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Random Number Generation for the New Century

Lih-Yuan DENG and Dennis K. J. LIN

Use of empirical studies based on computer-generated ran-
dom numbers has become a common practice in the devel-
opment of statistical methods, particularly when the ana-
lytical study of a statistical procedure becomes intractable.
The quality of any simulation study depends heavily on the
quality of the random number generators. Classical uniform
random number generators have some major defects—such
as the (relatively) short period length and the lack of higher-
dimension uniformity. Two recent uniform pseudo-random
number generators (MRG and MCG) are reviewed. They
are compared with the classical generator LCG. It is shown
that MRG/MCG are much better random number genera-
tors than the popular LCG. Special forms of MRG/MCG
are introduced and recommended as the random number
generators for the new century. A step-by-step procedure
for constructing such random number generators is also
provided.

KEY WORDS: Linear congruential generator (LCG);
Matrix congruential generator (MCG); Multiple recursive
generator (MRG); Portable and efficient generator.

1. INTRODUCTION

A tremendous amount of computer software has been
developed to support statistical computing requirements in
the past decade. Simulation study has become a common
practice in the development of statistical methods. This is
particularly true when the analytical study is intractable.
Generation of random variates with a specified distribution
is a key issue of almost any simulation study. Given the
distribution, often there are several generating methods that
can be used to produce a random number sequence. These
methods are mainly based on the generation of independent
variates from the uniform distribution, U(0,1). Thus, the
uniform random number generation is the foundation for
all computer simulation studies. Because of this, we will
focus on U(0,1) random number generators in this article.

Note that random numbers generated by any specific al-
gorithm are “systematic” and therefore are neither truly
independent, nor purely random. A set of criteria is thus
desirable for selecting/comparing random number gener-
ators. It is common to consider five major issues for the
comparison: (1) period length; (2) computing efficiency; (3)
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portability; (4) theoretical justification on randomness; and
(5) empirical performance.

Many random number generators have been proposed in
the literature. The most popular generator, the linear con-
gruential generator (LCG), was proposed by Lehmer (1951)
and is widely used today. It is generated from a simple lin-
ear recursive relation with a modulus p, which is commonly
chosen as a large prime number or of the form 2% to fit in
the computer word size (say, 32-bits). Once pseudo ran-
dom integers between 0 and p are generated, they are trans-
formed into the interval [0, 1] by a scale of 1/p. One of the
major limitations of the LCG is that its period is limited by
the modulus p. Most of the software uses p = 23! — 1. This
may have been sufficiently large for most simulations done
in the past; however, with better and better computer facil-
ities now available, the scale of simulation study is getting
larger and larger. For a large scale simulation study, such a
life period may not be enough. This is particularly true for
parallel simulation systems.

Two recent uniform number generators are discussed in
Section 2: multiple recursive generator (MRG) and matrix
congruential generator (MCG). MRG is generated from a
linear combination of the past & random numbers. MCG
can be considered as a k-dimensional extension of the clas-
sical LCG. MCG and MRG are closely related (see, e.g.,
Deng, Rousseau, and Yuan 1992). The maximum period of
MRG/MCG is p* — 1 (as compared to p for LCG). The ma-
jor drawback of using MRG/MCG in their general forms is
that computing time is about % times more than that of the
LCG. Such a drawback, however, can be managed. Section
3 proposes special forms of MRG/MCG with periods of
p® — 1 and computing times the same as that of LCG. In
addition, sample listings of MRG/MCG’s for k = 2,3, 4 are
given. A step-by-step procedure for constructing such a ran-
dom number generator is also provided. Section 4 compares
the performance of LCG with MRG/MCG. It is shown that,
in terms of several popular criteria, MRG/MCG perform
much better than LCG. It is our hope that the software
authors, especially for statistical applications, can update
their random number generator to MRG/MCG to prepare
the simulation needs for the new century.

2. CLASSICAL AND RECENT RANDOM NUMBER
GENERATORS

This section reviews briefly three random number gen-
erators: linear congruential generator (LCG), multiple re-
cursive generator (MRG), and matix congruential generator
(MCGQ). For a recent review on random number generation,
see Deng (1998).

2.1 Linear Congruential Generator (LCG)

The congruential method, proposed by Lehmer (1951), is
the most commonly used pseudo-random number generator.
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A sequence of random numbers is obtained by setting

: 0y

where X;, B, A, and m are non-negative integers. The qual-
ity of the generator is determined by the choice of the in-
crement A, multiplier B, initial seed Xg, and modulus m.
If A is not zero, it is possible to achieve the full period
m (Knuth 1981, p. 16). If A = 0, it is called a multiplica-
tive linear congruential generator (MLCG), in which case
it becomes

X, = (BXi_l +A) mod m, 12>1

The maximum period of the sequence {Xg, X;, Xa,...}
generated depends on the choice of the modulus m (Knuth
1981, p. 20).

Marsaglia (1968) was the first to show that successive
overlapping sequences of k£ random numbers fall on at most
(k'm)'/* planes, where m is the modulus chosen. This
shortcoming may yield grossly wrong results for certain
applications, such as the Monte Carlo multiple-integration
method. It is also known that LCG cannot generate all lat-
tice points in two- or higher dimensional space, even though
it is capable to generate uniformity in one-dimensional
space.

2.2 Multiple Recursive Generator (MRG)

MRG is a natural extension of LCG. Instead of comput-
ing the next random number from the one just computed,
MRG computes a linear combination of the past k& ran-
dom numbers generated. The maximum period of MRG can
be generated from a degree k primitive polynomial (Knuth
1981, p. 28-29)

flz) =2 —aa™t - — oy, (3)
with period p* — 1 by

X;i =X+ - +apX,x)modp, i>k (4)
for any initial nonzero vector (Xg,..., Xx_1), where p is
a large prime number. A polynomial of degree & is said to
be a “primitive polynomial modulo p” if this polynomial
has a root that is a primitive element of the field with p*
elements. Please see Knuth (1981), Zierler (1959), Golomb
(1967), and Lid] and Niederreiter (1986) for more about the
primitive polynomial and the MRG. Clearly, when k = 1,
MRG is reduced to LCG.

2.3 Matrix Congruential Generator (MCG).

The matrix generator, considered by Franklin (1964),
Grothe (1987), and Niederreiter (1986), is defined by
X, = BXi_l mod D, 1> 1, (5)
where X;’s are k-dimensional vectors, Xy # 0 is an ini-
tial nonzero vector, B is a k x k matrix, and p is usually
chosen as a large prime number. The maximum period of
the MCG is p* — 1. A brief review of the matrix generator
was given by L'Ecuyer (1990). The procedure proposed by
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Grothe (1987) of finding the matrix multiplier B with the
maximum period depends on the availability of the prim-
itive polynomial of degree k. Deng, Rousseau, and Yuan
(1992) described a more efficient and flexible procedure to
find MRG/MCG with the maximum period.

3. EFFICIENT AND PORTABLE MRG/MCG

3.1 Efficient MRG

As we can see in Section 2, the MRG has a much longer
period than the period of the LCG. One of the drawbacks is
its computing time, which is about & times longer than the
computing time of LCG. To improve the efficiency of the
MRG, we can make use of Watson’s (1962) idea to set as
many terms of «; in MRG to be 0 and/or 1 as possible.
In particular, we can find some MRG’s with o; = +1 and
a;=0for 2 <i< k-1, a; = B, where B is an integer
properly chosen so that the MRG has the maximum period
p* — 1. Here, we propose a special form of the MRG, fast
MRG (FMRG), as

X, = (BXi_k — Xi—l) mod D, 1> k (6)

Clearly, the FMRG defined in (6) is very similar to the LCG
defined in (1). The difference between the LCG in (1) and
the FMRG in (6) is that we add a constant increment A in
LCG whereas we add/subtract a variable increment X;_;
in the FMRG. Obviously, we do not expect any difference
between the LCG and the FMRG in terms of their comput-
ing time. L'Ecuyer (1990) suggested consideration of two
nonzero terms, a; and ay (1 < j < k), of the MRG in (4).
Therefore, their computing time is about double the com-
puting time of the FMRG proposed here. It is well known
that the subtraction of two positive integers represented in
a computer word will not cause an overflow. If the result is
negative, then add p to the final result. On the other hand,
the addition of two positive integers may cause an over-
flow. Thus, using BX;_, — X;_ in (6) is better than using
BX;_ i + Xi_1.

3.2 Portable MRG

In many applications, we prefer a random number gen-
erator which is portable. A portable generator can be im-
plemented in high-level programming language (e.g., FOR-
TRAN, Pascal, C/C++) and will produce the same random
sequence on any machine with a sufficient word length.

To program a portable generator, care must be taken to
avoid a possible loss of lower order bits when multiplying.
Most high-level languages have a data type like DOUBLE
PRECISION in FORTRAN, but the number of bits stored
is less than the double word. The reason is that a number of
bits are used to store the exponent in the floating point rep-
resentation. For example, an IBM 370 carries only 53-56
bits of accuracy, commonly called the mantissa, in double-
precision. The remaining bits are used for the sign bit and
its exponent. The IEEE microprocessor floating-point for-
mat standard for double-precision is 52 bits for its mantissa
and 14 bits for its sign and exponent. The multiplication of
two 31-bit numbers may yield a number 62-bits long, which
cannot be stored exactly in double-precision. There are sev-
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Table 1. Listing of B in (6), p = 231 — 1
(a)
k=2 26403 27149 29812 30229
33236 33986 34601 36098
36673 36848 37097 37877
40851 40961 42174 42457
43693 44314 44530 45670
Period = 4, 611, 686, 014, 132, 420, 608
(b)
k=3 21960 23990 24683 28676
29935 30173 30994 31139
32226 33069 34577 35216
35849 36572 39211 39683
42293 43586 44656 45148
Period = 9, 903, 520, 300, 447, 984, 150, 353, 281, 022
(c)
k=4 22093 22141 23234 23584
28097 33356 33986 34074
34736 35592 36098 36848
39188 39532 40214 41440
44530 44762 45221 46071

Period = 21267647892944572736998860269687930880

eral solutions to this problem. The first is to implement the
generator in an assembly language, which is consequen-
tially more efficient. Of course, the disadvantage is that it
will not be portable across all machines. The second choice
is to restrict the multiplier B in (6) to be a certain limit (say
15bitsor B < \/jﬁ) so that the multiplication can not exceed
52 bits. A statement like X; := DMOD(BX;_; — X;_1,p)
will produce the exact result.

Another reason for restricting B < /p is due to a clever
method given by Payne, Rabung, and Bogyo (1969). Specif-

Using the equations above, we can see that

Y B - X mod p
B-(A-Q+ R)mod p
((B-A-Q)+B-R)modp

(—C-Q+B-R)mod p

9)

ically, to compute ¥ = B - X mod p, we first find the quo-
tient A = [p/B] and the remainder C = p — A - B, where
[2] is the largest integer < z. Therefore, we have

Payne, Rabung, and Bogyo (1969) showed that the compu-
tation always stays strictly between —p and p, if B < /p
(see also L'Ecuyer 1988). Using the algorithm described by

Deng, Rousseau, and Yuan (1992), we give a sample list of

p=A-B+C, 0<C<B. (7) B < /pforp=2%—1in Table I.

3.3 Efficient and Portable MCG

Similarly, to improve the efficiency of MCG, we can set
as many terms of B;; in MCG to be 0 or +1 as possible.

For the value of X given, we find find the quotient Q =
[X/A] and the remainder R = X — A - Q. That is, we have

X=A-Q+R, 0L<R<A (8) In particular, we can find MCG with the maximum period
Table 2. Listing of B; in (10), p = 237 — 1
(@
k=2 By 41546 32840 45670 13489 34601
By 39606 35496 1853 22921 32207
Period = 4, 611, 686, 014, 132, 420, 608
(b)
k=3 B, 24101 28876 21199 34577 4572
B, 13872 44515 34942 25100 25580
B 11269 794 34546 20127 32253
Period = 9, 903, 520, 300, 447, 984, 150, 353, 281, 022
(c)
k=4 B,y 36421 18331 2995 19875 18799
B2 42276 32944 72 35787 24874
Bs 28478 24787 5121 18825 25217
By 42247 45231 18677 25443 24181
Period = 21267647892944572736998860269687930880
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Figure 1. Comparing LCG and MRG. LCG: X(l) = 16807 X(I — 1)} mod 2147483647 MRG: X(1) = 39613 X(I — 2) — X(I — 1) mod 2147483647.

p* — 1 of the following form: where B;(1 < i < k) are suitably chosen integers. In this
case, the matrix in the MCG the recursive formula becomes

Xnew,l Ble - X2
Xnew,Z B2X2 - X3
B, -1 0 ... 0 . — . mod p. (11
0 By -1 0 .
0 0 0 Xnew.k Bka - Xl
B= . . Cee , (10) '
e Following the naming convention of FMRG, we will call
0o 0 0 ... -1 the special form of MCG in (10) or (11) the Fast MCG
-1 0 0 ... Bx (FMCG).
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Clearly, each component of the FMCG defined above is
very similar to the LCG defined in (1). The difference be-
tween the LCG and each component of the FMCG is that
we add a constant increment A in LCG whereas we subtract
a variable increment in FMCG. Obviously, we do not ex-
pect any difference between the LCG in (1) and the special
form of the FMCG in (11) in their computing time. In fact,
one can argue that FMCG can be even slightly faster than
LCG: in order to compute k& random numbers, one needs
a simple loop computing FMCG whereas one needs to call
the LCG routine k times. The overheads of calling the func-
tion/subroutine may cause the LCG to be slower than the
special form of the FMCG in (11). Like the FMRG, the
FMCG has a much longer period than that of LCG. Sim-
ilar to the discussion of portable MRG, we will restrict
B; < /p for the FMCG. Using the algorithm described by
Deng, Rousseau, and Yuan (1992), we give a sample list of
B; < p,i=1,2,....k for p =23 —1 in Table 2.

3.4 Construction of FMRG/FMCG

To demonstrate the use of FMRG/FMCG, we summarize
the steps as follows. Since the steps described are very sim-
ilar for FMRG and FMCG, only the steps for implementing
portable FMRG are stated here.

1. Pick a k in FMRG. As we see, the period length in-
creases by about p fold whenever & is increased by 1. On
the other hand, a larger & for the FMRG will be somewhat
slower than a smaller k. We need to keep track of the values
of past k values to compute the next random number. Once
this is done, we need to shift and update the % values.

2. Pick a B in FMRG. Once £ is decided, we can pick a
B from Table 1. For example, in the next section, we pick
a FMRG with & = 2 and B = 39613 from Table 1(a). The
corresponding values of A and C in (7) are A = 54211 and
C = 23304.

3. Pick any initial seed. For £ = 2, any nonzero two-
dimensional vector (X, X;) can be used as initial seed.

4. Portable FMRG. In the specific case mentioned, for i >
2, using formula (9) and p = 2147483647, we can compute
the FMRG iteratively as

Xi = (39613X1_2 - Xifl) mod P
= (39613 - R—23304-Q — X, ;) mod p, (12)

where Q = [X;_2/54211], and R = mod (X,_o, 54211).

4. EMPIRICAL AND STATISTICAL
JUSTIFICATIONS

This section empirically compares performances of the
LCG and the FMRG/FMCG. As previously mentioned,
FMRG and FMCG are closely related to each other and
their performances are also similar. Therefore, we only re-
port the empirical results for FMRG here. The LCG with
B = 16807 in (2) has been used in almost all computer
systems and packages (e.g., IMSL and SAS). The modu-
lus is p = 231 — 1 = 2147483647. In this empirical study,
we choose the same modulus p as in LCG and £ = 2 for
FMRG. The FMRG considered here is given in (12).

4.1 Period Length Comparison

From previous sections, we know the period com-
parison about these two generators: For LCG: X; =
16807X;_; mod 2147483647, with a period = 2,147,483,
646; while for FMRG: (¢ = 2) X; = 39613X;_o —
Xi—1 mod 2147483647, with a period = 4,611, 686,014,
132,420,608. The period of the LCG is bounded by the
word size of the computer, while other generators have an
extremely long period which is independent of the com-
puter word size. For example, for FMRG with k& = 4 and
p = 23! — 1, the period is about 2.1 x 1037, which will take
today’s fastest computer at least a trillion years to complete
the whole cycle.

4.2 Efficiency and Portability

The FMRG in (6) and LCG in (1) have a similar form
except the increment term. Therefore, they can be imple-
mented easily and efficiently. As described in Section 4,
both LCG and FMRG can be implemented in a high-level
programming language (e.g., FORTRAN, Pascal, C/C++)
and it will produce the same random sequence on any ma-
chine with a sufficient word length.

4.3 Graphical Comparison

Once X; has been generated, we can scale it to (0,1)
by U; = X;/p for LCG and FMRG. Figure 1 shows the
plots of (U;, U; 1) for the first 2,500 pairs generated: Figure
1(a) zooms in the range .70 < U; < .71; while Figure 1(b)
zooms in the range .700 < U; < .701 Clearly, the plot shows
that the FMRG is a much better generator than LCG. As
expected, the plot of (U;,U;1) using the LCG displays a
distinct linear (nonrandom) pattern over a smaller range of
U; as in .700 < U; < .701. On the other hand, the FMRG
does not display any linear pattern.

4.4 Theoretical or Statistical Justification

It is well known that the LCG is one-distributed. The
sequence of random numbers by a random number gen-
erator is said to have “k-distribution property” if every k-
tuple of numbers appears exactly the same number of times,
with the exception of the all-zero tuple which appears one
time less. (See, e.g., Tootill, Robinson, and Eagle 1973.)
Marsaglia (1968) was the first to show that consecutive k
points generated by the LCG will lie in a relatively small
number of parallel planes. The successive overlapping of
k-tuples of sequence generated by the FMRG will generate
all points in k-dimension lattice points (except 0). (See, e.g.,
Golomb 1967.) The FMRG can be thought of as a combi-
nation generator similar to that considered by Wichmann
and Hill (1982). Deng and George (1990) and Deng, Lin,
Wang, and Yuan (1997) gave some statistical justification
for the asymptotic uniformity and asymptotic independence
of vectors generated by the combination generators.

5. CONCLUDING REMARKS

This article proposes a portable FMRG/FMCG. We have
shown that FMRG/FMCG are much better random num-
ber generators than the classical LCG. FMRG/FMCG are
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as fast as the classical LCG, while their period lengths are
much longer than that of LCG. The empirical performances
of FMRG/FMCG are shown to be better than that of the
LCG. Finally, FMRG/FMCG have a nicer theoretical sup-
port than the LCG. We truly believe that it is about time to
replace the old generator like LCG with new and improved
generators like FMRG/FMCG for the new century.

[Received June 1997. Revised November 1998.]
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