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Abstract

New criteria of comparing multi-level supersaturated designs are proposed and their properties
are studied. A new class of multi-level supersaturated designs are obtained by collapsing a
U -type uniform design to an orthogonal array. A global optimization algorithm, the threshold
accepting algorithm, is then applied to search for the best supersaturated designs under any
prespeci�ed criterion. Examples show that these newly constructed supersaturated designs have
good modeling properties. c© 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

Many preliminary studies in industrial and scienti�c experimentation contain a large
number of potentially relevant factors, but often only a few are believed to have sig-
ni�cant e�ects. The goal is to identify these few active factors with a relatively small
number of runs. One approach is to use a supersaturated design where the number of
runs is smaller than the number of unknown parameters. Developing such screening
designs has received a great deal of attention: Satterthwaite (1959) proposed the idea
of supersaturated design in random balanced designs, Booth and Cox (1962) examined
these designs systematically. Lin (1993) provided a new class of supersaturated designs
based on half-fractions of Hadamard matrices. Nguyen (1996) described a method of
constructing supersaturated designs from balanced incomplete block (BIB) designs that
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is a generalization of Lin (1993). Wu (1993) augmented Hadamard matrices by adding
interaction columns. Some algorithms for constructing supersaturated designs have been
studied by many authors, for example, Lin (1991,1995), Li and Wu (1997), Yamada
and Lin (1997) and Nguyen (1996). However, all these authors considered only 2-level
designs. Designs with multi-levels are often requested in industrial and scienti�c ex-
perimentation for exploring nonlinear e�ects of the factors. Especially, designs with 3
levels have been widely used. Recently, Liu and Zhang (1997) proposed a method of
constructing 3-level supersaturated designs. But their method is far too complicated to
implement when the number of runs is large.
In this paper we study the problem of constructing multi-level supersaturated de-

signs. Several criteria related to orthogonality are de�ned for comparing supersaturated
designs. The de�nition of these criteria and their properties are studied in Section 2.
In Section 3 we propose a uni�ed way to construct multi-level supersaturated designs.
This method collapses a U -type design to an orthogonal array. A number of supersat-
urated designs are obtained by this method and compared with other existing designs.
Throughout the paper, we will use the popular notations; −1 and 1 for the elements
of a two-level factor and 0; : : : ; s− 1 for the elements of an s-level (s¿3) factor.

2. Some new criteria for comparing supersaturated designs

A design matrix X is called column-orthogonal if X ′X is a diagonal matrix. In a
column-orthogonal design, the parameters corresponding to each column of the design
can be estimated independently of other columns. The column orthogonality has been
used in constructing 2-level supersaturated designs. Suppose X is an n × m design
matrix of a design with n runs and m 2-level factors each with n=2 of +1 and −1
(for even n). Let sij be the (i; j)-element of X ′X . Column-orthogonality is equivalent
to all sij = 0 for all i 6= j. Many criteria for generating saturated and supersaturated
designs based on sij have been proposed. Booth and Cox (1962) suggested a criterion
to minimize

Ave (s2) =
∑
i¡j
s2ij

/(
m
2

)
:

The criteria

Ave|s|=∑
i¡j

|sij|
/(

m
2

)
;

smax = maxi¡j|sij| and the frequency of {sij =±smax} are also widely used (e.g., Lin,
1993,1995; Wu, 1993; Deng et al., 1999).
Two design columns xu and xv are called fully aliased if one column can be obtained

from another by permuting levels. We cannot use two fully aliased columns to accom-
modate two di�erent factors. For comparing multi-level designs, column-orthogonality
is not su�cient. For example, two fully aliased 3-level columns x1 = (0; 1; 2; 2; 0;
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1; 1; 2; 0)′ and x2 = (1; 2; 0; 0; 1; 2; 2; 0; 1)′, where x2 is obtained from x1 by permut-
ing levels (0; 1; 2) → (1; 2; 0), have correlation coe�cient −0:5, not ±1. An n × m
design matrix with n runs and m s-level factors is called a U-type design, denoted
by U (n; sm), if for each column all of its entries appear equally often. When level
s = n, we denote the U -type design by U (n; nm). A U -type design is called an
orthogonal design, denoted by Ln(sm), if every pair of design columns has all of
their level combinations appear equally often. In this case n is a multiple of s2.
We shall call such orthogonality combination-orthogonality to distinguish it from
column-orthogonality. Clearly, combination-orthogonality implies column-orthogonality
(column-orthogonality means that correlation coe�cients of linear e�ects of factors
are 0), but the inverse is not necessarily true. For example, two 3-level factors after
relabeling, x1 = (−1;−1;−1; 0; 0; 0; 1; 1; 1)′ and x2 = (−1;−1; 1; 0; 1; 1;−1; 0; 0)′, have
column-orthogonality (i.e., x′1x2 = 0) but not combination-orthogonality. Note that the
orthogonal design de�ned here can be regarded as a special case of orthogonal arrays.
An orthogonal array of strength r and size n with m constraints is given by an n×m
matrix with entries from a set of s¿2 symbols, where each n× r submatrix contains
all possible 1× r row vectors equally often. Orthogonal arrays of strength two are the
orthogonal designs we have de�ned here. We next de�ne some new criteria based on
combination-orthogonality for comparing supersaturated designs.

De�nition 2.1. Let xu and xv be two columns of an n×m design matrix with su and
sv levels, respectively. De�ne

f(xu; xv) =
su−1∑
i=0

sv−1∑
j=0

∣∣∣∣Nu;v(i; j)− n
susv

∣∣∣∣ ;
where Nu;v(i; j) is the number of (i; j)-pairs in (xu; xv).

The value of f(xu; xv) gives a nonbalance measure among all pairs in (xu; xv).
Columns xu and xv are combination-orthogonal if and only if f(xu; xv) = 0. In this
case n is a multiple of s2 when su = sv = s.

De�nition 2.2. Let X = (x1; x2; : : : ;xm) be an n × m U -design matrix with n = ks2

runs (rows) and m factors (columns) each having s levels: 0; : : : ; s− 1. The following
criteria are de�ned for measuring combination-nonorthogonality of the design X .

(1) Ave|f|=∑
16u¡v6m f(xu; xv)

/(
m
2

)
;

(2) Ave(f2) =
∑

16u¡v6m f(xu; xv)
2

/(
m
2

)
;

(3)fmax = max16u¡v6mf(xu; xv);
(4)Nfmax= the frequency of {f(xu; xv) = fmax} if fmax¿ 0; otherwise Nfmax = 0;
(5)Nnon-od= the number of {f(xu; xv) 6= 0}:

The criteria Ave|f| and Ave(f2) give the combination-nonorthogonality of all
column pairs of X in the average sense. The criterion fmax shows the worst
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nonorthogonality in all pairs of columns of X . When fmax¿ 0, Nmax shows the num-
ber of the worst pairs in X . The Nnon-od criterion gives the number of nonorthogonal
column-pairs of the design. The design X is combination-orthogonal if and only if one
of the above criteria is zero (in fact, this also implies that all of these �ve criteria are
zero). Some properties of these criteria are given in the following theorem.

Theorem 2.1. For any design matrix X de�ned in De�nition 2:2; we have the follow-
ing assertions:
(i) For a two-level design (s= 2); f(xi ; xj) = |sij|; Ave|f|=Ave|s|; and Ave(f2) =

E(s2); where sij is the (i; j)-element of X ′X .
(ii) f(xi ; xj)62ks(s− 1) for 06i; j6s− 1; and the equality holds if and only if xi

and xj are fully aliased.
(iii) If xi and xj are not combination-orthogonal; then f(xi ; xj)¿4:
(iv) All �ve criteria Ave|f|;Ave(f2); fmax; Nfmax and Nnon-od are invariant under ex-

changing rows and columns of X and permuting levels of each column of X .
(v) For any given orthogonal design Ln(sm) and positive integer r; there exists a

U-type design U (n; srm) satisfying

Ave|f|= ks(2s− 2)m
(
r
2

)(
rm
2

)−1
(2.1)

and

Ave(f2) = (ks(2s− 2))2m
(
r
2

)(
rm
2

)−1
; (2.2)

where n = ks2. In particular; when s = 2 and m = n − 1; (2:2) gives the lower
bound of E(s2) as given in Nguyen (1996) and Tang and Wu (1997).

Proof. (i) Let N (s; t) be the number of pairs (s; t) in (xi ; xj), for s; t=−1 or 1. Then
sij =N (−1;−1)− N (−1; 1)− N (1;−1) + N (1; 1)
= (N (−1;−1)− k) + (k − N (−1; 1)) + (k − N (1;−1)) + (N (1; 1)− k):

Since xi and xj have the same number of levels of +1 or −1,
N (−1;−1) + N (−1; 1) = N (1;−1) + N (1; 1) = N (−1; 1) + N (1; 1) = 2k;

N (−1;−1)− k = k − N (−1; 1) = k − N (1;−1) = N (1; 1)− k:
Therefore,

|sij|= |(N (−1;−1)− k) + (k − N (−1; 1)) + (k − N (1;−1)) + (N (1; 1)− k)|
= 4|(N (−1;−1)− k)|= f(xi ; xj):

Assertion (i) thus follows.
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(ii) Because xi and xj have the same number of levels 0; : : : ; and s− 1, we have
s−1∑
r=0
N (r; t) = sk; t = 0; : : : ; s− 1;

s−1∑
t=0
N (r; t) = sk; r = 0; : : : ; s− 1:

In order to maximize f(xi ; xj), we only need to maximize each
∑s−1

r=0 |N (r; t) − k|
under condition

∑s−1
r=0 N (r; t)= sk; for t=0; : : : ; s−1. Obviously, f(xi ; xj) arrives at its

maximum when xi and xj are fully aliased. In this case, for any �xed t, there exists r1
such that N (r1; t)= ks and N (r; t)= 0; r 6= r1: Therefore,

∑s−1
r=0 |N (r; t)− k|=2(s− 1)k

and
∑s−1

i=0

∑s−1
i=0 f(xi ; xj) = 2ks(s− 1):

(iii) If xi and xj are not orthogonal, there exists at least one pair, (i1; j1), such that
the number of its appearances is not k. Since

∑s−1
i=0 N (i; j1) = ks, there exists another

pair (i2; j1); i2 6= i1 such that the number of its appearances is not k. Similarly, there
exist at least four di�erent pairs (i1; j1); (i2; j1); (i2; j2); (i3; j2) such that the number of
their appearances is not k. Obviously, f(xi ; xj)¿4; the equality holds when i3 = i1, the
number of appearances of these four pairs is k ± 1, and the frequency of other pairs
are all equal to k.
(iv) Obvious.
(v) Denote this Ln(sm) by L, then the design S = (L;L; : : : ;L) satis�es (2.1), (2.2).

In fact, any two di�erent columns xi and xj of S are orthogonal to each other and
so f(xi ; xj) = 0 while any two same columns xi and xj of S are fully aliased and so
f(xi ; xj) = s|ks − k| + (s2 − s)|0 − k| = ks(2s − 2). When s = 2; m = n − 1, Tang and
Wu (1997) proved the lower bound.

Assertion (i) shows that the criteria de�ned in De�nition 2.2 are extensions of
Ave|s|; Ave(s2); smax and the frequency of sij=smax in the case s=2. In the case s=2,
the absolute value of correlation coe�cient between xi and xj is |sij|=n = f(xi ; xj)=n.
For the multi-level case, we de�ne f(xi ; xj)=2ks(s − 1) as a generalized correlation
coe�cient from property (ii). Assertion (ii) gives the upper bound of f(xi ; xj) while
assertion (iii) gives the lower bound of f(xi ; xj) if xi and xj are not orthogonal.
Property (iv) ensures that all proposed criteria are invariant under exchanging rows or
columns of the design, or under permuting level values.

3. Constructing multi-level supersaturated designs

In the last decade, a number of methods and algorithms for generating 2-level su-
persaturated designs has been proposed. Unfortunately, it is not straightforward to ex-
tend these methods to multi-level supersaturated designs. The only exception may be
the columnwise-pairwise algorithm. Li and Wu (1997) have stated the possibility of
application of the columnwise-pairwise algorithm for constructing any level of super-
saturated designs, although no speci�c multi-level designs were given. In this section
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we adopt the collapsing method from Addelman (1962). The basic idea of the con-
struction method is to collapse a multi-level factor into several low-level factors. Here
we collapse the popular U -type uniform design (see, for example, Fang and Wang,
1994; Fang and Hickernell, 1995) to an orthogonal design.
Denote an orthogonal design (Ln(sd)); U -type design (U (n; nr)) and the resulting

n× rd design by L= (lij), U = (uuv), and X , respectively. Without loss of generality,
let the entries of U be 1; 2; : : : ; n and the �rst column of U be (1; 2; : : : ; n)′. Denote
L in terms of its rows by L = (l1; : : : ; ln)′, where each lk is a column vector. De�ne
a mapping: k → l ′k , for k = 1; : : : ; n. Applying this mapping to the �rst column of
U produces the �rst block, X1, of X . Clearly, X1 = L. Applying the mapping to the
second column of U produces to the second block X2 of X , and so on. As a result,
a supersaturated design X = (X1; : : : ;Xr) of size n × rd is obtained. Speci�cally, we
have

X =



l ′u11 ; l

′
u12 ; : : : ; l

′
u1r

l ′u21 ; l
′
u22 ; : : : ; l

′
u2r

· · · · · · · · · · · ·
l ′un1 ; l

′
un2 ; : : : ; l

′
unr


 : (3.1)

To be more speci�c, denote X as Sn(srd), called the S-design, and denote the above
operation by Sn(srd)=U ⊕L. The U and L matrices are called the generating designs.

Example 1. Suppose that we extend the orthogonal design L=L9(34) and a generating
U -type design U = U (9; 92) to an S-design S9(38) by the collapsing method. By the
collapsing method, we have

U ⊕ L=




1 1
2 7
3 3
4 9
5 5
6 6
7 2
8 8
9 4



⊕




0 0 0 0
0 1 1 1
0 2 2 2
1 0 1 2
1 1 2 0
1 2 0 1
2 0 2 1
2 1 0 2
2 2 1 0



= X =




0 0 0 0 | 0 0 0 0
0 1 1 1 | 2 0 2 1
0 2 2 2 | 0 2 2 2
1 0 1 2 | 2 2 1 0
1 1 2 0 | 1 1 2 0
1 2 0 1 | 1 2 0 1
2 0 2 1 | 0 1 1 1
2 1 0 2 | 2 1 0 2
2 2 1 0 | 1 0 1 2



:

The �rst block (the �rst four columns) of X is the original L and the second block (the
last four columns) are formed by rearranging row vectors of L according to the order
de�ned by the second column of U . The values of Ave|f| and Ave(f2) are 2.428
and 12.857, respectively. The crucial step of this collapsing method is how to choose
the best U -type design U (n; nr) in the sense of minimizing any speci�c criterion (see
De�nition 2.2). Denote U(n; sr) as the set of all U -type U (n; sr). We search for a
supersaturated design X = Sn(srd) = U ⊕ L by minimizing any speci�c criterion with
respect to U ∈ U(n; nr).
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Table 1
The nonorthogonalities of S-designs obtained by TA

n; r; s; d c m T Ave|f| Ave(f2) fmax Nfmax E(|t|) E(t2)

9,2,3,4 1 4 3 2.5714 12.0000 6 4 0.1250 0.0446
9,3,3,4 1 4 3 3.2727 15.2727 6 12 0.1843 0.0720
9,4,3,4 2 4 4 3.6000 16.8000 6 24 0.2236 0.0854
16,2,4,5 1 4 3 4.3556 38.4000 12 2 0.0833 0.0211
16,3,4,5 1 4 3 5.6000 49.3714 12 6 0.1424 0.0468
16,4,4,5 2 4 4 6.2526 56.9684 16 1 0.1582 0.0491
18,2,3,7 1 4 3 3.1868 21.3187 12 1 0.1071 0.0300
18,3,3,7 1 4 3 4.2000 29.2381 12 5 0.1258 0.0370
18,4,3,7 2 4 4 4.8254 34.2645 12 9 0.1481 0.0424
25,2,5,6 1 4 3 6.4242 84.9697 22 1 0.0906 0.0224
25,3,5,6 1 4 3 8.4052 115.9477 24 2 0.1072 0.0272
25,4,5,6 2 4 4 10.1957 146.6812 30 1 0.1167 0.0285
27,2,3,13 1 4 3 3.7846 34.4738 16 2 0.0814 0.0207
27,3,3,13 1 4 3 5.2659 47.5735 18 1 0.1031 0.0256
27,4,3,13 2 4 4 5.9774 54.6094 18 2 0.1204 0.0299

Taking L9(34) as an example, 2000 U -type designs in U(n; nt) were randomly gen-
erated to obtain the corresponding S-designs. We then evaluated all their values for
the following criteria: Ave|f|;Ave(f2); fmax; Nfmax , Nnon-od, the discrepancy and E(t2),
where

E(t2) =
∑

16i¡j6m
r2ij

/(
m
2

)
;

m is the number of columns of X , rij is the correlation coe�cient between xi and xj.
As pointed out by one referee, the correlation coe�cient rij is a useful measure for
quasi-Monte Carlo methods but not useful for multi-level supersaturated designs. The
reason is that a correlation coe�cient is meaningful only for quantitative factors. The
two columns in Table 1 list E(|t|) and E(t2) for reference purpose only. The discrep-
ancy is a popular measure of uniformity in quasi-Monte Carlo methods (Niederreiter,
1992). Some empirical observations are:

• An S-design with a low Ave(f2) value has a low E(t2) value, but the inverse is
not necessarily true. We �nd that in the 2000 S-designs, most of designs with low
E(t2) value have many fully aliased column pairs. For example, if we choose U -type
design(

123456789
294537861

)′

as the generating design, the corresponding S-design has the smallest E(t2)=0:0357,
but it includes four fully aliased column pairs. This is the reason why we did not
use E(t2) as a criterion for comparing multi-level designs.

• An S-design with a large Ave(f2) value, in general, has a large Ave|f| value, and
vice versa. An S-design with small Ave(f2) value has a small fmax value, but it
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does not necessarily have a small Ave|f| value. In many cases, it has a large Ave|f|
value. We also �nd that many S-designs with small Ave|f| value may have a larger
fmax. Thus, the criterion Ave|f| is not recommended, and we recommend using
Ave(f2) or using the two criteria Ave|f| and fmax together.

• If an S-design has a low Ave(f2) value, its generating design U generally has a low
discrepancy. However, the inverse is not necessarily true. Since computing Ave(f2)
is much easier than computing the discrepancy, this suggests a way to �nd a nearly
uniform design by minimizing Ave(f2) with respect to U ∈ U(n; sr). The minimum
design U∗ is a nearly uniform design (cf. Fang and Hickernell, 1995).

Our simulation recommends the use of Ave(f2) among the �ve criteria de�ned in
De�nition 2.2. When two S-designs have the same Ave(f2) value, we choose one
with smaller fmax value. On the other hand, if we choose fmax as the �rst criterion,
the procedure will tend to be conservative, namely, many good designs with small
Ave(f2) values will be screened out. It is unrealistic to evaluate all possible S-designs
generated by U ⊕ L. Therefore, we need an optimization algorithm that can work on
NP or NP hard problems. One such optimization algorithm is the threshold accepting
(TA) algorithm proposed by Dueck and Scheuer (1990). TA has been successfully
applied to many NP hard problems. By the use of TA, Winker and Fang (1996) found
many U -type designs with lower discrepancy than that generated by other methods.
The following gives the detailed algorithm to search for S-designs with low Ave(f2):
Step 1: Randomly choose U c = (uc1; : : : ; u

c
r) ∈ U(n; nr), where “c” means “current”.

Set control parameters T; t; m; JJ and II and compute Dc = Ave(f2) of Uc ⊕ L, where
L is the pre-decided orthogonal design.
Step 2: Randomly choose the t columns of Uc and randomly exchange m pairs of

elements in each of these t columns. This results in a new U -type design, denoted by
U u = (uu1 ; : : : ; u

u
r ), where “u” stands for “update”. Compute Du = Ave(f

2) of U u ⊕ L.
Let J :=J + 1.
Step 3: If Du − Dc¡T , let U c:=U u and go to Step 2; otherwise go to Step 4.
Step 4: If J ¡JJ , go to Step 2; otherwise go to Step 5.
Step 5: Reduce the T -value according to a pre-assigned rule as follows. Let I :=I+1.

If I ¡ II , go to Step 2, otherwise terminate the process. The current matrix U c can be
considered a local minimum solution and Uc ⊕ L is the desired S-design.
There are several control parameters T; t; m; JJ and II in this procedure. The threshold

T ¿ 0 can help avoid converging to a local minimum. If T is too large, the procedure
closes to a purely random search and the convergence rate is very slow. If T is too
small, it is di�cult to “jump out” from a local minimum. The integers t and m control
the number of exchanging pairs. If t and m are too large, the procedure closes to a
purely random search. Otherwise we may converge to a local minimum. The integer II
controls the number of iterations and JJ furthermore controls the number of searches in
the neighborhood of Uc and also controls how often to reduce the T -value. Generally,
the larger II and JJ are, the better the output S-design is. However, larger II and JJ
require more CPU time.
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In this work, we have chosen L9(34); L18(37); L27(313); L16(45) and L25(56) as the
generating designs. These popular orthogonal arrays are available in many design books,
see, for example, Dey (1985). The corresponding generating U -type designs chosen
have r = 2–4. Table 1 presents the control parameters t; m; and T values in the use of
TA and values of some criteria for the output S-designs. These output designs were
tabulated in the appendix. Note that the S9(38) design obtained in Example 1 can be
further improved by using the TA.
There are some advantages of the collapsing method proposed in this paper. First,

this method is simple and can be easily implemented. Second, the output S-design is
block-orthogonal. Let X =U ⊕L be the S-design, where U ∈ U(n; sr) and L=Ln(sd).
Then X = (X1:X2: · · · :Xr), where each Xj has size n × d and the Xj are orthogonal.
This block-orthogonal structure of the design has been considered by many authors,
for example, Yamada and Lin (1997). If we put more important factors in the same
orthogonal block, their main e�ects can be easily estimated.

4. Subdesigns

The number of columns of the output S-design by the collapsing method is a multiple
of d. When the number of factors is not a multiple of d, a subdesign can be obtained
as follows. Let X be the output S-design of size n× dr by the collapsing method and
let the number of factors m ∈ [d(r− 1)+ 1; dr]. We then delete m− rd columns from
X based on the criterion given below.

De�nition 4.1. Let X = (x1; : : : ;xm) be an S-design. De�ne

c(i) =
m∑

j 6=i; j=1
f(xi ; xj)2

as a measure for nonorthogonality of the ith column xi against the remaining m − 1
columns.

For a given S-design Sn(srd), we delete the column that has the largest c-value. Then
we calculate the c-value for the remaining rd− 1 columns and delete the column that
has the largest c-value, and so on, until there are m columns left. Table 2 gives the
order of columns being deleted from the corresponding S-design. The corresponding
values of Ave(f2); Ave|f| for each subdesign were evaluated. They are satisfactory
for practical use (see Fang et al., 1998, Table 3 for the lengthy display).
There are very few multi-level supersaturated designs in the literature. A thorough

computation on the Ave(f2) values, for example, indicates the superiority of the newly
constructed designs. As compared to the supersaturated designs obtained by Liu and
Zhang (1998), for example. The Ave(f2) value for the cases (S9(38), S16(410), S18(314),
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Table 2
Columns to be deleted

n; r The Order of Columns to be deleted

9,2 8 7 6
9,3 12 11 10 9 8 7 6
9,4 16 15 14 13 12 11 10 9 8 7 6
18,2 13 11 9 8 12 10
18,3 10 8 11 16 13 9 14 12 6 18 20 21 17
18,4 1 7 4 6 3 2 5 23 22 28 27 24 26 25 8 12 18 10 9 11
27,2 2 9 5 3 12 8 1 4 13 10 6 7
27,3 25 22 15 17 19 26 16 21 24 18 23 20 14 1 10 3 7 9 12 5 4 6 2 11 8
27,4 22 40 52 45 44 41 49 43 46 50 42 48 51 47 23 24 16 21 20

14 26 25 17 19 18 15 33 34 30 29 32 31 37 39 28 27 38 36
16,2 10 8 7 9
16,3 14 15 12 13 11 8 6 10 9
16,4 15 13 12 14 11 16 18 19 20 17 6 10 8 7
25,2 7 12 8 11 10
25,3 15 14 18 17 16 13 12 9 11 8 7
25,4 12 8 7 10 9 11 15 14 16 13 17 18 22 23 24 21 20

Table 3
For n = 9; s = 3, U-type design and orthogonal array

U -type design Orthogonal array

r = 2 r = 3 r = 4

1 5 1 7 6 1 6 3 9 0 0 0 0
2 4 2 2 8 2 3 7 7 0 1 1 1
3 9 3 5 2 3 2 2 3 0 2 2 2
4 3 4 4 7 4 5 8 1 1 0 1 2
5 1 5 6 9 5 7 5 5 1 1 2 0
6 6 6 3 5 6 1 4 8 1 2 0 1
7 8 7 9 3 7 8 6 4 2 0 2 1
8 2 8 8 1 8 4 9 6 2 1 0 2
9 7 9 1 4 9 9 1 2 2 2 1 0

S27(326)) are (12.00, 40.00, 23.34, 37.13) for the new designs. The corresponding
values for the designs in Liu and Zhang are (19.29, NA, 28.30, NA), where NA
stands for “Not Available”.

Concluding Remarks. One referee points out that in two-level supersaturated designs,
some works have considered construction methods based on permutation of rows. These
include Taguchi (1987), Tang and Wu (1997) and Deng et al. (1994). Apart from the
fact that they are all for two-level designs, the main di�erence from our work is
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Table 4
For n = 18; s = 3, U -type design and orthogonal array

U -type design Orthogonal array

r = 2 r = 3 r = 4

1 16 1 12 14 1 15 17 17 0 0 0 0 0 0 0
2 1 2 6 6 2 3 8 8 0 1 1 1 1 1 1
3 8 3 1 8 3 12 2 10 0 2 2 2 2 2 2
4 15 4 17 5 4 4 16 7 1 0 0 1 1 2 2
5 6 5 8 18 5 18 11 4 1 1 1 2 2 0 0
6 10 6 5 15 6 5 1 18 1 2 2 0 0 1 1
7 4 7 18 16 7 16 4 5 2 0 1 0 2 1 2
8 18 8 15 1 8 8 3 9 2 1 2 1 0 2 0
9 12 9 2 10 9 14 14 14 2 2 0 2 1 0 1
10 9 10 16 7 10 13 7 16 0 0 2 2 1 1 0
11 13 11 14 11 11 10 10 15 0 1 0 0 2 2 1
12 2 12 11 9 12 1 18 13 0 2 1 1 0 0 2
13 14 13 7 3 13 9 6 11 1 0 1 2 0 2 1
14 17 14 9 12 14 6 9 3 1 1 2 0 1 0 2
15 7 15 4 17 15 11 13 2 1 2 0 1 2 1 0
16 11 16 10 2 16 7 12 6 2 0 2 1 2 0 1
17 3 17 13 4 17 2 5 1 2 1 0 2 0 1 2
18 5 18 3 13 18 17 15 12 2 2 1 0 1 2 0

Table 5
For n = 27; s = 3, U -type design and orthogonal array

U -type design Orthogonal array

r = 2 r = 3 r = 4

1 22 1 2 7 1 19 13 9 0 0 1 0 1 2 1 1 2 0 1 1 1
2 14 2 14 22 2 2 15 7 0 1 0 1 2 1 1 2 0 1 1 1 0
3 21 3 19 14 3 5 3 21 1 0 1 2 1 1 2 0 1 1 1 0 0
4 20 4 21 17 4 12 10 27 0 1 2 1 1 2 0 1 1 1 0 0 2
5 23 5 5 26 5 25 22 22 1 2 1 1 2 0 1 1 1 0 0 2 0
6 15 6 20 8 6 13 26 25 2 1 1 2 0 1 1 1 0 0 2 0 2
7 6 7 18 25 7 3 8 17 1 1 2 0 1 1 1 0 0 2 0 2 1
8 12 8 15 1 8 14 23 23 1 2 0 1 1 1 0 0 2 0 2 1 2
9 18 9 4 3 9 16 7 4 2 0 1 1 1 0 0 2 0 2 1 2 2
10 13 10 27 11 10 1 9 8 0 1 1 1 0 0 2 0 2 1 2 2 1
11 4 11 10 16 11 22 21 2 1 1 1 0 0 2 0 2 1 2 2 1 0
12 1 12 26 21 12 27 20 13 1 1 0 0 2 0 2 1 2 2 1 0 2
13 24 13 24 2 13 17 17 12 1 0 0 2 0 2 1 2 2 1 0 2 2
14 9 14 1 6 14 9 6 19 0 0 2 0 2 1 2 2 1 0 2 2 2
15 25 15 8 15 15 4 12 5 0 2 0 2 1 2 2 1 0 2 2 2 0
16 16 16 12 12 16 26 1 11 2 0 2 1 2 2 1 0 2 2 2 0 0
17 8 17 16 19 17 10 18 16 0 2 1 2 2 1 0 2 2 2 0 0 1
18 7 18 7 4 18 6 19 18 2 1 2 2 1 0 2 2 2 0 0 1 0
19 10 19 11 20 19 15 16 20 1 2 2 1 0 2 2 2 0 0 1 0 1
20 17 20 23 13 20 24 25 24 2 2 1 0 2 2 2 0 0 1 0 1 2
21 26 21 9 23 21 18 14 14 2 1 0 2 2 2 0 0 1 0 1 2 1
22 19 22 3 10 22 20 5 3 1 0 2 2 2 0 0 1 0 1 2 1 1
23 3 23 6 5 23 21 4 6 0 2 2 2 0 0 1 0 1 2 1 1 2
24 27 24 13 24 24 8 24 26 2 2 2 0 0 1 0 1 2 1 1 2 0
25 11 25 17 9 25 23 27 15 2 2 0 0 1 0 1 2 1 1 2 0 1
26 5 26 22 27 26 7 2 10 2 0 0 1 0 1 2 1 1 2 0 1 1
27 2 27 25 18 27 11 11 1 0 0 0 0 0 0 0 0 0 0 0 0 0
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Table 6
For n = 16; s = 4, U -type design and orthogonal array

U -type Design Orthogonal array

r = 2 r = 3 r = 4

1 3 1 8 10 1 16 2 11 0 0 0 0 0
2 13 2 6 4 2 7 3 1 0 1 1 1 1
3 4 3 5 13 3 8 12 16 0 2 2 2 2
4 2 4 2 7 4 10 8 9 0 3 3 3 3
5 16 5 10 1 5 2 9 12 1 0 1 2 3
6 9 6 4 3 6 1 15 6 1 1 0 3 2
7 5 7 9 5 7 5 16 13 1 2 3 0 1
8 8 8 13 9 8 12 13 3 1 3 2 1 0
9 1 9 15 16 9 4 6 15 2 0 2 3 1
10 12 10 3 15 10 13 10 4 2 1 3 2 0
11 7 11 12 14 11 6 5 5 2 2 0 1 3
12 15 12 11 12 12 9 14 7 2 3 1 0 2
13 6 13 7 6 13 3 1 10 3 0 3 1 2
14 10 14 14 2 14 14 7 2 3 1 2 0 3
15 14 15 1 11 15 15 4 14 3 2 1 3 0
16 11 16 16 8 16 11 11 8 3 3 0 2 1

Table 7
For n = 25; s = 5, U -type design and orthogonal array

U -type design Orthogonal array

r = 2 r = 3 r = 4

1 5 1 2 4 1 14 12 19 0 0 0 0 0 0
2 2 2 11 21 2 1 7 9 0 1 1 2 3 4
3 20 3 18 18 3 12 20 23 0 2 2 4 1 3
4 10 4 25 15 4 13 5 6 0 3 3 1 4 2
5 13 5 9 11 5 11 24 2 0 4 4 3 2 1
6 6 6 1 2 6 5 2 7 1 0 1 1 1 1
7 21 7 3 10 7 22 9 20 1 1 2 3 4 0
8 7 8 8 22 8 3 23 1 1 2 3 0 2 4
9 11 9 4 20 9 19 1 17 1 3 4 2 0 3
10 14 10 5 24 10 23 22 13 1 4 0 4 3 2
11 1 11 6 5 11 9 19 5 2 0 2 2 2 2
12 8 12 20 3 12 8 4 22 2 1 3 4 0 1
13 24 13 19 23 13 24 16 18 2 2 4 1 3 0
14 17 14 23 14 14 10 10 24 2 3 0 3 1 4
15 15 15 15 17 15 17 11 10 2 4 1 0 4 3
16 9 16 21 16 16 6 13 21 3 0 3 3 3 3
17 18 17 24 12 17 25 15 3 3 1 4 0 1 2
18 3 18 16 9 18 16 8 14 3 2 0 2 4 1
19 23 19 10 8 19 2 18 15 3 3 1 4 2 0
20 22 20 13 6 20 20 21 11 3 4 2 1 0 4
21 12 21 14 1 21 7 17 25 4 0 4 4 4 4
22 25 22 7 19 22 18 6 4 4 1 0 1 2 3
23 19 23 22 13 23 21 3 8 4 2 1 3 0 2
24 4 24 17 25 24 15 14 12 4 3 2 0 3 1
25 16 25 12 7 25 4 25 16 4 4 3 2 1 0



K.-T. Fang et al. / Journal of Statistical Planning and Inference 86 (2000) 239–252 251

that Taguchi’s randomly combined design is permuted in a random fashion; the other
two are permuted to minimize the speci�c criterion E(s2). Our construction method is
systematic and deterministic.
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Appendix

The output designs were tabulated in Tables 3–7.
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