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ABSTRACT

Response Surface Methodology is concerned with estimating a surface to a typ-
ically small set of observations with the purpose of determining what levels of the
independent variables maximize the response. This usually entails fitting a quadratic
regression function to the available data and calculating the function’s derivatives.

Artificial Neural Networks are information-processing paradigms inspired by the
way the human brain processes information. They are known to be universal func-
tion approximators under certain general conditions. This ability to approximate
functions to any desired degree of accuracy makes them an attractive tool for use
in a Response Surface analysis. This paper presents Artificial Neural Networks as a

tool for Response Surface Methodology and demonstrates their use empirically.
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1. INTRODUCTION

Response Surface Methodology (RSM) comprises a group of statistical tech-
niques for empirical model building and model exploitation. By careful design and
analysis of experiments, it seeks to relate a response, or output variable to levels of
a number of predictors, or input variables that affect it (Box and Draper 1987). The

investigator is interested in a presumed functional relationship

n=f(&1,82,.. ., 4k)-

A graph of 7 against &, &2,..., & is a response surface, in k dimensions.

In general, a polynomial is a function which is a linear aggregate of powers
and products of the inputs. A polynomial expression of degree d can be thought
of as a Taylor series expansion of the true underlying theoretical function f(§)
truncated after terms of the dth order. In practice, it is often true that, over a
limited factor region, a first or second degree polynomia] will provide a satisfactory
representation of the true response function. The optimum of the function is then
easily determined by taking the derivatives with respect to each variable and solving
for zero. For a more rigorous treatment of RSM, see Box and Draper (1987), Myers
and Montgomery (1995), Khuri and Cornell (1996), or Draper and Lin (1996), and
for recent expositions see Myers (1999), Box and Liu (1999), and Lin (1999).

Hornik, Stinchcombe and White (1989) rigorously establish that standard mul-
tilayer feedforward neural networks with as few as one hidden layer using arbitrary
squashing functions are capable of approximating any Borel measurable function
from one finite dimensional space to another to any desired degree of accuracy pro-
vided sufficiently many hidden units are available. In this sense, multilayer feedfor-
ward networks are a class of universal approximators. This property makes neural
networks a powerful tool to approximate a response surface given a finite number
of observations.

For this study, we compare the standard multilayer feedforward neural network
for approximating the function f relating independent and response variables with
a second-order polynomial regression model. In practice, a neural network will be

useful when little is known about the surface being approximated and it is very
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complex. Thus, for testing and evaluation purposes, we propose using a Uniform
Design (Fang, Lin, Winkler, and Zhang 2000) over a specified search space to select
the experimental runs. We evaluate the neural network method by measuring the
absolute deviation between the predicted and actual optimum of the surface once
the final factor region has been identified and comparing it with the results derived
from the regression model fit.

This paper is organized as follows. Section 2 reviews some of the basics of
neural networks and motivates their use for response surface optimization problems.
Section 3 describes how neural networks can be used to fit surfaces in experimental
observations which is then described in Section 4. The paper concludes with a

discussion of the results and directions for future research in Section 5.
2. NEURAL NETWORKS

An Artificial Neural Network (ANN) is an information processing paradigm that
is inspired by the way the brain processes information. The key element of this
paradigm is the novel structure of the information processing system. It is cornposed
of a large number of highly interconnected processing elements (neurons) working
in unison to solve specific problems. ANNs, like people, learn by example. Learning
in biological systems involves adjustments to the synaptic connections that exist
between the neurons. This is true of ANNs as well.

There has been much publicity about the ability of ANNs to learn and generalize.
Although the learning algorithm often associated with the multilayer perceptron is
backpropagation, the problem of finding the appropriate weights to minimize the
surn of squared error is essentially a nonlinear optimization problem that is imple-
mentable in many standard statistical packages. For an explanation of the rela-
tionship between statistical methods and neural networks see, for example, Ripley
(1993), Sarle (1994) and Cheng and Titterington (1994). The main point to be
stressed is that ANNs learn the same way that many statistical algorithms esti-
mate. For an explanation of learning in a neural network, see Hinton (1992). The
claimed advantages of neural networks are that they deal with the non-linearities

in the world in which we live, can handle noisy or missing data. can work with
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large numbers of variables or parameters, and provide general solutions with good
predictive accuracy.

A feed-forward network is comprised of units that have one-way connections to
other units arranged in layers. Connections only move forward through the layers.

A typical feed-forward network can be represented by the function

Uk =0 [ o+ Y whotn(an + Y winth;) (1

all » all

where xy; represents the ith value of the kth input vector corresponding to the kth
response (yx). Parameters {a,} denote the weights for the connections between
the constant input and the hidden neurons and «, denotes the weight of the direct
connection between the constant term and the output. The values {w;,} and {wy,}
denote the weights for the other connections between the inputs and hidden neurons
and between the neurons and the output respectively. The functions ¢n and ¢,
denote the activation functions used at the hidden and output layers respectively.

The network shown in Figure 1 has three layers: input, hidden and output.
The choice of structure of the three layers is known as choosing the architecture in
the neural network framework and is analogous to modet selection in the regression
framework. The user needs to decide the number of input nodes, the number of
hidden layers and hidden nodes, the number of output nodes, and the activation
functions. The number of input nodes correspond to the number of variables to
consider for the model. The hidden layer and nodes parameter selection is very
important in that it is this feature that allows the ANN to perform the nonlinear
mapping between inputs and outputs. The number of output nodes is specified
directly by the problem. Currently, however, there is no widely accepted method

for making these model design decisions.
3. ANN IMPLEMENTATION

This section describes the process and implications of training a neural network
to estimate a response surface and how to find the maximum value. Fach decision

is critical to the successful application of the neural network.
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Figure 1: Artificial Neural Network

1. IDENTIFY THE SEARCH SPACE. Limit the factor region using conventional

RSM methods.

2. CHOOSE THE GRID 81zE. This entails choosing the experimental design. Since
we are not assuming a specific functional form for the response surface, the
more distinct observations a neural network has to approximate the surface,

the better the expected results.

3. CHOOSE THE NETWORK ARCHITECTURE. As deseribed above, this step is
vital in the modeling process. If too few hidden nodes are chosen, the neural
network will not have the ability to learn the relationship between inputs and

outputs. If too many hidden nodes are chosen, the mode} will be too complex
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and the neural network may induce spurious correlations between independent

and response variables.

4. TrAIN THE ANN. This entails altering the neural network weights minimizing

the sum of squared errors between the training data and network predictions.

5. OBTAIN PREDICTED VALUES FOR THE GRID. Approximate the surface using
predicted values generated by the neural network on a much finer grid than

on which it was originally trained.

6. PERFORM GRID SEARCH FOR THE MAXIMUM VALUE AND ITS CORRESPONDING
INPUTS. Find the maximum surface value and the corresponding values of the
input variables to decide what levels are predicted to maximize the response

surface.
4. EXAMPLE

In this section, we compare neural networks with traditional Response Surlace
Methodology. RSM typically assumes the response surface is quadratic and fits a
quadratic regression model to the observations to estimate the surface. Hence, it is
expected that the neural network and regression models will perform comparably
when the surface is actually quadratic but that the neural model will be superior
when the surface is more complicated. In practice, surfaces are most likely in be-
tween, though it is assumed that a quadratic function will serve as an adequate
approximation. Balkin and Lin (1999) compares neural networks with traditional
RSM on & known quadratic surface as well as on a real life data set. For these exam-
ples, the two methods indeed perform equally well in terms of ability to approximate
the true maximum response.

For a more complex exarnple, consider the inverse polynomial in Figure 2
y = (10z] — 202922 + 1022 4+ 2% — 22y +5)7".

Given in Fox (1971), the expression in parentheses is known as a banana function
because the global minimum is inside a long, narrow, parabolic shaped flat valley.

To find the valley is trivial, however convergence to the global optimum is difficult
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Figure 2: Complex polynomial surface,

for optimization algorithms to achieve. We take the inverse of the polynomial to
convert it to a maximization problem as is typically found in RSM and to add
complexity to the surface, creating a very difficult response surface problem.

We assume that we have sufficiently narrowed the search space by conventional
RSM techniques to x; € (—0.5,2.0);x2 € (—~1.5,1.5) and are now interested in
the final step of determining the optimal response. In order to see how well a
neural network can determine the optimal value of this surface, we fit one with
nine nodes in the hidden layer and regression models on observations chosen using
a design with grid sizes of 4 through 9. Thus, 16, 25, 36, 49, 64, and 81 equally
spaced observations are generated over the search space and used to estimate the
parameters of the neural network and polynomial regression models. The maximum
value of the surface is then determined via a grid search for the neural network

and by using the derivatives of the regression model. We then look at the absolute
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Table 1: Experimental design and response observations for grid size of four

x1 values
05 033 117 2
-1.5 0.01 002 0.05 0.09
-0.5 0.08 0.16 0.07 0.03
0.5 01 023 0.08 0.028
1.5 0.01 0.02 0.06 0.21

x2 values

deviation between the predicted and actual optimal value for the two models over
the different grid sizes.

For example, let us consider a grid size of four. Table 1 displays the corresponding
function values in this 4 x 4 grid. We then fit a neural network with nine nodes in
the hidden layer with the xy and zo values as the inputs and the function response
at those values at the output using the MASS library (Venables and Ripley (1999))
for Splus. Once the parameters of the neural network are estimated, we have what
can be considered a complicated nonlinear regression function. We then search for
the largest response value and take that as the surface maximum. In this case, the
predicted maximum value of 0.2415 occurs at inputs z; = 1.00; zo = 1.28. Since
the actual surface maximum is 0.25, which occurs at x, = 1.0; x5 == 1.0, we see that
the predicted error for a grid size of four is 0.0085.

Figure 3 displays the absolute error between the actual and predicted surface
maximum for the regression and neural network models over grid sizes. We can sce
from this figure that the neural network outperforms the regression model in terms
of ability to identify the optimal value of the response variable. This is no surprise
since the response surface is a polynomial of order higher than is being fitted. Thus.
in this example, the neural network is able to learn the functional relationship while
the linear model is not. We also see that the performance of the ueural network
does not increase uniformly as the number of observations increase. This is possibly
an artifact of the different grid resolutions straddling the optimal value.

Certainly, an experienced RSM user may run the experiment sequentially start-

ing in a small region, check for lack of fit, refit the model etc. whenever necessary
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Accuracy of Various Grid Sizes with 9 Hidden Nodes
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Figure 3: Absolute deviation for different grid sizes.

(see, for example, Lin (1999) ). The example given here is simply to demonstrate
the usefulness of ANN, and thus those details are not displayed. Moreover, the
standard model diagnosics are important and should be performed, but again are

not reported here.
5. DISCUSSION

The purpose of this paper is to present Neural Networks as a tool for fitting
response surfaees. 1t is not the purpose of this study to convince practitioners (o
use only neural networks when fitting response surfaces, but rather to show how they
augment the RSM toolkit. It is always possible to fit an over-determined polynomial
to observed data to duplicate the response function. Our expericnee indicates that
if the response is not “smooth” where the classical RSM does not perform well, a

neursl network approximation will generally perform better.
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Figure 4: Absolute deviation of actual and predicted maximura values for different

number of nodes in hidden layer.

One of the primary considerations when applying neural networks is the choice
of the number of nodes in the hidden layer. Nodes in the hidden layer are chosen
by trial and error based on the perceived complexity of the relationship hetween
the explanatory and response variables. For examnple, let us reconsider the romplex
function example and investigate this issne. Figure 1 shows the absolute deviation
hetwern the actual and predicted optimal response value for grid sizes 4 through
9 with 1, 2, 4, 7 and 9 nodes in the hidden layer along with the results from 1l
quadratic regression model. We observe from this plot that it is important to al-
low the network enongh “frecdom™ to explore comiplex relationships and o provide
the network with a sufficient number of exarnples with which to leatn the fine-

tiona! relationships.  The neural network with a single node in the Lidden i
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and some of the neural networks trained on a 4 x 4 grid do not perform as well
as the regression model. Ilowever, for the most part, the neural network is able to
identify the maximum value of the surface more accurately. Since the optimization
process for the neural network is dependent on the initial starting point. it may be
useful to compare its results with those obtained from the regression model whose
parameters are estimated consistently the same. The fact that deviations do not
monotonically decrease, as noted in the previous section, is most likely due to the
way the observations designated surround the true optimal value of the surface.
This study demonstrates the use of neural networks for Response Surface Method-
ology. Neural networks cannot replace linear regression as a statistical technique,
but should instead be considered an additional method in a statistician’s toolkit.
With today’s computing power, such computational techniques are worth using and
easy to implement. Future work in this area can include better designed exper-
iments and diagnostics to reduce the uncertainty associated with results derived
from neural networks and tests to determine when a neural network will result in

more accurate results.
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