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ABSTRACT 

Response Surface Methodology is concerned with estimating a surface to a typ- 

ically small set of observations with the purpose of determining what levels of the 

independent variables maximize the response. This usually entails fitting a quadratic 

regression function to the available data  and calculating the function's derivatives 

Artificial Neural Networks are information-processing paradigms inspired by the 

way the human brain processes information. They are known to be universal h~nc-  

tion approximntors under certain general conditions. This ability to  approxima((, 

functions to  any desircd drgrce of accuracy makes thrm an attractive tool for I I S ~ .  

in a R~sponse  Surface analysis. This paper presents Artificial Neural Networks a? a 

tool for Response Surface Methodology and demonstrates their use empirically. 

Copyright it' 2000 by  Marcel Dckker, Inc. w w r ~  dekker con1 
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1. INTRODUCTION 

Response Surface Methodology (RSM) comprises a group of statistical tech- 

niques for empirical model building and model exploitation. By carrful design and 

analysis of experiments, it seeks to  relate a response, or output variable to levels of 

a number of predictors, or input variables that affect it (Box and Draper 1987). The 

investigator is interested in a presumed furlctional relationship 

A graph of q against ( 1 ,  t 2 , .  . . , <k is a response surface, in k dimensions. 

In general, a polynomial is a function which is a linear aggregate of powers 

and products of the inputs. A polynomial expression of degree d can be thought 

of as a Taylor series expansion of the true underlying theoretical furiction f(()  

truncated after ternls of the dth order. In practict., it is often true that,  over a 

limited factor region, a first or second degree polynonlial will provide a satisfactory 

representation of the true response function. The optimum of the fur~ction is then 

easily determined by taking the derivatives with respect to  each variable and solvirig 

for zero. For a more rigorous treatment of RShl, s w  Box and Draper (1987), Myers 

and Montgomery (1995), Khuri and Cornell (1996), or Draper and 1,iri ( 1996), and 

for recent expositions see Myers (1999), Box and Liu (1999)) and Lin (1999). 

Hornik, Stinchcombe and White (1989) rigorously establish that standard mul- 

tilayer feedforward neural networks with as few as one hidden layer using arbitrary 

squashing functions are capable of approximating any Rorel measur;~ble function 

from one finite dimensiorial space to another to  any desired degree of accuracy p1.w 

vided sufficiently many hidden units are available. In this sense, multilaycr fwdfor- 

ward networks are a class of universal approxirnators. This property rnakcs ncrlral 

networks a powerful tool to approximate a resporisc surface given a finite ~~r~r r lber  

of observations. 

For this study, we compare the standard multilayer f ~ ~ i f o r w a r d  neural r~rtwork 

for approximating the functiori f rrlating intiependerit and responsr variahlcs with 

a second-order polynomial regression model. Irl practice, a neural r~etwork will hr .  

useful when little is known about the surface being approximated a r ~ d  it is very 
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complex. Thris, for testing ant1 evnlriation purposes, we propose using n IIr~irorrll 

Design (Fang, Lin, Winkler, and Zhang 2000) over a specified search space to select 

the experimental runs. We evaluate the neural network method by n~easr~ring the, 

absolute deviation between the predicted and actual optimum of the surface once 

the final factor region has been identified and comparing it with the resr~lts derivrd 

from the regression model fit. 

This paper is organized as follows. Section 2 reviews some of the basics of 

neural networks and motivates their use for response surface optimization problems. 

Section 3 describes how neural networks can be used to fit surfaces in experimental 

observations which is then described in Section 4. 'The paper concludes with ;I 

discussion of the results and directions for future research in Sectior~ 5 .  

2. NEURAL NETWORKS 

An Artificial Neural Network (ANN) is an inlormation processirig paradigrn that 

is inspired by the way the brain processes information. The key elerrlent o l  this 

paradigm is the novel structure of the information processing system. It  is cornpostul 

of a large number of highly intercoririected processing elements (neurons) working 

in uriisori to solve specific problems. ANNs, like people, learn by example. Lcarnirig 

in biological systems irivolves atljustments to the synaptic connections that exist 

between the neurons. This is true of ANNs as wrll. 

There has been much publicity about the ability or ANNs to learn and gorlcrzilizt,. 

Althor~gh the learning algorithm often associated with the multilaycr porceptrorl is 

backpropagation, the problem of finding the appropriate weights to rriiriirriize tlic, 

srirn ol squared error is essentially a nonlinear optimization problem that is irriple- 

mentable in rriariy standard statistical packages. For an explanatiori of the rela- 

tionship between st,atistical methods and neural rietworks see, for exarr~plc. Kipley 

(1993), Sarlc. (1994) and Cheng and Titterington (1994). The rnairi poirit to b t '  

stressed is that ANNs learn the same way that many statistical algorithms esti- 

mate. For ari explanation of learning in a neural network, see Hinton (1992). T h r  

claimed advantages of neural networks are that thry deal with the rion-1irioaritic.s 

in the world in which we livcx, car1 handle noisy or niissing tlata, can work ~vi th 
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large numbers of variables or parameters, and provide general solutions with good 

predictive accuracy. 

A feed-forward network is comprised of units that have one-way conncxtions to 

other units arranged in layers. Connections only move forward throrigh the layers. 

A typical feed-forward network can be represented by the function 

Yk = 4 0  Qo + x ~ h o d ' h ( ~ h  + wzl r2k , )  ( all h  all i 

where xk, represents the ith value of the kth input vector corresponding t o  thc k t t ~  

response ( y k ) .  Parameters {ah)  denote the weights for the connections betwren 

the constant input and the hidden neurons and a, denotes the weight of the tlirrct 

connection between the constant term and the output. The values {w lh )  and {who}  

denote the weights for the other connections between the inputs anti hititien neurons 

and between the neurons and the output respectively. The functions 4h ant1 Q, 

denote the activation functions used at  the hidden and output layers rcsprctivtly. 

The network shown in Figure 1 has three layers: input, hidden ant1 output. 

The choice of structure of the three layers is known as choosing the arrhztectun i r ~  

the neural network framework and is analogous to  model selection in the rcgrcssion 

framework. The uscr n d s  t o  decide th r  number of input nodes, thc nur~lbcr of 

hitiden layers and hidden nodes, the number of output nodes, and th r  xtiva(ion 

functions. The number of input nodes correspond to the number of variables to 

consider for the model. The hidden layer and nodes parameter srlcctior~ is vrry 

important in that it is this feature that allows the ANN to perforrn th r  nonlinrar 

mapping between inputs and outputs. The number of output nodes is spc~rifictl 

directly by the prot~lrrn. ('r~rrently, ho\vrvcr, t t~erc  is no witlrly acccplcci rnt,lhocl 

for making these model design decisions. 

3. ANN IMPLEMENTATION 

This section describes the process and irrlplications of training a r~cural ~iet~vivork 

to  estimate a response surfare and how to find thc maximt~m value. Ilwh dcri~ion 

is critical to the sr~ccessful application of the neural network. 
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X1 X2 

Figure 1: Artificial Neural Network 

1. IDENTIFY T I ~ E  SEARCH SPACE. 1,irnit the factor region using corlvt~ntional 

KSh4 methods. 

2. C ~ O O S E  THE GRID SIZE.  '.rIlis entails choosing the experirnet~tal design. S i ~ ~ c o  

we are not assrirning a specific functional forrn for the resporlse surfncr.. the, 

rnore distinct observations a neural network has to approximate the surface. 

the better the expected results. 

3. CI~OOSE THE NETWORK ARCHITECI~URE.  As  described above, this s t rp is 

vital in the modeling process. If too few hidden nodes art? chosen, the neural 

network will not have the ability to learn the relationship between inputs ant1 

 output,^. If too many hidden nodes are chosen, the model will be too coniplex 
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and the neural network may induce spurious correlations between irldependent 

and response variables. 

4. TRAIN THE ANN. This entails altering the neural network weigllt,~ minimizing 

the sum of squared errors between the training data and network predictions. 

5. OBTAIN PREDICTED VALUES FOR THE G R I D .  Approximate the surface using 

predicted values generated by the neural network on a much finer grid than 

on which it was originally trained. 

6. PERFORM GRID SEARCH FOR THE MAXlMlJM VALUE AND ITS CORRESI'ONDIN(: 

I N P U T S .  Find the maximum surface value and the correspondirlg valurs of the 

input variables t o  decide what levels a m  prrtlicttti to maxirni~c thc rcsponsc 

surface. 

4. EXAMPLE 

In this section, we compare neural networks with traditional Rcsporise S111.lace 

hfethodology. RShl typically assumes the resporlse surface is quadratic and fit,s a 

qriadratic regression model to  the observations to  estimate the surface. IIerlcc, it is 

expected that the neural network and regression models will perforrrl cornparably 

when the surface is actually quadratic but that tile neural model will be sr~perior 

when the surface is more complicated. In practice: surfaces are rnosl likely in bc- 

tween, though it is assumcd that a quadratic function will serve as an atlr,c111a(e 

approximation. Balkin and Lin (1999) compares neural networks with traditional 

RSM on a known quatiratic surface a5 well as on a real lifrn data  sct. 1:or 1 t~c.sc, c3xair~- 

ples, the two methods index1 perform eqt~ally well in terms of ability lo a1)proxirllate 

the true maximum response. 

For a more complex example, consitler the ir~vrrse polynonlial in 17igurcs 2 

Given in Fox (197!), the expression in parentheses is known as  a barlar~n funct~or~ 

because the global minimum is inside a long, narrow, parabolic shaped flat vall(3y. 

'ro find the valley is trivial, howevt~r corlvergcnce to the global optirr~~irn ih tl~fficr~it 
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Figure 2: Complex polynonlial surface. 

for optimization algorithrris to achieve. UTe take thr  inverse of the poly~lo~~lial  to 

convert it to a maximization problem a s  is typically found i r ~  RShl and to add 

complexity to the surface, creating a very difficult response surfwe problem. 

We assunle that we have sufficiently narrowed the search spwt. hg cor~vc~ritiorial 

RSM technicjues to zl E ( -0 .5 ,2 .0);x2 E ( -1 .5 ,1 .5)  ant1 are now iritcrostcrl i r ~  

the final step of determining the optimal response. In ortler to s w  how well ;I 

neural rletwork can determine tile optimal value of this s ~ ~ r f a c e ,  we fit one with 

nine nodes in the hidden layer and regression models or) ohservatior~s chosen using 

a design with grid sizes of 4 through 9. Thus, 16, 25. 36, 49, 64, and 81 equally 

spaced observations are generatd over the searct~ space and uswl to estiniatc ttrr 

parameters of the neural network and polynoniial regression rnodc,ls. 'l'l~ri r r~auirr~~ur~ 

value of the s ~ ~ r f a c e  is th(w tleterrnincd via a grid search for the ric~ural ~lc~t~vork 

and by using the dori~alives of the risgression model. We thrw look at tticl ;~l,sol~l!c> 
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Table 1: Experimental design and response observations for grid size of four 

deviation between the predicted and actual optimal value for the two ~notlels over 

the different grid sizes. 

For example, let us consider a grid size of four. Table 1 displays the correspondirlg 

function values in this 4 x 4 grid. We then fit a neural network with nine r~odes in 

the hiddell layer with the xl and x2 values as the inputs and ?he functiorl rc.spor~sc> 

a t  those values a t  the out,put using the MASS library (Venables and 1tiplc.y (I!)I)!I)) 

for Splus. Once the parameters of the neural network are estimated, wcs have what 

can be considered a complicated nonlinear regression function. M'e then scarclr for 

the largest response value and take that as the surface maximum. In this c;~sc.. t hc: 

predicted maximrlm valr~e of 0.2415 occllrs a t  inputs X I  = 1.00; xz - 1.28. Sir~cf 

the actual surface maximurn is 0.25, which occurs at  zl = 1.0; 22 -- 1.0, SPP that 

the predicted error for a grid size of four is 0.0085. 

Figure 3 displays the a1,solrlte error between the actual allti prr~lict cd surface 

maxirnum for the regression and neural network models over grid sizes. \Ye can see, 

from this figure that the neural network outperforms the regression rnodcl in terrris 

of ability to identify the optirrial value of the response variable. This is no sr~rprise 

since the response surface is a polynomial of order higher than is bring f i t t r~l .  Tl~rrs. 

in this example, the ncrlral network is able to  Iearr~ the functional rclatiorlship ~vliilr 

the linear model is not. \Yt, also see that the pcrformancc of tire rrctllral nest\\-ork 

does not increase uniformly as the number of observations ir~crcasr. Tllis is possilrly 

an artifact of the different grid resolutions straddling the optimal valr~r. 

Certainly, an experienccti HShl user may run the experiment stulurntially start- 

ing in a small region, chcck for lack of f i t ,  refit tile 1nodt4 ctc. whcrievcr r~ecc>ssa~.y 
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Neural Network 
Regrrrssbn I I 

Figure 3: Absolute deviation for different grid sizes. 

(see, for example. Lin (1999) ). Th' example given here is simply to dcr~lor~slratc 

the usef~ilness of AWN, and thus those details arc not displayed, hlnrtuwer, l l l i ~  

standard model diagnosics are important and should be performed, hut ag:iir~ art. 

rlot r e p o r t ~ l  here. 

5 .  DISCUSSION 

Tht, purpose of this paper is to present Neural Networks a tool for fittirig 

rpsponsr, surfaces. It is not the purpose of this study to convince pr:u-~itiorlcrs lo 

11sc.only neural networks when fitting response s~~rfacc,s, but r a t h c  to shcjnr how thry 

augnlciil th r  ItShl toolkit. It is always possible to fit an ovc'r-cltttrnrir~ccl po!!,rlorrlinl 

!.o ot)scr v ~ l  data  to d!~p:iratr the rcq)onse function. Our exp~ric~rlc-cs i!~dir;itos thitt 

i f  tl!c response is not "snlootli" wherf~ !hc classira! 1<S,21 doc>s not ~)r~rfor-r:r \v:ll!, ;I 

nenlal ~:t~twork approxi~nation will gtrl~r?iIly ptrforrn hr~t(c.r. 
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Grid Size 

Figure 4: At)soiute detviatior~ of actlral arld prtdictkd nlaxirn11r11 valurs for diff(~rcsilt 

r11lrril)er of riodes in hidc!en layer. 

One of the primary considerations when applyirlg neural ~~ctwork:; is t hcs c,!~oic~~ 

of the nurnbrr of nodtbs in t ! ~ :  hidderl layer. Nodcs in the hiddcw I;ly(~r arc choit~:~ 

by trial and error t rasd on (tic pr.rrciitd complexity of t,t~c, rclatic~nship lic~t\vr~~n 

thc evplana(.ory ant! response, variahlcs. 1-'or P X ~ I C I ~ I P ,  ict US rwonsiti(>r t r'oll~!)lr \ 

furict.ion example and in:'cst ieatc this iss~!e F i p i r ~ *  .I shews thc :ll)soIi~t c x  rlc,:.i,it i c ~ r  

ht>twa?n the ai7!11;1! and ;)rt.dicted ol)tinl;~! !t>\pt,n,sc :.aino for grid c;ixc,s ,1 !l!!o!~:.ii 

9 1 ~ 1 t h  l j  2 ,  4 ,  7 L L I I ~  9 ~iOl!?,< ir] thf)  11ic!cien i s i y ~ ?  a!or~g KI~II ~ l i ( 1  i t . < t ! l t \  f~oi!? ! i ! (  

rju:idratic rcgrcssion n~odcl Itre ol)<c~ri,' frtm t , f ~ i q  p!t) t  that i~ is i : i i ~ ~ ~ ~ t ; i . : ~ t  t o  ;$;- 

low t l : ~  ric1:n:)rk c~rlo:igti "iriutlotri" to cxplorc- cor:ipleu rt:latioi~~tiip; tiiiil :o IJI.I'L;C:: 
. - 

t i i c  ~l~ 'x, iark .+V\:,!I a :!:f?ci(?r;! r ; t ~ : ~ ; t ; t ~ r  ( , f  (:x?.~!$\;!p; \,,j!bl wlji,~!.~ t < >  IP,+::I i , t ~ ix  :! i1) : .  

tic)!-~ii! r ( , \ ; a t i (~ :~s i~ i~~s .  'I !ii. I : ( J ; I ~ ~ I  ~ ~ c ' t ~ > ~ t ) i k  v:i!t, ;i < I ~ ; C ~ P  rlc~cl~-. i:i * \ I ( ,  i , i < i : \ t , ; ,  i i j . . ( ;  



and some of the ner~ral networks trained on a 4 x 4 grid do not. pc%rTor.rrl ;IS \vsII 

as the regression model. IIowever, for the mmt part, the neural notwork is able to 

identify the rnaximum value of the surface more xcurately. Since ttre optirl~ization 

process for the neural network is dependent on ttre initial starting point. it rniy. be 

useful to compare its results with those obtained froni the r~grcssiorl rnotlol \vtiosc> 

pararneters are estimated consistrr~tly the same. Thr  fwt that tleviations do not 

mor~otonically decrease, as r~oted in the previous section, is most likely due to the 

way the observations designated sr~rrour~d the true optimal valrlc of ttic sirrkicc. 

This stltdy demonstrates the rlse of neural networks for Response S~irfarc: hlct Irocl- 

ology. Neural networks canr~ot replace linrar regressiorr as a statistical tc~clrniclr~c,. 

hut should instead be considered an additional method in a statistician's toolkit. 

With today's cornputing power, such computat,ional techniques are worth using arlcl 

easy to implement. Future work in this area can includr. t)c'ttc'r drsigntul c,xpcsr- 

iments and diagriostics to reduce the uncertainty associated with results deri\.c*l 

frorn nrllral r~etworks ancl tests to dcterniir~e when a neural network will resull in 

more accurate results. 
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