespecified re-
gression model, such as

k
Y:Zﬁigi(xl,..‘,xs)ﬁ—a (1.2)

i=x1

where z;,...,z are s input factors, g;’s are known func-
tions, J;’s are unknown parameters, and & is the random

error. Different criteria of optimality may imply different
optimal designs; see, for example, Pukelsheim (1993).

In many circumstances, the function g;’s are unknown, in
which case Model (1.2) can be represented as

Y=h($1,...,$3)+8, (13)

where the function A is unknown. The goal here is mostly to
estimate the average value E{(h(x)) over the experimental
domain, where A(x) is an output of the experiment. Without
loss of generality, we assume that the experimental domain
is the unit cube C?, so

B(h(x)) = / h(x) dx. (1.4)
Cs=
This usually can be estimated by the mean
- 1
hi==3 hx), (1.5)
xeP

where P is a set of n experimental points over the domain.
We seek an experimental design that estimates E(h(x)) in
an efficient way.

McKay, Beckman, and Conover (1979) proposed a
method of generating a set of experimental points P =
{x1,...,Xn} called Latin hypercube sampling (LHS). LHS
provides a more efficient estimate of the overall mean of the
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response than the estimate based on simple random sam-
pling. Fang (1980) and Wang and Fang (1981), on the other
hand, proposed the uniform design (UD) concept that al-
Jocates experimental points uniformly scattered on the do-
main. Both the LHS design and UD are “space filling” ex-
perimental designs—the LHS designin a randomly uniform
fashion and the UD in a deterministically uniform fashion.
Specifically, if the experimental domain is finite, LHS de-
signs are similar to UD. When the experimental domain is
continuous, the fundamental difference between these two
designs is that, in LHS designs, points are selected at ran-
dom from cells, whereas in UD points are selected from
the center of cells. Furthermore, an LHS design requires
one-dimensional balance of all levels for each factor, but
a UD requires one-dimensional balance and s-dimensional
uniformity. Thus, these designs are similar in one dimension
but can be very different in higher dimensions.

The Koksma-Hlawka inequality (see Hua and Wang
1981) gives the upper error bounds of the estimate of
E(h{x)):

|E(h(x)) — Al < D(P)V(h), (1.6)

where V(h) is a measure of the variation of h and D(P)
is the discrepancy of P, a measure of the uniformity of P.
The definition of V(k) in the sense of Hardy and Krause
was given by Niederreiter (1992, p. 19). Note that V(h)
is independent of the design points. Thus, given a bounded
V (h), Inequality (1.6) indicates that, the more uniform a set
P of points is over the experimental region C*, the more
accurate h is as an estimator of E(h(x)). Therefore, one
should choose a set of experimental points with smallest
discrepancy among all possible designs for a given number
of factors and experimental runs. This is the fundamental
idea of UD. Note that the UD is robust against changes
of the function k for which V (h) remains unchanged. This
fact indicates that the UD can provide a good estimate of
E(h(x)) for a very large class of h(x). The key issue to be
addressed then is how to find n points in C* with minimum
discrepancy.

This article is organized into two parts: The first part
(Secs. 2 and 3) provides a brief survey of UD’s. Existing
designs are not listed; we only explain what they are and
how they can be used. The second part (Secs. 4-6) provides
some new research results on the construction of UD’s that
are based on an analysis of the relationship between unifor-
mity and orthogonality. New designs obtained by this ap-
proach are tabulated. Specifically, Section 2 provides a brief
and informative introduction to UD—its general properties,
optimality, and construction method. A direct application to
dynamic systems is discussed in Section 3. The relationship
between uniformity and orthogonality is discussed in Sec-
tion 4, followed by two construction algorithms in Section
5. Some numerical results obtained are presented in Section
6. Concluding remarks are given in Section 7.

2. UNIFORM DESIGNS

Suppose there are s factors of interest over a standard
domain C*. The goal here is to choose a set of n points
Pn = {Xi1,...,%,} C C° such that these points are uni-
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formly scattered on C°. Let M(P,,) be a measure of the
nonuniformity of P,; we seek a set P that minimizes M
or, equivalently, maximizes the uniformity over all possible
n points on C°.

2.1 Measures of Uniformity

From the Koksma-Hlawka inequality in (1.6), a natural
choice of M is the discrepancy D(p). Let F,(x) be the
empirical distribution function of Py:

Fo(x) = % > I{x: <x}, 2.1

=1

where I{-} is the indicator function and all inequalities are
understood to be with respect to the componentwise order
of R®. Then the L, discrepancy can be defined as

D) = | [ a0 -Feopar] . @2)

where F'(x) is the uniform distribution function on C*. The
popular L, discrepancy obtained by taking p = oo in (2.2)
is called the star discrepancy, or discrepancy for simplicity.
This is probably the most commonly used measurement for
discrepancy and can be reexpressed as follows:

D(Pyr) = sup |Fn(x) — F(x)|. (2.3)
xeC*

The discrepancy has been universally accepted in quasi-
Monte Carlo methods and number-theoretic methods. In
fact, the discrepancy is the Smirnov-Kolmogorov statistic
for goodness-of-fit tests. One disadvantage of the discrep-
ancy is that it is expensive to compute. Attempts have been
made to evaluate the discrepancy algorithmically (e.g., see
Winker and Fang 1997). With the discrepancy criterion in
mind, we next discuss how. to construct a UD.

2.2 Construction Method
For the case s = 1, the UD under D is

. 1 3 2n~1
Pi={a T )

with D = 1/2n (see Fang and Wang 1994). For s > 1, the
problem of finding a UD is much more difficult. One ap-
proach is to reduce the domain C* into a smaller subdomain
D, C C*. Obviously the quality of the D, UD depends on
the quality of the set of candidates D,.

Here, we introduce the most popular UD, called a U UD.
An n x s matrix U, s = (uij), where each column is a
permutation of {1,2,...,n}, is called a U-type design. Its
induced matrix, Xn s = (z:;), is defined as

(2.4)

zi; = (ui; — -5)/m, i=1,...,n7=1,...,5 (2.5)

A U-type design U, ¢ provides an n-run experimental de-
sign for s factors, each having n levels, if the rank of U, ; is
s. The matrix X,, ; can be considered as n points on C*. Let
U, s denote the set of all U, designs and X, ; be the set
of all X,, ;. There is a one-to-one correspondence between
U, s and X,, ; so that they can be used interchangeably.
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Useful U UD’s were constructed and tabulated by Fang
(1994).

Definition 1. A U-type design U, ; with rank s whose
induced matrix has the smallest discrepancy over X, ; is
called a U UD and is denoted by U,(n®).

The notation U, (n®) is purposely chosen to mimic that
commonly used for orthogonal designs L, (g®), where n is
the number of experiments, s the number of factors, and
g the number of levels for each factor. The first column
of U.(n®) can always be taken as (1,2,...,n). There are
n! — 1 possible permutations of {1,2,...,n} for the second
column, n! — 2 choices for the third column, and so on.
Table 1 shows an example of a Uz(7%) UD.

2.3 Properties of U-Type Uniform Designs

The aim of the UD is to choose a set of n points P, €
C* with smallest discrepancy value D{P,). A conjecture in
number theory states that

D(Py) > c(s) 995{’;—):,

for any P,,

where the constant ¢(s) depends on s only. This conjecture
is clearly true for s = 2 (Hua and Wang 1981). If we can find
a sequence P, with D(P,) having order O(n~'(logn)*~1)
as n — oc, we can consider P, to be uniformly scattered
over C* at least for large n. If P, is generated by the Monte
Carlo method, its discrepancy has order O,(n~1/2), inde-
pendent of s.

The good-lattice-point method (Fang and Wang 1994)
produces P, with order O(n~*(logn)*~1!). Any set P, gen-
erated by the good-lattice-point method forms the induced
matrix of a U-type design. Therefore, the UD generated
from a U-type design resulting from the good-lattice-point
method has order O(n~*(logn)*!). With numerical com-
parisons for s < 12, we find that a UD generated by a
U-type design has lower discrepancy than one generated by
the Monte Carlo method.

2.4 Further Remarks on Uniformity

Most statistical experimental designs are based on model
assumptions. It is desirable to have a design that is insensi-
tive to the assumptions. That is, a change in the underlying
distribution or model should cause only a small change in
the performance of the design. As previously mentioned,
the UD is robust to certain changes of the function h over
the domain {h: V(h) < c} for a given ¢ > 0 [cf. (1.4)«1.6)].
Consider a nonparametric regression model (1.3). When

Table 1. U,(79%) Table

No. 1 2 3
1 1 2 3
2 2 4 6
3 3 6 2
4 4 1 5
5 5 3 1
(5} 6 5 4
7 7 7 7
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h{zy,...,zs) can be expressed as Zf=1!3igi(1z}.,~~,ms),
optimal design theory can provide the most efficient de-
sign. If Model (1.3) cannot be expressed as (1.2), an ap-
proximately linear regression model may be considered:

Y(:L’l;,..,ilis)

k
= Zﬂiﬂi(-’rl, R :xs) +7j)($1, . yxs) +57 (26)
i=1

where ¥(x), with x = (zy,...,Z5), is an unknown bias.
Under certain conditions on #(x), Wiens (1991) showed
that the uniform measure design is the best design in the
sense of the power of the F test.

The UD is based on a nonparametric regression model.
Therefore, the UD can be considered as a nonparametric
experimental design. That is, we do not need precise knowl-
edge of the model to select a reasonable design. A natural
approach is to find a suitable &, ¢;,..., gx to approximate
Model (1.2). Xie and Fang (1996) used decision theory to
define a risk function under which they proved that the
uniform measure design is an admissible minimax design.
Fourier regression models have been used in problems with
a periodic response, such as in circuits. A Fourier regression
model with one factor is of the form

E(Y(z)) = Bo+ iﬁi sin(2miz)

i=1

+ 3 gicos(2miz), ze0,1). (2.7)

=1

A D-optimal design under this model is an equidistant grid
with at least 2m + 1 supporting points. That is, the uni-
form design is D-optimal under this model. Riccomagno,
Schwabe, and Wynn (1997) extended Model (2.7) to the
multiple-factor case and gave a necessary and sufficient con-
dition for U-type designs to be D-optimal, where the U-type
designs are generated by the good-lattice-point method and
their induced matrix is defined as x;; = (u;; —1)/n, replac-
ing (2.5).

3. A DYNAMIC SYSTEM EXAMPLE

This section presents a case study of launching a dynamic
system for a one-off ship-based flight detector. The launch-
ing parameters are determined by a combination of several
factors—the motion of wave and wind, the rock of the ship,
the relative motion between the detector and launching sup-
port, the direction of launching support relative to the base
(ship as well as launching device) system, plus other fac-
tors. For this problem, a series of coordinate systems are set
up as illustrated in Figure 1. This system has the following
characteristics:

1. Six degrees of freedom ship rock, including three de-
grees of freedom positional rock and three degrees of free-
dom angular rock; v

2. Two degrees of freedom circumgyration launching
system, with circumgyration axes not intersecting each
other;

TECHNOMETRICS, AUGUST 2000, VOL. 42, NO. 3
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Figure 1.

3. The guide launching mode;

4. Choice-permitted launching position;

5. Two-period launching procedure; that is, the one-
degree-of-freedom motion of the detector with respect to
launching support in the former part (major part) of the
launching procedure and the multidegree-of-freedom mo-
tion of the detector with respect to launching support in the
later part of the launching procedure;

6. Large-range direction of the launching support com-
posed with the no-limitation azimuth and wide-range ele-
vation angle.

A set of equations was thus formulated as follows.
The motions of wind and ocean wave, which are the en-
vironments of the operation of the system:

A B
stw) =& ew (-2),

where w is the frequency, p and ¢ are the numerical con-
stants, and parameters A and B reflect the effects of wind
and wave. The values of these parameters depend on the
ocean zone. ‘

The angular motion of the base system, which is com-
posed of the ship and the launching system:

(3.1)

(3.2)

where &aw is the angular velocity of the detector in the
ship coordinate system and f,, is the matrix transformation
based on the angular velocity of the ship rock &y and the
angular velocity of the detector in the launching coordinate
system Wy,

Displacement equations of the detector:

Omw = ful@w,DrmL),

Fr, S Fr,
m| g. | =| > Fr, |, (3.3)
Zr > Fr,
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The Coordinate Systems.

where m is the mass of the detector; z,yr, and z;, are the
displacements of the centroid of the detector in the launch-
ing coordinate system; and ) Fr_,) Fr ,and ) Fp, are
the three components of the total forces acting on the de-
tector in the launching coordinate system.

Rotration equations of the detector:

WM, > My, /I
WM, | = | M, /Ty |, (3.4)
e S Mu,/Ja

where war,,wp,, and wy, and 3 My, My, and
Y. My, are the three components of the detector angular
velocity and the total-moment-acted-on detector in the de-
tector coordinate system, respectively; Jz1, Jy1, and J are
the three components of the rotation inertia of the detector.

Centroid position, velocity, and acceleration of the detec-
tor:

TMI = fr(T."l -+ Ty +’F3), (3.3)

Tmw = fo(Faw, Taw, Taw, Tow, Taw, 0w, Opw ),  (3.6)

and
dyw = fo{Fiw, Faw, T1w, Tow, Taw, Taw, Taw,

Ww,Gpnw, Ow, Oyw), (3.7)

where f, f,, and f, are corresponding vector operators. All
notations were properly defined by Zhang (1996).

From these equations, the responses (outputs) can be cal-
culated for any given set of input variables. Due to the com-
plexity of the system, we wish to find a simpler model to
replace Models (3.1)}3.7). Because the range of the direc-
tion of the launching support relative to the base system
(the azimuth and pitching angles) is very large, we have to
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consider experimental points in a uniform fashion. More-
over, because of the high cost of the experiment, we specify
other factors to have the characteristic values and only con-
centrate on two factors, azimuth angle (1) in [~180°, 180°]
and pitching angle (6) in [—-10°,70°]. A U;7(17?) design is
chosen for the experiment. Two responses, w; and wo, are
considered and calculated for these 17 points by Equations
(3.1)+43.7) and are listed in Table 2.

Based on subject-matter knowledge and the model-
selection techniques in regression analysis, we find the fol-
lowing regression models:

w; = 217.5842 — 105.7505%* + 7.3675¢*
— .0130¢® — 95.35946° + 30.1229:%6°
+ 10.23641/%0° — .5653¢°6° + .03994%¢°  (3.8)
and

wo = —.0862 + 219.58941) — 36.83941° + 1.8644¢°

— 039847 — 55900 + 1.646810 — .0320¢°6%. (3.9)

The advantage of the fitted models (3.8) and (3.9) is that the
responses can be determined quickly by the polynomial cal-
culation. This avoids the complexity of solving the system
of ordinary differential equations, which is time consum-
ing and impractical to implement in the launching control
systems.

For assessing performance of these two models, we cal-
culate w; and wq for 9 from —180 to 180 in 10-unit incre-
ments and 6 from —10 to 50 in 5-unit increments by both the
original equations (3.1)~(3.7) and the approximation mod-
els (3.8) and (3.9). Figure 2, (a) and (b), shows w; and w»
based on (3.1)~(3.7), and Figure 2, (c) and (d), shows w;
and w, based on the approximation models. It is clear that
panels (a) and (c) of Figure 2 have a similar shape, as do
panels (b) and (d). Denote by §; (i = 1,2) the preceding w;
values obtained by Equations (3.1) and (3.7). The matrices
Q; and Q3 have size 37 x 13. Let Q; stand for the preceding
w; values calculated by the corresponding approximation
model. We have tr(2; — Ql)’(QI ~{2) = 6.3590 x 1073,

Table 2. Design and Data in Dynamic System

No. P g 104w1 104(4)2
1 —-180.0 20 —206 0
2 -157.5 55 —118 -86
3 -135.0 0 —155 ~155
4 —1125 35 ~70 -205
5 ~80.0 70 o} —222
6 —875 15 81 ~203
7 —45.0 50 101. ~157
8 -22.5 -5 202 —84
9 0 30 190 o

10 225 55 87 86

11 450 10 153 155

12 67.5 45 69 203

13 90.0 -10 o 219

14 112.5 25 -76 203

15 135.0 80 -~78 155

16 157.5 5 -202 84

17 180.0 40 ~168 o

tr(Q — Q)" (2 — ) = 4.2900 x 10-5, which shows that
the approximation models have good performance. More
examples involving applications of UD (including computer
experiments) were given by Fang, Lin, and Zhang (1998).

Certainly, the model-selection methods in regression have
their flaws, as pointed out by one referee. The regression
method is used here to demonstrate the use of UD. It is
believed that better data-analysis methods (sometimes with
suitable assumptions) can extract more useful information
from the data. In fact, the associate editor suggested the
use of stochastic modeling (e.g., see Sacks, Welch, Mitchell,
and Wynn 1989) as an alternative data-analysis method here
(especially when the experiment is costly, only a few obser-
vations are feasible). This seems to be a sensible direction
for future study.

4. UNIFORMITY AND ORTHOGONALITY

The orthogonal design is one major kind of fractional fac-
torial experimental design. It has been widely used in var-
ious problems of industry, agriculture, quality control, and
the natural sciences. Orthogonal designs can be regarded
as a special case of orthogonal arrays. An orthogonal array
(OA) of strength r and size n with s constraints is given by
an n x s matrix O with entries from a set of ¢ > 2 sym-
bols, where each n x r submatrix of O contains all possible
1 x r row vectors with the same frequency A. In practice,
OA’s of strength 2 are extremely important because they
exhibit good properties for specific applications of exper-
imental designs. OA’s of strength 2 are called orthogonal
designs (OD’s) and will be the center of our interest for the
rest of this article. A formal definition of an OD can be
given as follows:

Definition 2. Ann x s matrix, denoted by L,(q; x - -- x
gs) with entries 1,2,...,¢; at the jth column is called an
OD if it satisfies the following conditions:

1. Each entry in each column occurs the same number
of times.

2. In any two columns, each pair (1,1),...,(1,g;), (2,1),
..+,(2,4),...,(d;, g;) occurs the same number of times for
any1<i<j<s.

If some of the ¢; are the same, the matrix is denoted
Ln(gi* x -+~ x gtp),t1 + -+ - + t, = 5; in particular, L, (q%)
has s columns, each having the same number of levels g.

The value of n has to be a multiple of q;"-’ for t; > 2 and
a multiple of ¢; for t; = 1. An OD for given parameters
(n,s;q1,-..,9s) is not unique. Table 3 shows an OD Lgo(3%)
(e.g., see Dehnad 1989, p. 63). By exchanging rows and
columns of an OD, we can obtain many other equivalent
OD’s. Here, we choose the representation with all entries
in the first row equal to 1 and call it the canonical form.
The design given in Table 3 is in canonical form.

If we relabel the three levels 1, 2, and 3 of this design
to be symmetric around O—for example, —1, 0, and 1—and
denote this design matrix by L, then it is easy to see that the
columns of the design are orthogonal to each other; that is,
L'L = 21, where 1, is the 4 x 4 identity matrix. Although
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Figure 2. Performance Comparison.

necessary, the condition of column orthogonality (CO) is
not sufficient for design orthogonality (DO) introduced by

Definition 2.
In past decades, much effort has been devoted to the gen-

eration of OD’s, including the following:

1. Orthogonal Latin squares for the construction of
Lo(3%), L16(4%), L25(5%), Lao(7%), . .. . L2 (£**1);

Table 3. Orthogonal Design Lg(3%)

Column

Ny
[#Y
£

Row

WA = WA - W N -
N = D= W WN -
-GN - W W -

WooNOORWN -
WWWMNNN = - -

TECHNOMETRICS, AUGUST 2000, VOL. 42, NO. 8

2. Hadamard matrices for L4(23), Lg(27), L16(2'°),...,
L4t(24t—1);

3. Group theory (difference sets) for L1g(2 x 37), L3s(4
313), Lsq(2 x 3%%), and so forth;

4. Finite fields for designs of type Ly (19).

The reader can refer to, for example, Bose and Bush
(1952), Raghavarao (1971), and Bose, Chakravarti, and
Knuth (1960, 1961). All of these approaches strongly
depend on pure mathematics. Consequently, they are
not easy for nonmathematicians to understand. Further-
more, how to construct particular OD’s for practical
uses remains an open question in most instances. It is
known that an OD is uniform in any one- and two-
dimensional projection in the sense of Definition 2. There-
fore, points of an OD are uniformly scattered over the
domain in a certain sense to be defined later. This fact
gives a link between OD and UD. We next introduce
some improved measurements of uniformity as the ma-
jor optimality criteria to be used in our construction
algorithms.
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improved Measurements of Uniformity
Warnock (1972) gave an analytic formula for calculating
the L, discrepancy:

b
ta

I [t - max(zes, 25)), (4.1)

=1

o,

k=1 F=1

s

where xi = (Tg1,--.,Zrs). Obviously, the L, discrepancy
is much easier to calculate numerically than the L., dis-
crepancy (see also Heinrich 1995). Unfortunately, the L,
discrepancy exhibits some disadvantages, as pointed out by
Hickernell (1998). For example, it suffers from the projec-
tion uniformity over all subdimensions. To overcome these
disadvantages, Hickernell proposed three new measures of
uniformity that are also related to the L, norm—anamely, the
symmetric L discrepancy (SL;), the centered L, discrep-
ancy (CL;), and the modified L, discrepancy (M L,). All
three discrepancies satisfy a Koksma-Hlawka type inequal-
ity; that is, each discrepancy has its corresponding measure
of variation replacing V'(f) in (1.6).

Let us introduce these three discrepancies more precisely.
Let N(x,P,) denote the number of points of P, falling
into the region [0,x) = {y € C°|0 < y; < z;,1 < i < s}
and v(B), the volume of B C C°. Now, we can rewrite
(2.2) as

P 1/p
Dy (Pp) = [/c lﬂ’—%—?—’ﬁ - dx} . (4.2

The modified L, discrepancy is then defined by

5o |5 [

where u is a nonempty subset of S = {1,...,s}, |u| de-
notes cardinality of u, C* is the |u|-dimensional unit cube
involving the coordinates in u, Jx is a rectangle uniquely
determined by x, Jx, is the projection of J; on C%, and
N(Jy,,P) is the number of points of P falling in Jy,. Ob-
viously, for the original discrepancy the origin 0 plays a
specific role in the set of all vertices of C®. The centered L,
discrepancy puts all vertices into the same situation. Con-
sequently, this discrepancy and its measure of variation are
obtained from (4.3) by a modification such that it becomes
invariant under reflections of P, around any plane z; = .5.
In its definition [cf. (4.3)] and in the definition of N(x, P,),
we replace [0, x) by

v([0,%))

1/p
N(J"u’ N P) _yir) dxu} 43

J(a: X) = {y € CSI min(a’j7xj)

< y; < max(a;,z;), forl<j<s}),

where a = (ay,...,a,) is a vertex of C°. For the centered
L, discrepancy, Hickernell (1998) gave an analytical ex-
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pression similar to (4.1) as follows:
13 2o T
(CL2(Pn))? = ( ) - Z ( = |zK; — -5
k=1 j=1
1
=3 lokg - -5!2>

n L]

;}2-}: > H{l-i—-;—]xki—ﬁ}

k=1 j=1 i=1
1 1,
+ § lxji - 51 e 5 iﬂ?ki - Ijil] . (44)

The symmetric L, discrepancy and its measure of vari-
ation are modified such that they are invariant if ‘zj; is
replaced by 1 — xx; for any j,1 < j < s. The construction
is based on reproducing kernel Hilbert spaces and results
in the following computational formula for the symmetric
L, discrepancy:

sz = (3)

n s
-% Z H (1+2xkj—2xij)

k=1 j=1
%5 S5 T b=tz =zl (45)
k=1 j=1 i=1

Finally, the modified L, discrepancy and its measure of
variation are modified from (4.2) to (4.3) with Jy = [0,x)
such that the projection uniformity over all subdimensions
can be considered. The modified L, discrepancy also has a
formula similar to (4.1):

ol—s T s

n ZH'?’ xkl)

k=1 I=1

(MLaPa) = (5) -

s

lfz’ Z Z H [2 — max(zx:i, zj5)]. (4.6)

k=1 j=1 i=1

3

5. CONSTRUCTION ALGORITHMS

The concept of U-type designs can be straightforwardly
generalized to the case in which the number of experiments
n is a multiple of the number of levels g. Then, the nota-
tion Uy, (¢°) is used. Our conjecture is that uniform designs
for a suitable measure of uniformity will be orthogonal.
Hence, after introducing some measures of nonuniformity,
we turn to the problem of finding a uniform design U, (¢°)
under some measure of nonuniformity M given the param-
eters (n,g). We choose the discrepancy (2.3), the common
L, discrepancy (4.1), the centered L, discrepancy (4.3),
the symmetric L, discrepancy (4.4), and the modified L,
discrepancy (4.5) as measures of nonuniformity M to be
considered. We shall denote them by D, D,, CL4, SL,, and
M Lo, respectively.

First, we describe a deterministic and constructive algo-
rithm, the forward procedure (FP), which gives some insight
into the computational problem. Then, the application of
the threshold-accepting (TA) algorithm for the purpose of
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finding UD’s is introduced. It does not rely on constructive
principles but represents a purely global optimization tech-
nique on a discrete space. As the results in Section 6 will
show, however, it is much more powerful for this problem
than the forward procedure.

5.1 The Forward Procedure

For illustration we employ Uss(4%). Without loss of gen-
erality, we can always choose the first column to be (1 1 1
122223333444 4). Now, the algorithm proceeds
along the following steps:

Step 1. Find the second column with four 1s, 2s, 3s, and
4s such that the design formed by these two columns has
the minimum M value. Let £ = 2.

Step 2. For fixed first t columns find the (¢ + 1)st column
with four 1s, 2s, 3s, and 4s such that the design formed by
all t + 1 columns has the minimum M value. Let ¢ = ¢ + 1.

Step 3. If t = 6, the procedure is finished and the design
obtained in the previous step is the final solution; otherwise
go back to Step 2.

Note that the value ¢ is always one more than the number
of design columns. It is easy to extend this algorithm to the
general case U, (q; x --- X ¢s). This algorithm gives a local
minimum solution and provides a nearly uniform design in
most cases. '

5.2 The Threshold-Accepting Heuristic

Because a detailed description of the TA heuristic and
its implementation and tuning for problems similar to the
one of finding UD’s can be found elsewhere (see Dueck
and Scheuer 1991; Winker 1995; Winker and Fang 1997,
1998), we will sketch the central ideas and a few hints on
the interpretation of the results presented in Section 6 and
by Fang and Winker (1998, appendix).

TA is a refined local search algorithm sharing some
common features with the more widely used simulated
annealing algorithm. In our application it acts on the
set of all U-type designs for the given parameter values
(n,$;q1,-..,4s), which we denote by Uy, s.q,,.. 4, or U for
simplicity. Some local structure is introduced on this set

by the definition that two U-type designs are close to one-

UNIFORM DESIGN

another (belong to a common neighborhood) if and only if
the second can be obtained from the first by exchanging
a maximum of X elements, where A is some fixed positive
integer. Thereby only elements within the same column can
be exchanged to stay within I/. Now, the algorithm can be
described as follows:

Step 1. Choose randomly any U-type design X, € I/ and
set the threshold parameter T to its start value Tp.

Step 2. Choose randomly any U-type design X,, close
to X, in the sense just defined (for given )) and calculate
AM = M(X,) - M(X.) for the given measure of nonuni-
formity M.

Step 3. If AM < T, set X, = X, else leave X un-
changed. :

Step 4. Repeat Step 2 and Step 3 a fixed number of times.

Step 5. If the given threshold sequence is not yet ex-
hausted, take the next threshold value and repeat Step 2 to
Step 4.

The result of this algorithm is the design with the mini-
mum value of the discrepancy measure M. Of course, the
performance of this algorithm depends on the choice of a
specific local structure by the value of A, the predefined
sequence of threshold values T3, and the total number of
iterations (iterations in Step 4 times the number of differ-
ent threshold values). For the application to Ug(4%), we
found A = 3 (in fact, admitted exchanges were restricted
to a subset of all possible cases) and a total number of it-
erations of 500,000 to be reasonable values. The threshold
sequence was generated from a first exploratory data anal-
ysis as described by Winker and Fang (1997). In particular,
the threshold sequence is monotonically decreasing to 0 as
the algorithm proceeds. Thus, in the beginning, a temporary
increase of M is accepted to escape local minima corre-
sponding to designs with high discrepancy, but at the end
only improvements (i.e., a reduction of the discrepancy) are
accepted.

Before turning to the results, two final remarks on the TA
are in order. First, the natural restriction on the first or even
the first two columns of the design as depicted in Tables
4 and 5 were not imposed because they did not improve

Table 4. L(4°) and Uys(4°) Designs Generated by Forward Procedure

Row (1) 2) (L3) (L4) (Ls (Dg) (D; (Dg) (S, C, M3) (C, S4) (S5) (C5) (M4) (M5)
1 1 1 1 1 1 4 3 3 - 4 4 3 3 4 2
2 1 2 2 2 2 2 1 2 2 2 4 4 1 3
3 1 3 3 3 3 1 4 4 3 1 2 1 2 1
4 1 4 4 4 4 3 3 3 1 3 3 2 3 4
5 2 1 2 3 4 1 2 3 1 1 2 4 2 3
6 2 .2 1 4 3 . 3 4 1 3 3 2 3 3 2
7 2 3 4 1 2 3 2 4 2 4 1 2 4 4
8 2 4 3 2 1 4 4 1 4 2 1 1 1 1
9 3 1 3 4 2 2 4 4 3 2 1 2 1 4

10 3 2 4 3 1 4. 1 2 1 4 4 1 4 1
11 3 3 1 2 4 2 3 1 4 3 4 4 3 3
12 3 4 2 1 3 1 1 2 2 1 4 3 2 2
13 4 1 4 2 3 3 1 2 2 3 3 1 3 1
14 4 2 3 1 4 1 3 4 4 1 3 2 2 4
15 4 3 2 4 1 4 2 1 1 2 1 3 1 2
16 4 4 1 3 2 2 2 3 3 4 2 4 4 3
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Table 5. Ujs(4®) Designs Generated by Threshold Accepting

Row (1) 2) (D3) (D3) (D3) (S3) (C. 54) (85) (C3) {C4) (C5) (M3) (M4) (M5)
1 1 1 4 3 3 2 1 2 3 1 2 2 3 3
2 1 2 2 1 2 1 3 4 4 4 4 4 4 1
3 1 3 1 4 4 4 4 3 2 2 1 3 2 2
4 1 4 3 3 3 3 2 1 1 3 3 1 1 4
5 2 1 1 2 3 3 4 2 1 2 4 4 2 4
6 2 2 3 4 1 4 1 3 2 3 2 2 1 2
7 2 3 3 2 4 1 3 1 4 1 3 1 3 1
8 2 4 4 4 1 2 2 4 3 4 1 3 4 3
9 3 1 2 4 4 3 2 4 4 3 1 3 1 1
10 3 2 4 1 2 4 3 1 3 2 3 1 2 3
11 3 3 2 3 1 1 1 3 1 4 2 2 4 4
12 3 4 1 1 2 2 4 2 2 1 4 4 3 2
13 4 1 3 1 2 2 2 1 2 4 3 1 4 2
14 4 2 1 3 4 1 4 3 1 1 1 3 3 4
15 4 3 4 2 1 4 3 4 3 3. 4 4 1 3
16 4 4 2 2 3 3 1 2 4 2 2 2 2 1

the efficiency of the implementation. Second, although it is
an optimization heuristic, TA will eventually—that is, with
the number of iterations going to infinity——converge with a
probability as close to 1 as one likes and to a solution as
close to the global optimum as one needs. For a proof of this
global convergence property, see Althofer and Koschnick
(1991).

6. NUMERICAL RESULTS

As a first instance for a test of these two algorithms
(FP and TA) and our hypothesis on the connection be-
tween uniformity and orthogonality, we use U;6(4%). The
results are given in Tables 4 and 5. We denote the de-
signs obtained by FP with FD,, ES, FC, and FM, and
the results obtained by TA with TD,, TS, TC, and TM,
respectively, where Dy, S, C, and M stand for the differ-
ent Lo discrepancies Dz, C Ly, SLo, and M L, introduced in
Section 4.

Table 4 presents the designs obtained by FP, and the re-
sults for TA are contained in Table 5. By rearranging rows
and columns, the first two columns can be made identi-
cal for all cases that we have listed in columns (1) and (2).
Columns (L3), (L4), and (L5) in Table 4 show the last three
columns of the canonical orthogonal design L;(4%) given
in many textbooks. Columns (D3), (D3), and (D3) give the
last three columns of the design obtained by FP under Ds,.
The third columns of Uy under SL,, CL2, and M L, are the
same and are given by the column with heading (S, C, M 3).
Similarly, column (C, S4) gives the fourth column of Uss

under CL, and SL,. The other columns of Table 4 show the
fourth and fifth columns of Uj under C Ly, SL,, and M Lo,
respectively. In Table 5, corresponding notation is used for
the designs obtained by TA under the preceding four Lo
discrepancies.

Tables 6 and 7 summarize the D, Dy, SLy, C Lo, and M L,
values for all the designs listed in Tables 4 and 5. Again,
in the first column the letter F denotes designs obtained by
the FP, and designs marked with T were generated by TA.
Finally, the canonical orthogonal design given in Table 4 is
labeled with an O. As before, D;, S, C, and M stand for
the four Lo-type measures of nonuniformity Dy, SLy, CLo,
and M Lo, respectively. The last figure indicates how many
columns of the design have been considered. For example,
FD25 means the design with five columns obtained by FP
under D,. TS5 is the design with five columns obtained
by TA under SL,. For each of these designs, the discrep-
ancy D and the four L-type discrepancies (Do, SLa, CLs,
and ML) are calculated. The last two columns of the ta-
ble indicate whether the corresponding design is DO or at
least CO.

Let us first look at the results in Table 6. We find the
following:

1. All nine designs (from O5 to TM5) have the same
discrepancy (D). Only some of them are DO. That means
that the discrepancy is not sensitive enough to distinguish
different designs with regard to their orthogonality. There-

Table 6. Comparison Among Uys(4°) (full dimension)

Meas. D Dz SLp CLp ML, DO co
05 4871 00244 .9807 .0428 0944 Y Y
FDo5 4871 .00076 1.067 .0515 .1059 N N
FS5 4871 .00093 8854 0447 0972 N Y
FC5 4871 .00091 9523 0425 0928 Y Y
FM5 4871 .00081 9524 0425 0921 Y Y
TD:5 4871 .00066 9843 .0483 0999 N N
TS5 4871 00083 .8389 .0450 0979 Y Y
TCS 4871 .00083 .8822 0417 0816 Y Y
TM5 4871 .00083 .8962 .0421 0814 Y Y
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Table 7. Comparison Among U,s(4%) (lower dimension)

Meas. D D> SL, Cls MLz DO co
2-dim. 2344 .00357 .0571 0114 .0140 Y Y
0023 3301 00211 1348 0189 0284 Y Y
083 .3301 00211 1348 .0189 0284 Y Y
ocs3 3301 00211 .1348 0189 .0284 Y Y
OoM3 3301 .00211 1348 0189 .0284 Y Y
FD,3 .3301 00209 .1407 0192 .0286 N N
FS3 .3301 00211 .1348 .0189 .0284 Y Y
FC3 3301 00211 .1348 0189 0284 Y Y
FM3 .3301 00211 .1348 0189 0284 Y Y
TD,3 3301 00237 .1539 .0202 0299 N N
TS3 3301 .00227 .1466 0185 0291 Y Y
TC3 3301 .00216 .1390 0180 .0285 Y Y
TM3 3301 .00223 1426 0180 .0286 Y Y
OD>4 4138 .00144 3345 .0285 .0521 Y Y
0S54 4138 .00144 3345 .0285 .0521 Y Y
oc4 4138 00144 3345 .0285 .0521 Y Y
OM4 4138 .00144 .3345 0285 .0521 Y Y
FDo4 4138 00119 3813 .0309 0541 N N
FS54 .4138 00128 3311 0284 .0519 N Y
FC4 4138 .00128 - 3311 0284 0518 Y Y
FM4 4138 .00124 3311 .0284 0519 Y Y
TD4 4138 00125 4380 .0330 0573 N N
TS4 4138 .00138 .3523 .0307 .0550 Y Y
TC4 4138 00135 .;3531 0288 0524 Y Y
TM4 4138 .00128 .3584 0289 0524 Y Y

fore, the discrepancy is not suitable for the purpose of this
article.

2. The designs obtained by FP and TA under the stan-
dard L, discrepancy (D) and the symmetric L, discrep-
ancy (SLjy) are not DO, the latter being CO, whereas the
designs generated by both algorithms under CL; and ML
are DO.

3. If we look at the designs OS5, FS5, TS5, TCS, and
TMS5 that are orthogonal, the canonical orthogonal design
(O5) exhibits the largest D, value. Looking at the other
three measures of nonuniformity, we might conclude that
the canonical orthogonal design (O5) is not the best one.
For example, the designs TC5 and. TAM5 have lower values
than the orthogonal design under all measures. It is difficult
to give a ranking of the other four orthogonal designs F.55,
TS5, TC5, and TM5. The best value for each measure,
however, is always related to a design generated by TA.

4. To summarize our comparison of the full-dimensional
cases, we might say that TA beats FP.

Now, let us study the two-dimensional cases. In the two-
dimensional case all the methods produce the same design
that is orthogonal. The first row of Table 7 gives its dis-
crepancies. Following this line, three blocks of Table 7 show
three-dimensional results from the canonical orthogonal de-
sign, the FP and TA. We find that three different columns of
the orthogonal design may have different discrepancies. For
fair comparisons, we choose the best result of all six possi-
ble choices in Table 8 to put in Table 7. Similarly, we choose
the best three columns of TD,, TS, TC, and TM and put
their discrepancies into Table 7. The designs obtained by FP
automatically give the required results. This is because in
each step, FP only adds the column that results in minimum
discrepancy. Similarly, we get another three blocks for the
four-dimensional case. From these results we conclude the
following:

1. In the low-dimensional cases, the FP very often gives
better results than TA that is based on the full design. If we
run TA directly on the low-dimensional problem, however,

Table 8. Discrepancies of Lower-Dimensional Projections of O5

Columns Dg SLz CLz MLz DO cO
01, 2,3) .00278 1778 .01959 .0291 Y Y
01, 2, 4) .00223 1426 .013504 .0286 Y Y
O(1, 2, 5) .00223 1426 01904 .0286 Y Y
02, 3, 4) 00211 .1348 .01892 0284 Y Y
0(2, 3, 5) 00211 .1348 01892 .0284 Y Y
0(3, 4, 5) 00211 .1348 .01892 .0284 Y Y
0(1, 2, 3, 4) .00174 3949 .02840 .0533 Y Y
0(1,2,3,5) .00174 .3949 02940 0533 Y Y
01, 2, 4, 5) 00174 3948 02940 0533 Y Y
0(2, 3, 4,5) 00144 3345 02846 .0521 Y Y
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it can always provide designs with smaller discrepancy than
FP. The reason is that FP searches only a small fraction of
the possibilities, due to its sequential generation, whereas
TA can freely move over all possible designs.

2. Comparing the standard OD and the new UD’s we find
that (a) O35 has a poor L. discrepancy, and (b) combining
results on SLo,CLo, and M L, discrepancies, the perfor-
mance of the standard OD is, in general, acceptable.

From the results on Us(4®), we find that orthogo-
nality of the design can be induced by uniformity. Is
it true for other designs? Following our approach for
Uj6(4®), we applied the TA algorithm to several designs
such as U;(2%), Us(27), Us(21%), Ur2(2), Us(3*), Us2(3 x
23),Ure(4 x 212),U16(4® x 2°),Ure(4® x 26),Us6(4* x
23),U1g(2 x 37), and Uzs(5%) under the three discrepan-
cies SLy,CLs, and M L,. The related results were given
by Fang and Winker (1998). We can summarize our find-
ings as follows:

1. Most (nearly) uniform designs obtained by TA under
SLy,CLy, and ML, are orthogonal (at least CO) and are
different from the standard orthogonal design, whose first
row has all level 1s.

2. The three uniform designs obtained under the differ-
ent measures of nonuniformity are often different, although
they are all orthogonal. This fact raises the question of how
to choose a suitable orthogonal design for a specific exper-
iment.

Our initial guess that UD’s under suitable measures of
uniformity may be orthogonal is not contradicted by our
findings for the problems we have studied so far. Hence,
we will formulate our guess in the following conjecture.

Conjecture. For given parameters (n,s;qi,...,qs), the
corresponding UD under one of the three discrepancies
SLy,CLy, and ML, is also an OD, if the OD with
(n,s;,91,-.-,qs) EXists.

7. CONCLUDING REMARKS

A UD seeks design points that are uniformly scattered
on the domain. It has been popularly used since 1980 (Fang
1980). Apart from the application examples given previ-
ously (mostly-on computer experiments), the UD has been
applied to other areas, as we shall discuss. We anticipate
more UD applications in the future. As a summary, we list
the following steps for the use of UD’s.

1. Choose the factors and the experimental domain; de-
termine a suitable number of levels for each factor.

2. Choose a suitable UD table related to the number of
factors and levels.

3. Record the responses of experiments implemented ac-
cording to the UD. v

4. Use regression analysis to establish a regression model
(1.3) that fits the experimental data well.

5. Find the “best” combination of the factor values that
maximizes/minimizes the response and verify the claim
with further experiments.
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Each step may involve various difficulties. For example,
finding a suitable regression model in Step 4 is a nontrivial
problem.

Experiments with mixtures often appear in the design of
food, chemical, and metallurgical products (e.g., see Cornell
1990). A design of experiments with mixtures is a set of
points over the domain Ts = {(z1,...,2,):0< z; < 1,5 =
1,...,8,21 + ---+ z, = 1}. The so-called UD of experi-
ments with mixtures suggests uniformly scattering the ex-
perimental points on the simplex 7. Fang and Wang (1994)
proposed a method of generating UD of experiments with
mixtures by the inverse transformation method.

One purpose of quality engineering is to produce a prod-
uct that is robust with respect to noise factors. Robust-
ness implies that the product’s functional characteristics are
not sensitive to variation caused by noise factors. Taguchi
(1986) suggested two orthogonal designs, the inner table
and the outer table for selecting the levels of the inner ar-
ray factors to minimize the effect of the noise (outer array)
factors. Let L,,(p") and L,,(g°) be the inner and outer ar-
rays in a parameter design. The total number of experiments
required is IV = nm. It is known that n and m are not small
when p and g are moderate. As a result, the total number NV
is large. This is one major weakness of Taguchi’s approach
(Taguchi 1986). Instead, we use two UD designs, U, (nT)
and Up,, (ml), to replace L,(p") and L.,(g%), respectively.
The total number of experiments becomes N, = n,m.,,
which can be significantly smaller than N. Several authors
have applied this idea to their work. Using UD to design
outer-array points, in fact, was recommended by Wang, Lin,
and Fang (1995).

In this article we also find that several orthogonal de-
signs can be obtained by a unified method that minimizes a
measure of nonuniformity over all related U-type designs.
Definition 2 implies that the one- and two-dimensional pro-
jections of an orthogonal design are uniform in the sense
that all elements appear the same number of times, whereby
“elements” in the two-dimensional case means “pairs.” Fur-
thermore, UD’s share the first property by Definition 2;
that is, the one-dimensional projections are uniform in the
sense that each element appears with the same frequency in
each column. Instead of the second property, they exhibit
s-dimensional uniformity. Hence, our results imply that the
one-dimensional projection property and s-dimensional uni-
formity together may imply the two-dimensional projec-
tion property. We might expect to find new orthogonal de-
signs by the proposed approach if the computer is powerful
enough to generate uniform designs using the TA heuristic.
The related theory will be investigated in the future.

A related problem consists of finding saturated (super-
saturated) designs. These are designs for which the number
of experiments equals (is less than) the number of param-
eters to be estimated. Several works, such as those of Lin
{1993a,b, 1995) and Mukerjee and Wu (1995), have dis-
cussed how to find saturated and supersaturated designs.
We believe that the approach given in this article can be
applied to construct new and useful saturated (supersatu-
rated) designs.
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