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Summary. A modelling approach to optimize a multiresponse system is presented. The approach
aims to identify the setting of the input variables to maximize the degree of overall satisfaction with
respect to all the responses. An exponential desirability functional form is suggested to simplify the
desirability function assessment process. The approach proposed does not require any assumptions
regarding the form or degree of the estimated response models and is robust to the potential
dependences between response variables. It also takes into consideration the difference in the
predictive ability as well as relative priority among the response variables. Properties of the
approach are revealed via two real examples — one classical example taken from the literature and
another that the authors have encountered in the steel industry.
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1. Introduction

Response surface methodology (RSM) consists of a group of techniques used in the empirical
study of the relationship between the response and a number of input variables. Consequently,
the experimenter attempts to find the optimal setting for the input variables that maximizes
(or minimizes) the response. A second-order polynomial model, along with least squares
fitting, is widely used to study such an empirical relationship. For detailed information on the
various techniques used in RSM, see Box and Draper (1987) and Khuri and Cornell (1996).
Most of the work in RSM has been focused on the case where there is only one response
of interest. A common problem in product or process design, however, is the selection of
optimal parameter levels, which involve the simultaneous consideration of multiple-response
variables, called a multiresponse problem.

Multiresponse problems are quite prevalent across various application areas. One typical
example that the authors have encountered in the steel industry is as follows. The mechanical
properties of hot rolled steel strips are determined by the composition of the steel and pro-
cessing parameters. The purpose of the study was to determine the effects of steel composition
as well as rolling and cooling conditions—the percentage of carbon x,, the percentage of
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manganese x,, the percentage of silicon x;, the thickness of the strips or plates x,, the milling
temperature xs and the coiling temperature x,—on the mechanical properties of the JS-
SS400-type steel. The mechanical properties were measured by three different responses — the
tensile strength y,, the yield strength y, and the elongation y;. The tensile strength is a
nominal-the-best (NTB) type of response, whereas the yield strength and elongation are
larger-the-better (LTB) types of response.

Various attempts have been made to model such relationships since the 1950s (Kwon and
Baik, 1989). The assessed relationships are used in adjusting the composition of the steel and
the electrical and mechanical settings for hot rolling and subsequent cooling conditions to
obtain the desired property balancing. However, it is not easy to optimize the balance between
the mechanical properties. The problem arises because the three responses (especially y, and
»3) tend to increase or decrease together, but y, is an NTB-type and y, and y; are LTB-type
responses. Moreover, the responses cannot be directly compared because y; is measured in a
different unit (in per cent) from y, or y, (in kilograms per millimetre squared). Most of the
past attempts have considered only one property (i.e. the tensile strength) in making such
adjustments. This was mainly due to the lack of a systematic way of simultaneously
considering all the responses, even though the overall quality is defined by the balance
between all three properties. With customers’ expectations of better quality and market
competitiveness, the company realizes that the ability to improve their steel quality by better
balancing the responses is crucial for their survival. This example presents a typical situation
in many industrial problems involving improvements in the process.

A brief review of previous developments in multiresponse optimization is given in Section
2. The framework of the modelling approach proposed is introduced in Section 3. In Section
4, the classical example from Khuri and Conlon (1981) is used to compare our approach with
the generalized distance approach. Section 5 discusses the assessment of the exponential
desirability function, a major component of the modelling approach proposed, and its sens-
itivity analysis. The problem from the steel industry introduced above will be discussed in
detail in Section 6. A modified modelling approach to accommodate the difference in the
predictive ability among responses is presented in Section 7. Finally, conclusions are made in
Section 8. The data that are analysed in this paper can be obtained from

http://www.blackwellpublishers;co.uk/rss/

2. Literature review

The multiresponse problem consists of roughly three stages: data collection (the design of
experiments), model building and optimization. We shall focus on the optimization issue in
this work, assuming that the data have been collected and suitable models have been fitted.
One popular approach to simultaneously optimizing (strictly speaking, compromising) multi-
responses has been the use of a dimensionality reduction strategy. This method converts a
multiresponse problem into a problem with a single aggregate measure and solves it as a
single objective optimization problem. The single aggregate measure has often been defined
as a desirability function (Harrington, 1965; Derringer and Suich, 1980) or an estimated
distance from the ideal design point (Khuri and Conlon, 1981). In this paper, we propose an
alternative formulation to such approaches based on maximizing exponential desirability
functions.

Suppose that there are » responses y = (1, ¥, - - ., ¥,) Which are determined by a set of
input variables x = (x;, x,, . . ., X,). A general multiresponse problem can be defined as
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yj=ﬁ(x1’x29-"a xp)+6j’ j=1’2"~~9 r,

where f; denotes the response function between the jth response and the input variables and ¢;
is a random error. The exact form of f; is usually unknown, but it can be estimated over a
limited experimental region by using model building techniques such as regression.

One simple and intuitive approach to a multiresponse problem is to superimpose the
response contour plots and to determine an ‘optimal’ solution by a visual inspection (Lind ez
al., 1960). The usefulness of such a method is severely limited by the number of input
variables and/or responses. The next two subsections briefly review the two most prominent
methods in this field, namely the desirability function approach and the generalized distance
approach.

2.1. Desirability function approach

The desirability function approach transforms an estimated response (e.g. the jth estimated
response ;) to a scale-free value dj, called desirability. It is a value between 0 and 1, and
increases as the desirability of the corresponding response increases. The overall desirability
D, another value between 0 and 1, is defined by combining the d; using a geometric mean
(Harrington, 1965):

D= (dd,...d)". (1)

Then the objective is to find the input variable setting x* which maximizes the value of D.

Derringer and Suich (1980) extended Harrington’s approach by suggesting a more
systematic transformation scheme from j; to d,. Later, Derringer (1994) suggested a new form
of D using a weighted geometric mean:

D= (dy'dy...d")"/™, 2

where the w; are relative weights among the r responses, j =1, 2, . . ., r. If all the w; are set to
1, equation (2) reduces to equation (1). The value of D does not allow a clear interpretation,
except the principle that a higher value of D is preferred. As an example, if the overall
desirability D at x,, D(x,), is higher than D(x,), then X, is considered a better design point
than x,, but it is generally impossible to assign a physical meaning to the desirability values
D(x;) and D(x,) as well as the difference D(x;) — D(x,).

2.2. Generalized distance approach

Khuri and Conlon (1981) proposed an algorithm for the optimization of a multiresponse
system based on the generalized distance concept. They first obtained individual optima of
the estimated responses over the experimental region and then found the compromised
optimum by minimizing the distance function by measuring the deviation from the ideal
optimum. They proposed several distance measures p including

PII(0), ¢} = {(FX) — 4) £7' () — 0)/Z () (X'X)'2(x)}, 3)
where ¢ = (¢;, ¢s, ..., ¢,) is the ideal optimum, 3. is the estimator of the common
variance—covariance matrix of the random errors (e, €, . . ., €.), X is the design matrix

and z(x) is a column vector of the input variables of the given model. Their work also
takes into consideration the variation caused by the randomness of ¢ by minimizing an
upper bound on the distance within the confidence region of ¢. A similar idea was also



314 K.-J. Kim and D. K. J. Lin

given by Church (1978) who used the Euclidean distance between y(x) and ¢ instead of
equation (3).

This method is statistically sound in that the proposed distance measure considers the
deviation from the ideal point and accounts for the variances and correlations of the responses.
However, it makes rather rigid assumptions-(e.g. all response functions depend on the same
set of input variables and are of the same form —second-order polynomials) which would
restrict its applicability in a general situation. For example, including the extra explanatory
variables with zero coefficients may cause problems in routine optimization procedures, such
as creating a zero denominator. Furthermore, this approach does not consider the difference
in the predictive ability (or goodness of fit) of the estimated response models. When such a
difference is not negligible, the results from this approach can be misleading (as will be
discussed in Section 7).

3. Optimization scheme proposed

We propose an alternative formulation to the conventional desirability function approach for
the multiresponse problem based on maximining desirability functions. As in the con-
ventional desirability function approach, it is assumed that the degree of satisfaction of the
experimenter (or decision maker (DM)) with respect to the jth response variable is maximized
when $,(x) equals its target value 7; and decreases as y;(x) moves away from 7;. If ;™" and
¥ respectively represent the lower and upper bounds of aspirations, the DM does not
accept a solution x for which y,(x) < y;™" nor for which y(x) > y;"*. Thus the degree of
satisfaction with respect to the response can be modelled by a function which decreases

max

monotonically from 1 at $,(x) = T to 0 at j;(x) < y/"™" or Pi(x) = y;

3.1. Desirability function of a response

For a simple illustration, it is assumed that the degree of satisfaction changes linearly as a
function of j/(x) — T; for the time being. The desirability function value of a response,
denoted d{y(x)} (=1, 2, . . ., r), can then be expressed as in Fig. 1(a):

O, if j;j(x) < y;nin or j’\'j(x) = yjl'nax,
T; — y:(x) o min oA
. e if ™ < p(x) < T,
{5} = T,y Y S IS @
_):’(X) ~T; : A max
| - if T; < yy(x) <y
T, i) g

This procedure can be easily modified. for the smaller-the-better (STB) or LTB type of
situation. Setting y;"" = T; = 0 (assuming that J;(x) is non-negative) represents the STB
case, whereas setting y;"** = T; at a sufficiently large value represents the LTB-type situation.
(See Fig. 1(b) for the desirability function of an STB-type response.) A non-linear-shaped
desirability function can also be employed. (See Fig. 1(c).) The determination of a desirability

function shape will be further discussed in Section 5.

3.2. Determination of bounds

As discussed above, the bounds on a response ( y}“i“ and ;") should be specified to define the
desirability function. The bounds may be determined on the basis of the specification limits of
the product or process, regulations or standards of the organization or the DM’s subjective
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Fig. 1. Desirability functions of y;(x): (a) NTB type and linear case; (b) STB type and linear case; (c) STB type
and non-linear case

judgments. If it is desirable to determine the bounds on the basis of the physical range of the
response and if the response surface has been ‘reasonably fully explored’, they can be set at
the extreme values of the individual estimated response:

= min{(x)}, (5)
i = max{;(x)}. (6)

The bounds determined by equations (5) and (6) represent the minimum and maximum
possible values of the estimated response within the experimental region €.

3.3.  Formulation

A multiresponse problem requires an overall optimization, i.e. simultaneous satisfaction with
respect to all the response variables. If a ‘minimum’ operator is employed for aggregating the
responses, a multiresponse optimization problem can be stated as

maximize A @)

subject to
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dj{j’\'j(x)}z)‘, j:1’2,' <o by (8)
X € Q. )

This formulation aims to identify x* which maximizes the minimum degree of satisfaction (\)
with respect to all the responses within the experimental region, i.e.

mai(eiglize(min[dl{j}l(x)}a dZ{j)2(X)}, R} dz{j}z(x)}])

Additional constraints may be added to this formulation as appropriate. The formulation
can be extended to cope with the situation where two or more of the responses were alterna-
tives rather than all being essential. This could be done by employing a ‘maximum’ operator
(i.e. by taking the maximum of their degrees of satisfaction).

3.4. Discussion

The optimization scheme proposed above has several methodological advantages over the
existing methods. First, the proposed ‘maximin’ approach is robust to the potential
dependences between responses. Such dependence is very difficult to detect or model in
reality. Dependence can appear in various forms, whereas a pairwise linear relationship is
probably the only case that can possibly be detected. When the assumption of independence
is violated, both the conventional desirability function approach (using the average or
weighted average to aggregate the individual desirability values) and the generalized distance
approach can be very misleading, as noted by Khuri and Conlon (1981). The procedure
proposed, however, focuses on the response which has the lowest degree of satisfaction, and
thus the inequalities in expression (8) corresponding to other responses are essentially
redundant constraints from the optimization viewpoint. It is well known in the optimization
literature that redundant constraints do not play any role in determining the optimal solution
(Murty, 1976). Therefore, the existence of dependence between responses does not affect the
procedure proposed.

Secondly, the approach proposed achieves a better balance between all the responses
compared with the existing methods. Optimizing a single aggregate measure— D (given in
equation (1) or (2)) in the conventional desirability function approach or p (given in equation
(3)) in the generalized distance approach —does not explicitly consider the balance between
the multiple conflicting responses and thus may result in a setting x at which the outcome on
some of the responses is not acceptable. The approach proposed first specifies practically
allowable ranges on each of the responses and then maximizes the overall satisfaction level
within the ranges in such a way that the contribution of each response is properly reflected in
the optimization. (This point will be demonstrated through an example in Section 4.)

Thirdly, the objective function value A allows a good physical interpretation. The A-value
denotes the overall degree of satisfaction (0 < X\ < 1) based on the specified ranges of all the
responses. It can be used as a basis for a meaningful comparison between different design
points. A design point x, is preferred to another design point x, if A(x;) > A(X,). Moreover,
A(x;) — A(x,) represents how much x; is preferred to x, in terms of the overall degree of
satisfaction, which was not possible with the aggregated desirability value D of the con-
ventional desirability function approach. Finally, the approach proposed can be easily
understood and implemented by those with little mathematical or statistical knowledge,
possibly with the aid of a software system.

It should also be noted that the proposed maximin approach has possible disadvantages as
well. In particular, the approach proposed only considers the response with the lowest degree
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of satisfaction, and thus the degrees of satisfaction associated with all other responses are, in
effect, ignored. This may lead to an unreasonable decision in some cases. As an extreme
example, the approach would prefer an operating set-up with (d,, d,, ds, ds) = (0.5, 0.5, 0.5,
0.5) to that with (d|, d,, ds, d;) = (0.99, 0.99, 0.99, 0.49). It is thus recommended to perform
several approaches for the final decision, unless the DM surely understands that this scenario
is invalid. Furthermore, the dependences between responses can be viewed as a source of
extra information. The fact that the approach is insensitive to dependences means that it does
not utilize such information in the data.

It is worth noting that the approach proposed can also be viewed as a fuzzy logic
approach. Specifically, the approach adopts two concepts which also exist in fuzzy logic: the
desirability function (as a special case of the membership function) and the fuzzy ‘and’
operator. Conceptually, a desirability function can be considered a special case of a member-
ship function in fuzzy set theory in the sense that the desirability value of an estimated
response is in essence the grade of membership to a fuzzy set representing the ‘ideal’ response
(Chameau and Santamarina, 1987). The proposed maximin approach is equivalent to using
the logical and operator in fuzzy logic, denoting the intersection of the corresponding
membership functions. This optimization scheme has been proven to be useful, in the fuzzy
logic literature, to compromise multiple conflicting objectives (Bellman and Zadeh, 1970;
Zimmermann, 1987). For a discussion on the use of fuzzy methods in statistical problems, see
Laviolette et al. (1995). In the remainder of this paper, we shall focus on the generalized
distance approach as a reference method against which our proposed approach is compared.

4. Example 1: texture characteristic study

The classical example from Khuri and Conlon (1981) is employed to illustrate the approach
proposed and to compare it with the generalized distance approach. The purpose of the
experiment was to determine the effects of cysteine (x,) and calcium chloride (x,) on the texture
characteristics of a dialysed whey protein concentrates gel system. The texture characteristics
were measured by hardness y,, cohesiveness y,, springiness y; and ‘compressible water’ y,, all of
which were LTB-type responses. The experimental region was a circle of radius /2 centred at
the origin. The experiment was conducted in a central composite design with five centre points.
A second-order model was fitted to each of the four responses (see Table 2 on page 368 of Khuri
and Conlon (1981)). For a fair comparison with Khuri and Conlon’s (1981) results, the full
second-order model is used, although some items are clearly insignificant. The minimum and
maximum values y}“i" and y;"™* of each individual fitted response were obtained, as discussed in
equations (5) and (6): (¥, /™) = (0.37, 2.68), (0.30, 0.69), (1.10, 1.90), (0.23,0.71) forj = 1, 2,
3, 4 respectively. These values were used as the bounds on each response. The target value 7 is
set equal to y™ (j =1, 2, 3, 4) because all the responses are to be maximized.

The desirability function of each response, d,{J;(x)}, is defined as in equations (4). A linear
desirability function is employed for simplicity. (The issues associated with the shape of the
desirability function will be discussed further in Section 5.) The results of the approach
proposed are summarized and compared with those of Khuri and Conlon (1981) (referred to
as the KC approach) in Table 1.

The KC and the proposed approaches yield different optimal settings, x* = (x;, x,) =
(—0.46, —1.38) compared with (0.35, —1.37), and consequently different p* and A*. As
expected, x* from the KC approach has a better (smaller) p*, whereas x* from the approach
proposed has a better (higher) A*. In the KC approach, y,(x*), y,(x*) and y;(x*) are not too
different from their corresponding individual maxima, as manifested by the relatively high
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Table 1. Comparison of results: KC approach versus the approach proposed

Parameter Results for the Results for the
KC approach approach proposed

Optimal setting x* (—0.46, —1.38)t (0.35, —1.37)

Predicted response value y;(x*) (2.47, 0.54, 1.83, 0.31) (1.68, 0.55, 1.62, 0.50)

Desirability function value d;{$;(x*)} (0.92, 0.62, 0.90, 0.16) (0.57, 0.65, 0.65, 0.57)

Distance measure p*t 14.69 21.42

Overall degree of satisfaction \*} 0.16 0.57

tObtained by using the distance measure defined by equation (3) (which corresponds to equation
(4.4) in Khuri and Conlon (1981), page 366).
IA* = min;[d{ 5(x*)}].

d;{p,(x*)} values (0.92, 0.62 and 0.90, for j =1, 2, 3 respectively). However, y, has been
sacrificed; J,(x*) is only 0.31 with d,{J,(x*)} being 0.16, which essentially defines the over-
all degree of satisfaction. The desirability values from the approach proposed show that,
compared with the KC approach, a significantly better balance between the responses is
attained with the overall degree of satisfaction of 0.57. Of course, as previously mentioned,
the meaning of ‘better’ depends on the detailed nature of the problem.

The KC approach assumes that all responses have the same functional form (a second-
order polynomial, in particular). This is not required in the approach proposed. If the best
subset model (rather than the full second-order model) were used for each response, the
optimal setting would be x* = (0.31, —1.38) with y(x*) = (1.77, 0.56, 1.64, 0.47) and A* = 0.55.
Non-linear fittings, if so desired, can easily be incorporated in our procedure. A formal
comparison with the KC approach will be presented in Section 7 (Table 3).

5. Desirability function assessment

The approach proposed requires that the desirability function of each response be specified.
A linear desirability function (e.g. those in Figs 1(a) and 1(b)) is defined by fixing the lower
and upper levels of acceptability (and a target value in the NTB case). It can serve as an
approximation to the exact form of the desirability functions when the system is insensitive to
the shape of the desirability function. See, for example, Inglis et al. (1997) for a case in
biology, where the output from the fuzzy model using linear functions differed little from that
obtained by using normal distribution functions.

When a non-linear desirability function is desired, the process of selecting an admissible
functional form is difficult and time consuming. However, it can be simplified by employing a
general functional form which can generate a rich variety of shapes by adjusting its param-
eters. In view of this, we suggest the use of an exponential function of the form

exp(t) — exp(lz]) .
d=1 epl-1 ° e #0, (10)
1—|zl, if t=0,

where ¢ is a constant (—oco < ¢ < 00), called the exponential constant, and z is a standardized
parameter representing the distance of the estimated response from its target in units of the
maximum allowable deviation. For example, z for a response with a symmetric desirability
function is defined as
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;= JA’,'(X) - T; _ JA’j(X) - T;

= = : for yM < §i(x) < y™*. 11
T, T, or ¥ < yi(X) <y (11)

Equation (11) can be easily modified for an asymmetric case. Similarly, z for an STB- or an
LTB-type response is defined respectively as follows:

50x) — min
L= X =Y

max min > for yjl'mn < ),}j(x) < J’}mx, } (12)
/e
y{llax - j/(X) mi A max
= jmax ]min > for Y " S yj(x) < Vi . (13)
Yi =Y

z ranges between —1 and 1 for an NTB-type response and between 0 and 1 otherwise. In
both cases the desirability function value d(z) achieves its maximum value of 1 when z = 0,
ie. p(x) =T, ji(x) = yj‘T‘i“ or y(x) =y in equations (11), (12) and (13) respectively. The
function d(z) given in equations (10) has been proven to provide a reasonable and flexible
representation of human perception (Kirkwood and Sarin, 1980; Moskowitz and Kim, 1993)
and is convenient to handle analytically.

The function d(z) can represent many different shapes depending on the exponential
constant ¢#; it is convex, linear and concave when ¢ < 0, t =0 and ¢ > 0 respectively. As ¢
increases (from —oo to 00), d(z) becomes decreasingly convex and increasingly concave. If a
convex-shaped desirability function is used, the desirability value changes more rapidly when
z is close to 0 (and more slowly when z becomes close to 1) than when using a linear or
concave-shaped desirability function. Therefore, using a convex desirability function implies
that the deviation of the estimated response from its target value is more critical and hence
should be smaller (in units of z) than when using a linear or concave desirability function, to
maintain the same degree of satisfaction. (See the points a, b and ¢ at d(z) = d, in Fig. 2.)
Examples of the exponential desirability function with several different z-values are shown in
Fig. 2.

A desirability function reflects the DM’s belief and is considered by some to be analogous
to a utility function in decision analysis (Zimmermann, 1987). A desirability function can be

1.0 === T T —— -
i\ T~ NS
1\ S N\
084 |\ N \
1\ NG
A =0 N
0.6 \\ \\t \ \\
=N =5
s A \\ \
0.4 4 A\ \ \
d, N
\\ \\ \\\
021 \\ \\\ \\\
\\ \\\\
0.0 - T :—‘—ﬁ-——h——g\
T T T T T z
00 2 o2 04 06 b 0.8 €10

Fig. 2. Exponential desirability functions: d(z) is defined for —1 < z < 1 for an NTB-type response and for
0 < z < 1 otherwise; the graph shows only 0 < z < 1; d(z) may have a symmetric or an asymmetric shape for
-1<z<0
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measured by using procedures that are similar to those used for assessing a utility function.
For the exponential desirability function case, d(z) can be assessed by identifying just one
point on the curve because it has only one unknown parameter f. At an arbitrary point
zy (0 < zy < 1), the DM assesses how much the degree of satisfaction (denoted s) would be
and then solves the equation d(z,) = s for t:

exp(?) — exp(izy)
B S 4 1 L.
-1 S, 0<zp<l, O0<s< (14)

There is no closed form solution to equation (14), and it must be solved numerically.

A related technical issue is the sensitivity of the optimization result to the choice of z—if
two DM produce two different z-values, how will this affect the conclusion? This is a difficult
question in general. Some analysis has been done via simulation to address this issue. The
findings can be briefly summarized as follows.

(a) When all s are equal, the choice of ¢ has no effect on the optimal setting x*, i.e. the
shape of the desirability function does not affect the optimal setting if a common shape
is used for all the responses. In fact, this can be proved analytically.

(b) When the #s are not all equal, the optimization result will depend on the #s, i.e. the
optimal setting is determined on the basis of the trade-offs between the responses
prescribed by unequal #-values. In general, the lower the #-value is (less concave or
more convex), the higher the influence y;(x) has on the optimal setting determination.

6. Example 2: mechanical properties of JS-SS400 steel

Now, we return to the JS-SS400 steel case introduced in Section 1. An observational study
was performed in a major steel company in Korea. 74 data points were collected from the
manufacturing process during January—March 1997. A second-order polynomial model was
fitted to each of the three responses and then reduced to the best subset model. Note that the
approach proposed can use different sets of input variables in the response models, which is
not allowed in the KC approach. The best subset models and their R*-values are

$1(x) = — 101.01 + 1.86x, + 2.40x5 — 0.01x3 — 0.20x3 — 0.01x% 4 0.21x; x4 4 0.08x; X5

—0.14x, x4 (R* =0.98), (15)
Po(x) = 22.59 + 2.58x5 + 0.43x5 — 0.004x5 — 0.02x3 — 0.03x,x3 4+ 0.02x,x5 — 0.02x5x¢

(R* = 0.94), (16)
P3(x) = — 1160.11 + 18.71x; 4 10.83x, + 13.53x5 — 0.52x7 + 0.02x3 — 0.03x3 4 0.01x2

+0.05x,x3 — 0.03x3x5 — 0.17x,x5 (R* = 0.80). (17)

The minimum, maximum and target values of each individual fitted response were pro-
vided by the production management team of the company. These values are given in Table 2
and were used as the bounds on each response.

Among the three responses, y, is considered the most important, followed by y,. The pro-
duction management team agreed on employing a convex, linear and concave desirability
function for y;, y, and y; with r = —3.0, 0.0, 3.0 respectively. Table 2 also shows the current
operating condition and the optimization results. The ‘without R* consideration’ portion of
Table 2 is discussed next. The ‘with R* consideration’ portion will be discussed in Section 7.



Simultaneous Optimization 321

Table 2. Best subset models and optimization results of the JS-SS400 steel case

Parameter Responses

N Y2 V3
Bounds and target
yj"““ 43.10 26.30 20.00
e 52.00 48.08 43.67
T; 47.55 48.08 43.67

J

Current operating condition X" = (17.74, 78.08, 15.42, 9.55, 86.75, 63.24)%
y(x%) 48.88 33.79 24.04

Optzmlmtmn results
Without R? consideration: (¢, t,, £3) = (3.0, 0.0, 3.0); x* = (18.02, 109.67, 9.57, 12.01, 85.00, 64.00)

yj(x*) 47.72 45.85 34.42
di{3;(x*)} 0.88 0.90 0.88

With R? consideration: (¢}, #, 13)f = (2.7, 0.6, 4.4); x* = (18.00, 110.00, 9.23, 11.97, 85.00, 64.00)
Pi(x*) 47.65 46.28 34.06
d{3;(x*)} 0.94 0.94 0.94

tAllowable ranges of x,—xs (x™", x™) are as follows: x; = (0.16, 0.20) if 7.00 < x, < 10.00 and x; = (0.18,
0.22)if 10.00 < x, < 12.70; x, = (0.70, 0.90) if 7.00 < x, < 10.00 and x, = (0.18, 0.22) if 10.00 < x, < 12.70;
x3 = (0.00, 0.03); x, = (7.00, 12.70); x5 = (850, 890); x = (600, 640).

1t =t + (1 — RHE™™ — 1) with /™ = 10.

6.1. Comparison of current operating condition and optimization results

It is notable that j(x*) dominates y(x°) in all three responses, where y(x’) denotes the
response values at the current operating condition. The current operating condition was
determined on the basis of the engineers’ experience, without the aid of formal experimental
methodologies. It is clear from the comparison that the current operating condition is far
from being optimal. y,(x") is quite comparable with ,(x*), whereas y,(x") and y(x°) are
significantly worse than their counterparts in y(x*). This may be attributed to the fact that y,
(tensile strength) was of primary concern in setting up the current operating condition
because it was impossible in practice to consider all three responses in determining the
parameter values.

7. Modified modelling approach: consideration of predictive ability

Neither the KC approach nor the approach presented in Section 3 takes into consideration
the predictive ability of the estimated response models. Both approaches implicitly assume
that all y(x)s have the same level of predictive ability. Consequently, the results can be mis-
leading if in fact there is a significant difference in the levels of predictive ability (goodness of
fit). The modelling approach proposed can be modified to incorporate the level of predictive
ability when this is a concern, by adjusting the shape of the desirability function.

In principle, an estimated response y;(x) with a lower predictive ability should have a
smaller effect in the optimization. The discussion in Section 5 indicates that y,(x) with a more
concave (or less convex) desirability function has a smaller effect in determining the optimal
solution. Conceptually, a lower predictive ability can be translated into a more concave (or
less convex) shape of the desirability function. To implement the translation, we need to
determine how much adjustment in the shape of the desirability function should be made for
a given magnitude of difference in the predictive ability. The predictive ability can be
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measured by many different criteria such as R?, adjusted R’, Akaike’s information criterion
and the mean-squared error. For simplicity of presentation, we use the well-known R?. Other
criteria can be used in a similar manner.

To incorporate the predictive ability of a response, we propose to use

exp(t) — exp(t'|z|) 720
d={ ept)-1 e #0, (18)
1—z|, if Y =0,

where 1’ = ¢+ (1 — R*)(f™™ — {), t is the exponential constant used in equations (10) without
considering the predictive ability and ™" is a sufficiently large value of ¢ such that d(z) with
™ is extremely concave and thus has virtually no effect in the optimization. When R* = 1,
¢’ = tand d'(z) equals d(z) defined in equations (10). However, when R* = 0, {' = /™ and the
corresponding response model would have virtually no effect. In general, when 0 < R* < 1,
t <t <™ and d'(z) is more concave or less convex than d(z). As mentioned in Kirkwood
(1996), realistic values of ¢ will generally have a magnitude between —10 and 10. We suggest
£ = 10 for practical use.

In summary, the desirability function is assessed in a two-step procedure, namely the basic
desirability function d(z) in the first step and the modified desirability function d’'(z) in the
second step. d(z) is determined solely on the basis of the generic importance of the response.
Then, the predictive ability is taken into account to transform d(z) into d'(z).

Fig. 3 illustrates the shape of d'(z) when R? = 0.5 for three different d(z)s, namely 7 = —3.0,
0.0 and 3.0 in Fig. 3(a), Fig. 3(b) and Fig. 3(c) respectively. In all three cases, the d'(z)s
are more concave than the corresponding d(z)s, but with different degrees. As the f-value of
d(z) becomes lower, the change in ¢ due to an imperfect R*-value becomes bigger (i.e.
At=1t'—1t=6.5, 5.0 and 3.5 in Fig. 3(a), Fig. 3(b) and Fig. 3(c) respectively). This implies
that, as the desirability function of a response becomes less concave (or more convex), its use
should be justified by a higher R’-value of the corresponding estimated response. This is to
avoid the optimization algorithm’s placing unduly high priority on an estimated response
model which is not reliable. Hence, in the adjustment scheme proposed, the ¢#'-value becomes
more rapidly ‘inflated’ by a unit decrease in R* as the basic -value becomes lower.

7.1.  Mechanical properties of JS-S5400 steel

We illustrate the modified modelling approach by using the case discussed in Section 6. In
this case, 7;(x) has a notably lower R*-value than do ,(x) and $,(x). (The R*-values for ), (x),
$,(x) and $5(x) are 0.98, 0.94 and 0.80 respectively.) On the basis of the R*-values, modified
desirability functions d’(z) are constructed. As shown in Table 2, the modified exponential
coeflicients ¢’ are —2.7, 0.6 and 4.4 for y,, y, and y, respectively. d(z)s and the corresponding
d'(z)s are depicted in Fig. 4.

When the R*-difference is taken into account, $,(x*) has improved from 47.72 to 47.65 (i.e.
has moved closer to the target value by 0.07). This is because d’(z) for y, is now even more
convex, in a relative sense, than other d’'(z)s, indicating that a higher priority has been placed
on y, in the optimization process compared with the ‘without R* consideration’ case. In
contrast, $3(x*) has been lowered because of its low R*. The difference between the optim-
ization results without and with R? consideration increases as the difference in the R*-values
among the responses increases.

It is certainly possible to envision situations where the desirability value never fell to 0,
because it was not absolutely essential to the overall satisfaction. Even in such a case, the
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Flzg 3. Basnc desirability functions d(z) ( ) versus modified desirability functions d'(z) (— — —) when

=0.5: (a) t = —3.0; (b) t = 0.0; (c) t = 3.0

modification idea discussed above can be equally applied, namely, regardless of the shape of
d(z), d'(z) would be more concave than the original d(z) (assuming that R* < 1) and thus
positioned between d(z) and the extremely concave desirability function (i.e. d(z) with ™),
with the starting-point (d(z) at z = 0) and the ending point (d(z) at z = 1) remaining fixed.

Table 3 compares the KC approach and the modified modelling approach discussed in this
section in terms of the optimization criterion, assumptions and model characteristics. In
contrast with the KC approach, the approach proposed does not require any assumptions
regarding the form or degree of the estimated response models and the existence of linear
dependences between the responses. Moreover, it takes into consideration the difference in
the predictive ability and the relative priority among the estimated models through an
adjustment of the shape of the desirability function.

8. Conclusions

An alternative modelling approach to optimize the multiresponse system, based on max-
imining exponential desirability functions, has been presented. The approach proposed aims
to identify the setting of input variables to maximize the overall minimal level of satisfaction
with respect to all the responses.
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Fig. 4. Basic desirability functions d(2) ( ) versus modified desirability functions d’'(z) (— — —) for the JS-
SS400 steel case (for y, (NTB type), only the right-hand half of the desirability function is shown)

Table 3. Comparison of the KC approach and the approach proposed

KC approach Approach proposed

Maximize the overall degree of
satisfaction of all responses
(achieving an optimal balance)

Optimization criterion Minimize the distance of ;(x)
from ¢ (being closest to the

ideal point)

Model assumptions
Response models Each response may have different

functional form and different set of

Each response should be of the
same functional form and use

Dependence between
responses

Prediction ability of
responses

Relative weights among
responses

the same design

Dependence should be removed in
advance (dependence is
unidentifiable in general)

Assume equal prediction ability
for all individual response
modelling

Relative weights are assumed
to be equal

input variables
No assumption needed
(dependence does not matter)

Different prediction ability
can be incorporated into
the shape of desirability function

Relative weights can be
incorporated into the shape

of desirability function

The approach proposed does not require any assumptions regarding the form or degree of
the estimated response models and the existence of linear or non-linear dependences between
the responses (although the usual assumptions on the random-error terms and the exponential
shape of the desirability function are still needed). Moreover, it takes into consideration the
difference in the predictive ability and the relative priority among the estimated models
through an adjustment of the shape of the desirability function. Therefore, the approach
proposed enables practitioners to overcome some limitations of the existing approaches, e.g.
requiring all response models to be of the same functional form, use of the same design, being
dependent on knowing the variance—covariance matrix and being unable to take into account
the size of the prediction variance (Khuri, 1996).

The model proposed can certainly be modified by users for their specific needs. In par-
ticular, the R*-value was used as a measure of the predictive ability of a response model.
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However, any performance measure other than R can be employed as appropriate. In
Section 7, our model proposed that the modified exponential constant ' be determined by
1+ (1 — R*)(f™ — ), which is essentially a linear function of R* (or whatever performance
measure the users choose to employ). Different functional forms of R? can be devised to
accelerate or decelerate the adjustment of the ¢-value with the change in R’-value. All
computations associated with the optimization approach proposed can be done using any
general algorithm for a non-linear problem.
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