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1. AGRICULTURAL AND INDUSTRIAL EXPERIMENTS

Industrial management is becoming increasingly aware of the benefits of
running statistically designed experiments. Statistical experimental designs,
developed by Sir R. A. Fisher in the 1920s, largely originated from agricul-
tural problems. Designing experiments for industrial problems and design-
ing experiments for agricultural problems are similar in their basic concerns.
There are, however, many differences. The differences listed in Table 1 are
based on the overall characteristics of all problems. Exceptions can be found
in some particular cases, of course.

Industrial problems tend to contain a much larger number of factors
under investigation and usually involve a much smaller total number
of runs.

Industrial results are more reproducible; that is, industrial problems con-
tain a much smaller replicated variation (pure error) than that of agri-
cultural problems.

Industrial experimenters are obliged to run their experimental points in
sequence and naturally plan their follow-up experiments guided by
previous results; in contrast, agricultural problems harvest all results
at one time. Doubts and complications can be resolved in industry by
immediate follow-up experiments. Confirmatory experimentation is
readily available for industrial problems and becomes a routine
procedure to resolve assumptions.
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Table 1 Dillerences Between Agncultural and Industial Experiments

Subject Agriculture Industry
Number of factors Small Large
Number of runs Large Small
Reproducibility Less likely More likely
Time taken Long Short
Blocking Nature Not obvious
Missing values Often Seldom

The concept of blocking arose naturally in agriculture but often is not
obvious for industrial problems. Usually, industrial practitioners need
certain specialized training to recognize and handle blocking variables.

Missing values seem to occur more often in agriculture (mainly due to
natural losses) than in industry. Usually, such problems can be avoided
for industrial problems by carrying out well-designed experiments.

The supersaturated design method considered in this chapter suggests
one kind of screening method for industrial problems involving a large
number of potential relevant factors. It may not be an appropriate proposal
for some agricultural problems.

2. INTRODUCTION

Consider the simple fact that where there is an effect, there is a cause.
Quality engineers are constantly faced with distinguishing between the
effects that are caused by particular factors and those that are due to
random error. The “null” factors are then adjusted to lower the cost; the
“non-null” (effective) factors are used to yield better quality. To distinguish
between them, a large number of factors can often be listed as possible
sources of effects. Preliminary investigations (e.g., using professional knowl-
edge) may quickly remove some of these “candidate factors.” It is not
unusual, however, to find that more than 20 sources of effects exist and
that among those factors only a small portion are actually active. This is
sometimes called “effect sparsity.” A problem frequently encountered in this
area is that of how to reduce the total number of experiments. This is
particularly important in situations where an individual run is expensive
(e.g., with respect to money or time). With powerful statistical software
readily available for data analysis, there is no doubt that data collection is
the most important part of such problems.
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To obtain an unbiased estimate of the main effect of cach factor, the
number of experiments must exceed (or at least be cqual to) the number of
factors plus one (for estimating the overall grand average). When the two
numbers are equal. the design is called a saturated design: it is the minimum
effort required to estimate all main effects. The standard advice given to
users in such a screening process is to use the saturated design. which is
“optimal™ based on certain theoretical optimality criteria. However. the
nonsignificant effects are not of interest. Estimating all main effects may
be wasteful if the goal is simply to detect the few active factors. If the
number of active factors is indeed small. then the use of a slightly biased
estimate will still allow one to accomplish the identification of the active
factors but significantly reduce the amount of experimental work.
Developing such screening designs has long been a well-recognized problem.
certainly since Satterthwaite (1959).

When all factors can be reasonably arranged into several groups, the
so-called group screening designs can be used (see. e.g.. Watson, 1961). Only
those factors in groups that are found to have large effects are studied
further here. The grouping scheme seems to be crucial but has seldom
been discussed. The basic assumptions (such as assuming that the directions
of possible effects are known). in fact. depend heavily on the grouping
scheme. While such methods may be appropriate in certain situations
(e.g., blood tests). we are interested in systematic supersaturated designs
for two-level factorial designs that can examine k factors in N <k +1
experiments in which no grouping scheme is needed. Recent work in this
area includes. for example. that of Lin (1991. 1993a. 1993b. 1995, 1998).
Tang and Wu (1997). Wu (1993). Deng and Lin (1994). Chen and Lin
(1998). Cheng (1997). Deng et al. (1994, 1996a. 1996b). Yamada and Lin
(1997) and Nguyen (1996).

3. SUPERSATURATED DESIGNS USING HADAMARD
MATRICES

Lin (1993a) proposed a class of special supersaturated designs that can be
easily constructed via half-fractions of the Hadamard matrices. These
designs can examine k = N — 2 factors with 7 = N/2 runs. where N is the
order of the Hadamard matrix used. The Plackett and Burman (1946)
designs. which can be viewed as a special class of Hadamard matrices. are
used to illustrate the basic construction method.

Table 2 shows the original 12-run Plackett and Burman design. It we
take column 11 as the branching column. then the runs (rows) can be split
into two groups: group I with the sign of + 1incolumn 11 (rows 2.3.5.6.7.
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lf;ble 2 A Supersaturated Design Derived trom the Hadamard Matrix of Order

Run Row | 2 3 4 5 6 7 8 9 10 11
1 + + — + + + - — - + -
1 2 + — + + + - - - + - +
2 3 - + + + - - - + — + +
4 + + + - - -+ -+ 4+ -
3 5 4+ + - - - + - 4+ o+ = o+
4 6 + — — — + - + + — + +
5 7 - - + - + + - + + +
I - + - + + - + + + -
9 — + - + + - + + + - -
111 e T T S —
6 11 - + + — + + + - - - +
12 - - — - - - - - -

and 11) and group II with the sign of —1 in column 11 (rows I, 4. 8. 9. 10,
and 12). Deleting column 11 from group I causes columns 1-10 to form a
supersaturated design to examine N — 2 = 10 factors in N/2 = 6 runs (runs
1-6, as indicated in Table 2). It can be shown that if group II is used. the
resulting supersaturated design is an equivalent one. In general, a Plackett
and Burman (1946) design matrix can be split into two half-fractions
according to a specific branching column whose signs equal +1 or —1.
Specifically, take only the rows that have +1 in the branching column.
Then, the N — 2 columns other than the branching column will form a
supersaturated design for N —2 N —2 factors in N/2 runs. Judged by a
criterion proposed by Booth and Cox (1962), these designs have been shown
to be superior to other existing supersaturated designs.

The construction methods here are simple. However, knowing in
advance that Hadamard matrices entertain many ‘“good” mathematical
properties, the optimality properties of these supersaturated designs deserve
further investigation. For example, the half-fraction Hadamard matrix of
order n = N/2 = 4t is closely related to a balanced incomplete block design
with (v, b, 1, k) = (2t — 1,41 — 2,2t = 2, t — 1) and A =t — 1. Consequently.
the E(s*) value (see Section 4) for a supersaturated design from a half-frac-
tion Hadamard matrix is n°(n — 3)/[(2n — 3)(n — 1)], which can be shown to
be the minimum within the class of designs with the same size. Potentially
promising theoretical results seem possible for the construction of a half-
fraction Hadamard matrix. Theoretical implications deserve detailed
scrutiny and are discussed below. For more details regarding this issue.
please consult Cheng (1997) and Nguyen (1996).
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Note that the interaction columns of Hadamard matrices are only
partially confounded with other main-cffect columns. Wu (1992) makes
use of such a property and proposes a supersaturated design that consists
of all main-effect and two-factor interaction columns from any given
Hadamard matrix of order N. The resulting design has N runs and can
accommodate up to N(N — 1)/2 factors. When there are A < NNV - 2
factors to be studied. choosing columns becomes an important issue to be
addressed.

4. CAPACITY CONSIDERATIONS

As mentioned. when a supersaturated design is used. the abandonment of
perfect orthogonality is inevitable. The designs given in Lin (1993a) based
on half-fractions of Hadamard matrices have a very nice mathematical
structure but can be used only to examine N —2 factors in N/2 runs,
where A is the order of the Hadamard matrix used. Morcover. these designs
do not control the value of the maximal pairwise correlation r. and. in fact.
large values of r occur in some cases.

Consider a two-level k-factor design in n observations with maximal
pairwise correlation r. Given any two of the quantities (n. k. r). Lin (1995)
presents the possible values that can be achieved for the third quantty.
Moreover. designs given in Lin (1995) may be adequate to allow examina-
tion of many prespecified two-factor interactions. Some of the results are
summarized in Table 3.

Table 3 shows the maximum number of factors. k.. that can be
accommodated when both n and r are specified for 3 <n < 2Sand 0 -
1/3 (Table 3a for even n and Table 3b for odd n). We see that forr = 1/
many factors can be accommodated. For fixed . as the value of rincreases.
kmax also increases. That is. the larger the nonorthogonality. the more fac-
tors can be accommodated. In fact. Ky, increases rapidly in this setting.
Certainly the more factors accommodated. the more complicated are the
biased estimation relationships that occur. leading to more difficulty in data
analysis. On the other hand. for fixed r. the value of k.. increases rapidly as
n increases. For r < 1/3. one can accommodate at most 111 factors in I8
runs or 66 factors in 12 runs: for r < 1/4. one can accommodate 42 factors
in 16 runs: for r < 1/5. one can accommodate 34 factors in 200 runs.
Provided that these maximal correlations are acceptable. this can be an
efficient design strategy. .
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|8ble 3 delmal Nun]ber Of acto N
] IS ] ()u]\d k as a ] unction oI n ar (l Hr
P - - / max» nction f 1 1 1,

(a) Even n

Number of runs »n i
Maximum absolute cross product, nr = |¢/ ¢l

0 2 4 6 g
4 3
6 — 10
8 7 _
10 — 12
12 1 — 66
14 — B — 13
16 15 42
18 17— 11
20 19 — 34
2 — 20 — Sy R
24 23 - 33 — 276

(b) Odd n

Number of r i
uns n Maximum absolute cross product, nr = lc,-/cjl

1 3 5 7
3 3
5 4
7 7 15
9 7 12
1 11 14
13 12 14
15 15 15 37
17 15 17 50
19 19 19 33
21 19 19 34 92
23 23 23 33 94
25 23 23 32 76
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5. OPTIMALITY CRITERIA

When a supersaturated design 1s emploved. as previously mentioned. the
abandonment of orthogonality is inevitable. It is well known that fack of
orthogonality results in lower efficiency: therefore we seek a design that is as
“nearly orthogonal™™ as possible. One way to measure the degree of non-
orthogonality between two columns. ¢; and ¢;. is to consider their cross-
product. s;; = cie;nalarger [s;) implies less orthogonality. Denote the largest
|s;| among all pairs of columns for a given design by s. and we desire a
minimum value for s (s = 0 implies orthogonality). The quantity s can be
viewed as the degree of orthogonality that the experimenter is willing to give
up—the smaller. the better. This is by nature an important criterion. Given
any two of the quantities (11, k.s). it is of interest to determine what value
can be achieved for the third guantity. Some computational results were
reported by Lin (1995). No theoretical results are currently available, how-
ever. It is believed that some results from coding theory can be very helptul
in this direction. Further refinement is currently under investigation.

If two designs have the same value of 5. we prefer the one in which the
value of |s;;| = s is a minimum. This is intimately connected with the expee-
tation of s-. E(s%). first proposed by Booth and Cox (1962) and computed
asZsfﬁ/(ﬁ), where f; is the frequency of s, among all (l,\,) pairs of

columns.

Intuitively. E(s7) gives the increment in the variance of estimation arising
from nonorthogonality. It is. however. a measurement for pairwise relation-
ships only. More general criteria were obtained by Wu (1993) and Deng ¢t
al. (1994. 1996b). Deng and Lin (1994) outlined eight criteria useful for
supersaturated designs: s = max lefegl: E(s°): p (Lin. 1995) Dy Ak
(Wu. 1993): B criterion (Deng et al. 1996a. 1996b): and r-rank (sec
Section 8). Further theoretical justification 1§ currently under study.
Optimal designs in light of these approaches deserve further imvestigations.
In addition. the notion of multifactor (non)orthogonality is closely related
to the multicollinearity in linear model theory.

6. DATA ANALYSIS METHODS

Several methods have been proposed to analyze the k effects. given only the
n(< k) observations from the random balance design contents (sce. ¢.g..
Satterthwaite. 1939). These methods can also be applied here. Quick meth-
ods such as these provide an appealing. straightforward comparison among
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factors, but it is questionable how much available information can be
extracted‘ using them; combining several of these methods provides a
more.satlsfying result. In addition, three data analysis methods for d\'m
resulting from a supersaturated design are discussed in Lin (1995): ‘( l()
normal plotting, (2) stepwise selection, and (3) ridge regression. '
. 'To study so many columns in only a few runs, the probability of a false
positive reading (type I error) is a major risk here. An alternative to the
forward seyec.tion procedure to control these false positive rates is as follows
Let N.T.- {it.iyy ... i} and A= {i, +1,...,i4+k} denote indexes of inert.
and active factors, respectively, so that NUA = {1....,k} = S. If X denotes
the n x p design matrix, our model is Y = u1 + X + ¢, where Y is the n x 1
observable data vector, u is the intercept term, 1 is an n-vector of 1's. Bis a
k x 1 fixed and unknown vector of factor effects, and € is the noise vec.tor 1;1
thg multiple hypothesis testing framework, we have null and alternat'ive
inui H;:p; =0 and H; : B; # 0 with H; true for j € N and H; true for
Fiorward selection {)roceeds by identifying the maximum F statistics at
successive stages. Let Fj“') denote the F statistic for testing H; at stage; s
Consequently, define ! N

Jr=arg _max F
J€S—{iiimn} !

where
(1) o, .
F{" = RSS(jlji. ... js-1)/MSE(G 1. ... js 1)

'Lelting.max F;” = FY the forward selection procedure is defined by select-
1ng.varlables Jir---+Jr, where FY < and FU*Y > . 1If FV > @, then no
variables are selected. ’

‘ The type I (false positive) error rate may be controlled by using the
achustq:{ p-z;)alue method (Westfall and Young, 1993). Algorithmically. at
stage j, if p¥’ > a, then stop; otherwise, enter X; and continue. This pljoce—
dure 0011§rols the type I error rate exactly at level & under the complete null
hypothesis since

P(Rejects at least one H;| all H; true) = P(F\V < /3“) =«

In addition, if the first s variables are forced and the test is used to
eva!uate the significance of the next entering variable (of the remainin;:; k—s
VzErmbles), the procedure is again exact under the complete null hypothesi;
of no effects among the & — s remaining variables. The exactness disappez;riﬂ
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with simulated p values. but the errors can be made very small. particularly
with control variates. The analysis of data from supersaturated designs
along this direction can be found in Westfall et al. (1998).

7. EXAMPLES

Examples of supersaturated designs as real data sets can be found in Lin
(1993. 1995). Here we apply the concept of supersaturated design to identify
interaction effects from a main-effect orthogonal design. This example is
adapted from Lin (1998). Consider the experiment in Hunter et al. (1982). A
12-run Plackett and Burman design was used to study the effects of seven
factors (designated here as A. B. ---. G) on the fatigue life of weld-repaired
castings. The design and responses are given in Table 4 (temporarily ignore
columns 8-28). For the details of factors and level values. see Hunter et al.
(1982).

Plackett and Burman designs are traditionally known as main-cffect
designs. because if all interactions can temporarily be ignored. they can be
used to estimate all main effects. There are many ways to analyze such a
main-effect design. One popular way is the normal plot [see Hamada and
Wu (1992). Figure 1]. Using this method. it appears that factor F is the only
significant main effect. Consequently a main-effect model is fitted as follows:
= 5.73 4 0.458F with R® = 44.5%.

Note that the low R is not very impressive. Is it safe to ignore the
interaction effects? Hunter et al. claim that the design did not generate
enough information to identify specific conjectured interaction effects. 1
this is not the case here. is it possible to detect significant interaction effects?
Hamada and Wu (1992) introduced the concept of effect heredity. After
main effects were identified. they used forward selection regression to iden-
tify significant effects among a group consisting of (1) the effects already
identified and (2) the two-factor interactions having at least one component
factor appearing among the main effects of those already identified. In this
particular example. a model for factor F and interaction FG was chosen:

i = 5.7+ 0.4358F — 0.459FG. R™ = 89% (1
Now. if we generate all interaction columns. AB. AC. ... FG. together with
all main-effect columns. A. B..... G.we have 7421 = 28 columns. Treat all

of those 28 columns in 12 runs as a supersaturated design (Lin. 1993) as
chown in Table 4. The largest correlation between any pair of the design
columns is £1/3. The results from a regular stepwise regression analysis
(with o = 5%, for entering variables) vields the model
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Table 4 The Cast Fatigue Experiment Data with Interaction Columns
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=573+ 0.394F — 0.395FG — 0.191AE. R® =95% (2)

ata than Eq. (). An application of the

a significantly better fit to the d
al. 1998) reaches the same conclusion

adjusted p-value method (Westfall. et

in this example.
Note that the AE interaction. in general. would never be chosen under

the effect heredity assumption. Of course. most practitioners may consider
adding main effects A. E. and G to the final model because of the signifi-
cance of interactions FG and AE. The goal here is only to identify potential
interaction effects. In general. for most main-cffect designs, such as Plackett
and Burman type designs (except for 247 fractional factorials). one can
apply the following procedure [see Lin (1998) for the limitations]:
Step 1. Generate all interaction columns and combine them with the
main-effect columns. We now have k(k + 1)/2 design columns.
Step 2. Analyze these k(k + 1)/2 columns with n experimental runs as a
supersaturated design. Data analysis methods for such a supersatu-

rated design are available.

Note that if the interactions are indeed inert. the procedure will work well.
and if the effect heredity assumption is indeed true. the procedure will end
up with the same conclusion as that of Hamada and Wu (1992). The pro-
posed procedure will always result in better (or equal) performance than

that of Hamada and Wu's procedure.

8. THEORETICAL CONSTRUCTION METHODS

Deng et al. (1994) proposed a supersaturated design of the form
X, = [H.RHC]. where H is a normalized Hadamard matrix. R is an ortho-
gonal matrix. and C is an n x (n—¢) matrix representing the operation of
column selection. Besides the fact that some new designs with nice propertics
can be obtained this way. the X, matrix covers many existing supersaturated
designs. This includes the supersaturated designs proposed by Lin (1993a).
Wu (1993). and Tang and Wu (1993). Some justifications of its optimal
properties have been obtained as follows.
It can be shown that

nl, EFRHC)

) nl,  WC
XX = (C'H'R'H nl,_. )

:(Cn”;mw
where W = H'RH = () = (h/Rh;) and h; is the jth column of H. Further.
the following theorem can be demonstrated.
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Theorem

Let H be a Hadamard matrix of order n and B=(b;,...,b,) be an n x r
matrix with all entries +1 and V = H'B = (v;) = h/b;. Then

I. Foranyfixed | <j<r nm =" .
2. In particular, let B=RH and W = H'RH = (w;). We have
a. (lq/n)W is an n x n orthogonal matrix. '
bl =30 = P W
c. w; is always a multiple of 4.
d. If H' is column-balanced, then £n = Y1 w; = 30 wy.

Corollary

For any R and C such that (1) R'R=1 and (2) rank (C)=n—c, all X,
matrices have an identical E(s®) value.

tl‘h?s implies that the popular E(s®) criterion used in supersaturated designs
is invariant for any choice of R and C. Therefore, it is not effective for
comparing supersaturated designs. In fact, following the argument in
Tang and Wu (1993), the designs given here will always have the minimum
E(s%) values within the class of designs of the same size. One important
feature of the goodness of a supersaturated screening design is its projection

gr?perty (see Lin 1993b). We thus consider the r-rank property as defined
elow.

Definition

Let X be a column-balanced design matrix. The resolution rank (or r rank.

for short) of X is defined as f = d — 1, where d is the minimum number
subset of columns that are linearly dependent.

The following results are provided by Deng et al. (1994).

1. If no column in any supersaturated design X is fully aliased, then
the r rank of X is at least 3.
2. nRh; =377 wih;.
3. Let W = H'D(h))H, where D(h;) is the diagonal matrix associated
with h;, namely, the /th column vector of H: and n = 4r. Then
a. Ifzis odd, then there can be exactly three 0’s in each row. or
each column, of W. The rest of w; can only be of the form
48k + 4, for some nonnegative integer k.
b. If tis even, then every entry w; in W can be of the form +8k.
for some nonnegative integer k.
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These results are only the first step. Extension of these results to a more
general class of supersaturated designs in the form Sy = (R{HC,. . ... Ry
HCy) is promising.

9. COMPUTER ALGORITHMIC CONSTRUCTION METHODS

More and more researchers are benefiting from using computer power to
construct designs for specific needs. Unlike some cases from the optimal
design perspective (such as D-optimal design). computer construction of
supersaturated designs is not well developed yet. Lin (1991) introduced
the first computer algorithm to construct supersaturated designs. Denote
the largest correlation in absolute value among all design columns by r. as
a simple measure of the degree of nonorthogonality that can willingly be
given up. Lin (1995) examines the maximal number of factors that can be
accommodated in such a design when r and n are given.

Al Church at GenCorp Company used the projection properties in Lin
and Draper (1992. 1993) to develop a software package named DOEO to
generate designs for mixed-level discrete variables. Such a program has been
used at several sites in GenCorp. A program named DOESS is one of the
results and is currently in a test stage. Dr. Nam-Ky Nguven (CSIRO.
Australia) also independently works on this subject. He uses an exchange
procedure to construct supersaturated designs and near-orthogonal arrays.
A commercial product called Gendex is available for sale to the public. as a
result. Algorithmic approaches to constructing supersaturated designs scem
to have been a hot topic in recent years. For example. Li and Wu (1997)
developed a so-called columnwise--pairwise exchange algorithm. Such an
algorithm seems to perform well for constructing supersaturated designs
by various criteria.

10. CONCLUSION

|. Using supersaturated designs involves more risk than using
designs with more runs. However. it is far superior to other experi-
mental approaches such as subjectively selecting factors or chang-
ing factors one at a time. The latter can be shown to have
unresolvable confounding patterns. though such confounding pat-
terns are important for data analysis and follow-up experiments.
2. Supersaturated designs are very useful in early stages of experi-
mental investigation of complicated systems and processes invol-
ving many factors. They are not used for a terminal experiment,
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Knowledge of the confounding patterns makes possible the inter-
pretation of the results and provides the understanding of how to
plan the follow-up experiments.

3. The success of a supersaturated design depends heavily on the
“effect sparsity™ assumption. Consequently, the projection prop-
erties play an important role in designing a supersaturated experi-
ment.

4. Combining several data analysis methods to analyze the data
resulting from a supersaturated design is always recommended.
Besides the stepwise selection procedure [and other methods men-
tioned in Lin (1993)], PLS (partial least squares), adjusted p value
(see Westfall, et al. (1998)), and Bayesian approaches are promis-
ing procedures for use in identifying active factors.

5. Another particularly suitable use for these designs is in testing
“robustness,” where the objective is not to identify important
factors but to vary all possible factors so that the response will
remain within the specifications.

REFERENCES

Booth KHV, Cox DR. (1962). Some systematic supersaturated designs.
Technometrics 4:489-495.

Chen JH, Lin DKIJ. (1998). On identifiability of supersaturated designs. J Stat
Planning Inference, 72, 99-107.

Cheng CS. (1997). E(s%)-optimal supersaturated designs. Stat Sini, 7, 929-939.

Deng LY, Lin KJ. (1994). Criteria for supersaturated designs. Proceedings of the
Section on Physical and Engineering Sciences, American Statistical
Association, pp 124-128.

Deng LY, Lin DKJ, Wang JN. (1994). Supersaturated Design Using Hadamard
Matrix. IBM Res Rep RC19470, IBM Watson Research Center.

Deng LY, Lin DKJ, Wang JN. (1996a). Marginally oversaturated designs. Commun
Stat 25(11):2557-2573.

Deng LY, Lin DKJ, Wang JN. (1996b). A measurement of multifactor orthogon-
ality. Stat Probab Lett 28:203-209.

Hamada M, Wu CF1J. (1992). Analysis of designed experiments with complex alias-
ing. J Qual Technol 24:130-137.

Hunter GB, Hodi FS, Eager TW. (1982). High-cycle fatigue of weld repaired cast Ti-
6A1-4V. Metall Trans 13A:1589-1594.

Li WW, Wu CFJ. (1997). Columnwise-pairwise algorithms with applications to the
construction of supersaturated designs. Technometrics 39:171-179.

Lin DKJ. (1991). Systematic supersaturated designs. Working Paper No. 264,
College of Business Administration, University of Tennessee.

Supersaturated Designs 319

Lin DKJ. (1993a). A new class of supersaturated designs. Technometrics 35:?% ._’vl.

Lin DKJ. (1993b). Another look at first-order saturated designs: The p-ctficient
designs. Technometrics 35:284-292. o . .

Lin DKI. (1998). Spotlight interaction effects in main-cffect designs. Quality
Engincering 11(1). 133 139, A ’ |

Lin DKJ. (1995). Generating systematic supersaturated designs. Technometnes
37:213 225 ‘

Lin DKJ. Draper NR. (1992). Projection properties of Plackett and Burman designs
Technometrics 34:423-428. ' o )

Lin DKJ. Draper NR. (1993). Generating alias relationships for two-level Plackett
and Burman designs. Comput Stat Data Anal 15:147 157:

Neuven N-K. (1996). An algorithmic approach to constructing supersaturated
designs. Technometrics 38:69-73. y . .
Plackett RL. Burman JP. (1946). The design of optimum multifactorial experiments.
Biometrika 33:303-325. . o .
Satterthwaite F. (1959). Random balance experimentation. Technometries 111

(with discussion). ‘ ‘ .
Tane B. Wu CFJ. (1997). A method for construction of supersaturated designs and
its E(s°) optimality. Can J Stat 25:191-201. ‘ o ‘ o
Westfall PH. Young SS. (1993). Resampling-Based Multiple Testing. New York:
Wiley. ‘ '
Westfall. PH. Young SS. Lin DKIJ. (1998). Forward selection error control in the
analysis of supersaturated designs. Stat Sin. 8. 101 17, . . ]
Watson. GS. (1961). A study of the group screening methods. Technometrics 3:371
388. ' ' .~ -
Wu CFJ. (1993). Construction of supersaturated designs through partially aliased
interactions. Biometrika 80:661-669. ‘

Yamada S. Lin DKJ. (1997). Supersaturated designs inctuding an orthogonal base.
Can J Stat 25:203-213. ‘ ) . .
Youden WJ. Kempthorne O. Tukey JW. Box GEP. Hunter JS. (1959). l)lscussmn—(m

“Random balance experimentation”™ by Satterthwaite. Technometries 1:157

184.

137



