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Abstract: Hadamard matrices are found to be useful in constructing supersaturated

designs. In this paper, we study a special form of supersaturated designs using

Hadamard matrices. Properties of such a supersaturated design are discussed. It

is shown that the popular E(s2) criterion is in general inadequate to measure the

goodness of a supersaturated design. A new criterion based upon the projection

property, called resolution rank (r-rank), is proposed. Furthermore, an upper bound

for r-rank is given for practical use.
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1. Introduction

When the number of factors is large and a small number of runs is desired,
a supersaturated design can save considerable cost. A two-level supersaturated
design is a fraction of a factorial design with n observations in which the number
of factors k is larger than n − 1. The usefulness of such a supersaturated design
relies upon the realism of effect sparsity, namely, that the number of dominant
active factors is small. The goal is to identify these active factors with so-called
screening experimentation. (A brief review of early work on supersaturated de-
signs is available from Lin (1991).)

Apart from some ad hoc procedures and computer-generated designs, the
construction problem has not been addressed until very recently (see Lin (1993a)
and (1995), Wu (1993), and Tang and Wu (1997)). Most of these supersaturated
designs were constructed based on Hadamard matrices. In this paper, a special
form of supersaturated designs using Hadamard matrices is studied. Further-
more, a criterion based upon the projection property called resolution rank is
proposed to further differentiate among designs.

2. The Construction Method

Consider a supersaturated design of the form

Xc = [H1,H2C], (2.1)
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where H1,H2 are two normalized Hadamard matrices of dimension n×n, and C
is an n× (n− c) matrix representing the operation of column selection so that all
fully aliased columns are removed. For example, if c columns of H1 need to be
removed, the corresponding C can be obtained by deleting c columns from In,
the identity matrix of order n. Clearly, the column of 1′s (or −1′s) in H1 will
not be assigned to any factor and the total number of factors (columns) in (2.1)
that can be considered is k = (n − 1) + (n − c) = 2n − c − 1. To make a clearer
and simpler presentation of our results, we keep the column of 1′s in (2.1). It
can be seen that this method is equivalent to a method proposed by Tang and
Wu (1997).

The supersaturated design Xc proposed here includes several interesting spe-
cial cases. First, when H2 = D(hi)H1, where D(hi) is the diagonal matrix with
diagonal elements equal to the elements of hi, the ith column of H1, 1 < i ≤ n,
and C is the matrix corresponding to the deletion of the first and ith columns,
Xc is the same as the design obtained by the product method proposed by Wu
(1993). When P is a matrix corresponding to a permutation of the row vectors
in H1, H2 = PD(±hi)H1 corresponds to the operation of permuting rows, fol-
lowing the product method. A more general form of supersaturated designs is
given in Cheng (1997). We will focus on the design of (2.1) here, however. Note
also that (2.1) can be easily extended to the form of (HC1,H2C2, . . . ,HKCK),
if so desired.

3. Main Results

Denote the ith column of H1 as hi, and the jth column of H2 as kj . For
any supersaturated design Xc in (2.1), it can be shown that

X′
cXc =

( nIn H′
1H2C

C′H′
2H1 nIn−c

)
=

( nIn WC
C′W′ nIn−c

)
,

where
W = H′

1H2 = (wij) = (h′
ikj).

Let sij denote the (i, j) entry of X′
cXc. Then E(s2) of Xc, proposed by Booth

and Cox (1962), can be defined as

E(s2) =
∑
i<j

s2
ij/

(k
2

)
,

where k = 2n − c − 1 is the number of columns (excluding the column of 1’s)
in Xc. Clearly, E(s2) is equal to a constant times

∑
j∈C

∑n
i=1 w2

ij (here,
∑

j∈C

denotes a summation over the (n− c) columns selected by the matrix C), which
stays constant as shown in Theorem 1.

Theorem 1. Let W = H′
1H2, where H1,H2 are Hadamard matrices of dimen-

sion n × n. Then we have
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(1) 1
nW is an n × n orthogonal matrix;

(2) n2 =
∑n

i=1 w2
ij =

∑n
j=1 w2

ij;

(3) wij is always a multiple of 4.

Corollary 1. For any C,H1 and H2, all Xc in (2.1) have E(s2)= 2n2(n−c)
(2n−c−1)(2n−c−2) .

Corollary 1 implies that the popular criterion E(s2) used in supersaturated
design theory is invariant for many choices of C. Therefore, it is not effective in
comparing supersaturated designs. Wu (1993) and Deng, Lin and Wang (1996a)
extend the classical design optimalities and propose to compute the average Df

(D-optimal) and Af (A-optimal) criteria over the projected submatrices of f

columns to select a better supersaturated design. A large average Df , however,
does not ensure that every projective design is nonsingular (namely, the identifi-
ability in terms of the projective design). One important feature of the goodness
of a supersaturated design is such a projective property (see Lin (1993b) and
Cheng (1995)). We thus consider the r-rank property as defined below.

Definition. Let X = (x1, . . . ,xk) be an n× k matrix. The resolution-rank of X
(r-rank, for short) is defined as r= max{c : for any (xi1, . . . ,xic) of X,xi1, . . . ,

xic are linearly independent}.
Clearly, if a supersaturated design X has an r-rank of f , then when X is

projected to any submatrix of f (or fewer) factors, the main effects of the pro-
jected design are all estimable. Moreover, in many situations where two super-
saturated designs have nearly identical Df and Af values (differences are less
than 1%), their r-ranks can be very different. As an illustrative example, let
H1 be the Hadamard matrix of “V. 3/8 Group” given in Hall (1961). Define
Xa = [H1,HaC] and Xb = [H1,HbC], where Ha and Hb are permutation ma-
trices resulting from the row orders (12, 15, 11, 7, 6, 3, 2, 14, 16, 5, 1, 4, 10, 13, 8, 9)
and (10, 15, 14, 12, 3, 9, 16, 7, 4, 6, 13, 5, 1, 2, 8, 11) of H1, respectively, and C is a
matrix deleting the first column of the identity matrix of order n. It can be
shown that both Xa and Xb have E(s2) = 8.83 while their r-ranks are 4 and 7,
respectively. For other examples, see Deng, Lin and Wang ((1994), Table 1).

Remark. It has come to our attention that the r-rank criterion is closely related
to the Pt property given by Srivastava (1975) in the context of search design.
The present paper is a condensed version of Deng, Lin and Wang’s 1994 IBM
Technical Reprot where the idea of r-rank was first proposed. There has been
some subsequent work since then. For example, Deng, Lin and Wang (1996b)
used the r-rank criterion as an optimality criterion for adding columns to any
orthogonal array.

One way to check the r-rank of a supersaturated design is to check all
(k
f

)
sub-matrices for f = 2, 3 . . . etc. This is very time consuming, even for moderate
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k and f , although it is faster than evaluating Df and Af . We shall derive a
simple upper bound on the r-rank.

Lemma 1. Let W = H′
1H2 = (wij). Then nkj =

∑n
i=1 wijhi, where hi is the

ith column of H1 and kj is the jth column of H2.

As we can see from Lemma 1, if many wij are zero, then kj will be a linear
combination of only a few hi. Let r1 = min{|Uj |, j ∈ C}, where Uj = {i|wij �=
0, i = 1, 2, . . . , n}, |S| is the number of elements in a set S, and j ∈ C means
the jth column of H2 selected by C. Similarly, for fixed j1 �= j2 ∈ C, let
r2 = min{|U+

j1,j2|, |U1
j1,j2|, j1 �= j2 ∈ C}+ 1, where U+

j1j2 = {i|wij1 + wij2 �= 0, i =
1, 2, . . . , n} and U−

j1j2 = {i|wij1 − wij2 �= 0, i = 1, 2, . . . , n}. Then we have the
following theorem.

Theorem 2. r-rank ≤ min{r1, r2} = re.

This upper bound for the r-rank has some obvious advantages. First, it
is very easy to compute. According to our study, it is at least 10,000 times
faster than calculating the actual r-rank (and Df , Af criteria). Second, re can
easily screen out many undesirable (e.g., low r-rank) supersaturated designs Xc

of the form in (2.1). Third, empirical studies show that re is a good estimate
of the r-rank. Consider the two supersaturated designs Xa and Xb based on a
Hadamard matrix of order 16 as previously given, for example. For Xa, r1 = 4
and r2 = 6, and thus re = min(r1, r2) = 4. For Xb, r1 = 7 and r2 = 8, and
thus re = min(r1, r2) = 7. A straightforward evaluation of all possible column
combinations confirms that the r-ranks of Xa and Xb are, indeed, 4 and 7,
respectively.

The special case H2 = D(hl)H1 results in some nice properties of the W =
H′

1D(hl)H1 matrix as stated in Theorem 3.

Theorem 3. Let W = H′
1D(hl)H1, where H1 is a Hadamard matrix of size

n = 4t and D(hl) is the diagonal matrix associated with hl, the lth column vector
of H1, hl �= ±1, for 2 ≤ l ≤ n. For a column vector of W such that none of the
entries has the value of ±n, we have
(1) If t is odd, then there are exactly three 0 in each column of W. The rest of

wij in W can only be of the form ±8w + 4, for some non-negative integer w;
(2) If t is even, then every entry wij in W can only be of the form ±8w, for

some non-negative integer w.

There are some implications for the product method from the above theorem:
(1) When t is even, let wij = 8uij , where uij is an integer. From Theorem 2,

the uij’s satisfy
∑n

i=1 u2
ij =

∑n
j=1 u2

ij = t2/4. Hence, there are at most t2/4 of wij

that are non-zero. For example, for any Hadamard matrix with n = 16(t = 4),
there are at most 42/4 = 4 non-zero elements in any column of W. Furthermore,
every non-zero element must be ±8 or ±16. The case of wij = ±16 corresponds
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to having the j-column of D(hl)H1 fully aliased with the ith column of H1.
Therefore, there are exactly 4 elements in each column vector of WC with values
±8, and thus the r-rank is at most 4. In general, the product method produces
designs with a smaller r1 than that from the permutation method. Hence, the
product method is not recommended when t is even.

(2) When t is odd, there are (n − 3) non-zero wij which may make r1 large.
For example, for a Hadamard matrix with n = 12(t = 3), there are exactly
n−3 = 9 non-zero elements in any column in WC. Furthermore, every non-zero
entry of wij must be ±4. In this case, we can easily see that the value of r1 by
the product method can be the maximum value.

Appendix. Proofs

Proof of Theorem 1. Parts (1) and (2) are true because W′W = H′
2H1H′

1H2

= nH′
2H2 = n2I. Part (3) is a well known fact in the weighing design literature,

since both hi and kj have even number of ±1’s.

Proof of Lemma 1. Pre-multiplying H1 in both sides of the equation W =
H′

1H2 and using the fact that H1H′
1 = nI, we have

nH2 = H1W = H1(w1, . . . ,wn) = (H1w1, . . . ,H1wn).

Therefore the jth column of nH2 is

nkj = (h1, . . . ,hn)(w1j , . . . , wnj)′ =
n∑

i=1

wijhi.

Proof of Theorem 2. From Lemma 1 we have nkj =
∑

i∈Uj
wijhi. Therefore,

the r-rank ≤ |Uj | for each j ∈ C, and is ≤ r1. Similarly, by applying Lemma 1
for fixed j1 �= j2, we have r-rank ≤ |U+

j1j2| + 1, r-rank ≤ |U−
j1j2| + 1. Theorem 2

now follows easily.

Proof of Theorem 3. Without loss of generality, we assume h1 = ±1 is the
first column of H1. For a fixed column say, column j (j ≥ 2) of W, it is easy
to see that when i = 1, or i = j or i = l, wij = h′

iD(hl)hj = 0. Suppose now
that (i, j, l) are all different and all are not equal to 1. Let d++ = {m|him =
hlm = +1}, d+− = {m|him = +1, hlm = −1}, d−+ = {m|him = −1, hlm = +1},
d−− = {m|him = hlm = −1}. Then |d++| = |d+−| = |d−+| = |d−−| = n/4 = t.
Let q++ = {m ∈ d++|hjm = +1}, q+− = {m ∈ d+−|hjm = +1}, q−+ = {m ∈
d−+|hjm = +1}, q−− = {m ∈ d−−|hjm = +1}. Using the conditions h′

jhi =
0,h′

jhl = 0,h′
j1 = 0, and letting Q be the number of elements in q++ , we can

see that |q++| = |q−−| = Q, |q+−| = |q−+| = t − Q. Then

wij =
n∑

m=1

himhlmhjm =
∑

m∈d++

hjm −
∑

m∈d+−

hjm −
∑

m∈d−+

hjm +
∑

m∈d−−

hjm

= [Q − (t − Q)] + [Q − (t − Q)] + [Q − (t − Q)] + [Q − (t − Q)] = 4(2Q − t).
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If t is odd, then wij is of the form ±8w + 4 and if t is even, then wij is of
the form 8w.
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