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Abstract

When experimentation is expensive and the number of factors is large, supersaturated designs can be helpful. They are
essentially fractional factorial designs in which the number of factors is greater than the number of experimental runs.
Previous studies have focused on two-level supersaturated designs. This paper presents a new class of three-level super-
saturated designs with an equal occurrence property. It is shown that designs generated by such a universal construction
method result in a low dependency among all columns. c© 1999 Elsevier Science B.V. All rights reserved
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1. Introduction

When experimentation is expensive and the number of factors is large, supersaturated designs can be helpful.
They are essentially fractional factorial designs in which the number of factors is greater than the number of
experimental runs. In practice, the data collected by supersaturated designs are analyzed under the assumption
of e�ect sparsity, i.e., a few dominant factors actually a�ect the response. Examples of supersaturated design
applications can be found in Lin (1993, 1995).
All previous studies have focused on two-level supersaturated designs. Satterthwaite (1959) introduced

the supersaturated design as a random balance design. Booth and Cox (1962) obtained seven supersaturated
designs via computer search. A general construction method was not available until the appearance of Lin
(1993). Recent work in this area includes the following. Lin (1993) described a construction method via
half-fractions of Plackett and Burman (1946) designs. Wu (1993) and Iida (1994) described supersaturated
designs created by adding the interaction columns in a Plackett and Burman design. Deng et al. (1994)
showed some de�ciencies of the E(s2) criterion and proposed a new criterion called resolution-rank. Lin
(1995) examined the maximum number of columns that can be accommodated when the degree of the
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maximum dependency between columns is pre-speci�ed. Nguyen (1996) described a method of constructing
supersaturated designs from balanced incomplete block designs. Tang and Wu (1997) obtained a construction
method for supersaturated designs with consideration of E(s2)-optimality. Yamada and Lin (1997) obtained
supersaturated designs including an orthogonal base with consideration of the maximum dependency. Li and
Wu (1997) developed columnwise-pairwise algorithms to construct supersaturated designs. Cheng (1997)
provided more insight into the E(s2) criterion and presented a general form of supersaturated design.
This paper presents a new class of three-level supersaturated designs with the equal occurrence prop-

erty. Speci�cally, each factor level occurs an equal number of times. A criterion to measure dependency of
three-level supersaturated designs is de�ned. A construction method is given for generating designs with low
dependency (see the de�nition below). Furthermore, some useful designs are generated and examined.

2. Design criteria for three-level supersaturated designs

Let N be a multiple of three and DN be the set of N -dimensional three-level equal occurrence vectors.
A three-level supersaturated design, D, can be described as a selection of vectors d1; : : : ; dK (K ¿N ) from
the set DN by a reasonable rule such that D= [d1; d2; : : : ; dK ]. The equal occurrence property is desirable for
most supersaturated design applications and thus will be used here.
In two-level supersaturated designs, the dependency between two equal occurrence vectors is measured by

their inner product since the dependency between the two estimates of e�ects of the assigned factors can be
represented by a function of the inner product. The inner product can be used to evaluate the dependency
when the factors are both qualitative and quantitative. The dependency of the estimates is essentially invariant
to the assignments of actual factor levels to the codes.
The inner product is meaningless for three-level qualitative factors. A direct application of the inner product

as a measure of dependency would be acceptable for quantitative factors only. The �2 statistic is utilized to
measure the dependency between two qualitative variables such as in a two-way contingency table. Thus, �2

is an appropriate measure to evaluate the dependency between two columns since it is applicable both to
quantitative and qualitative factors.
Let nab(di; dj) be the number rows whose values are [a; b] in the N × 2 matrix [di; dj], then∑

a; b=1;2;3

nab(di; dj) = N:

The �2 statistic de�ned as

�2(di; dj) =
∑

a; b=1;2;3

(nab(di; dj − N=9)2
N=9

(1)

is used to evaluate the dependency between two columns di and dj. The �2 value is equal to 2N and 0 when
two columns are completely dependent and independent, respectively. It can be used for designs with any
number of levels. For two-level designs, however, this is equivalent to the popular E(s2) criterion given by
Booth and Cox (1962). To see this, let ci and cj be N -dimensional equal occurrence vectors consisting of
−1’s and 1’s. Equal occurrence implies

n1−1(ci; cj) = N=2− n11(ci; cj);
n−11(ci; cj) = N=2− n11(ci; cj);
n−1−1(ci; cj) = n11(ci; cj):
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Thus the squared inner product is

(cTi cj)
2 = (n−1−1(ci; cj) + n11(ci; cj)− n−11(ci; cj)− n1−1(ci; cj))2

= (4n11(ci; cj)− N )2:
On the other hand,

�2(ci; cj) =
∑

a; b=−1;1

(nab(ci; cj)− N=4)2
N=4

= (4n11(ci; cj)− N )2=N = (cTi cj)2=N: (2)

Eq. (2) implies that �2 is essentially the same measure as the squared inner product for two-level vectors.
The average of the squared inner product of all combinations of paired columns is commonly used for evalu-

ating the dependency in two-level supersaturated design, notably the E(s2) criterion. Likewise, for higher-level
designs, we can use the following two criteria to evaluate the dependency of columns.

max �2 = max{�2(di; dj) | 16i¡ j6K};

ave �2 =
∑

16i¡j6K

�2(di; dj)=(K(K − 1)=2):

3. A construction method for three-level supersaturated designs

Let c and Cn be an n-dimensional two-level vector consisting of equal numbers of −1’s and 1’s and the
set of c, respectively. We will develop a construction method for three-level supersaturated designs from any
two-level designs. Let C=[c1; : : : ; ck ] (ci ∈Cn) be any two-level design whose maximum squared inner product
over all paired columns is equal to p2, i.e., max{(cTi cj)2|16i¡ j6k}= p2.
Consider a matrix with N = 3n rows and K = 4k columns constructed by

D= [d11; : : : ; d1k ; d21; : : : ; d2k ; : : : ; d41; : : : ; d4k ]

=



�12(C) �12(C) �13(C) �23(C)

�23(C) �13(C) �23(C) �12(C)

�31(C) �23(C) �12(C) �13(C)


 ; (3)

where �ab( ) is an operator which transforms the elements from −1 to a and from 1 to b on the matrix=vector
in ( ). Clearly, design D is a three-level supersaturated design for K ¿N .

Theorem 1. For the design D in Eq. (3); we have

max �2 = max
{
(N + 9p)2

8N
;
N
2

}
:

Proof. To prove the theorem, it is su�cient to show that

max
m; i; j

{�2(dmi; dmj)}=max
i; j

{
(N + 9pij)2

8N

}
=
(N + 9p)2

8N
; (4)
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max
m;m∗ ; i

{�2(dmi; dm∗i)}= N2 ; (5)

max
m;m∗ ; i

{�2(dmi; dm∗j)}=max
i; j

{
(N − 3pij)2 + 36p2ij

8N

}
=
(N + 3p)2 + 36p2

8N
; (6)

where pij=cTi cj;max{(cTi cj)2|16i¡ j6k}=p2 and m 6=m∗ and i 6= j. The proofs for Eqs. (4)–(6) are given
in the Appendix.
Theorem 1 generates three-level supersaturated designs from two-level supersaturated designs where the

maximum dependency of the constructed design is ensured. For example, a three-level supersaturated design
with N =24 rows and K =140 columns is generated from the two-level supersaturated design with n=8 runs
and k = 35 columns shown in Table 1. Some properties of the constructed designs are discussed in the next
section.
For the case where the number of factors is smaller than the number of columns in the full design, a

sub-design can be used. De�ne

D1 =



�12(C)

�23(C)

�31(C)


 ; D2 =



�12(C)

�13(C)

�23(C)


 ; D3 =



�13(C)

�23(C)

�12(C)


 and D1 =



�23(C)

�12(C)

�13(C)


 :

For example, from the full design of (N; K) = (24; 140); a sub-design of [D1; D2] has 35 × 2 = 70 columns.
Eq. (4) shows that the frequency of the �2 values between two columns on a subdesign Dm is invariant to
m(16m64). Furthermore, Eqs (5) and (6) imply that the frequency of �2 values between a column from
Dm and a column from Dm∗ does not depend on m and m∗ (16m¡m∗64). In another words, the maximum
and average �2 values are invariant to the selection of m and m∗.

Table 1
Two-level design used for constructing a three-level supersaturated design (n = 8; k = 35)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

1 1 1 1 1 1 1 1 1 1 1 1 1 −1 −1 −1 −1
1 1 −1 −1 1 −1 −1 1 1 −1 −1 −1 −1 −1 −1 1 1
1 −1 1 −1 −1 1 −1 −1 −1 1 1 −1 −1 1 1 −1 −1
1 −1 −1 1 −1 −1 1 −1 −1 −1 −1 1 1 1 1 1 1

−1 1 1 1 −1 −1 −1 1 1 1 1 1 1 1 1 1 1
−1 1 −1 −1 −1 1 1 −1 −1 1 −1 1 −1 −1 −1 1 −1
−1 −1 1 −1 1 −1 1 1 −1 −1 −1 −1 1 1 −1 −1 −1
−1 −1 −1 1 1 1 −1 −1 1 −1 1 −1 −1 −1 1 −1 1

18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35

−1 −1 1 1 1 1 1 1 1 1 1 1 1 1 −1 −1 −1 −1
1 1 1 1 1 1 1 1 1 1 −1 −1 −1 −1 1 1 1 1
1 1 1 1 1 1 −1 −1 −1 −1 1 1 1 1 1 1 1 1

−1 −1 −1 −1 −1 −1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 −1 −1 −1 1 −1 −1 −1 1 −1 −1 −1 1 −1 −1 −1 1
1 −1 −1 −1 1 −1 −1 −1 1 −1 −1 −1 1 −1 −1 −1 1 −1

−1 1 −1 1 −1 −1 −1 1 −1 −1 −1 1 −1 −1 −1 1 −1 −1
−1 −1 1 −1 −1 −1 1 −1 −1 −1 1 −1 −1 −1 1 −1 −1 −1
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Table 2
Maximum, average and frequencies of �2 on the three-level supersaturated designs
(a) N = 24

Frequency (�2 values)
Lower �2-

K 0.75 3.00 3.75 9.75 12.00 18.75 max �2 ave �2 bound e�.

28 0 336 0 0 42 0 12.00 4.00 2.55 0.64
140 408 5040 2136 1224 210 712 18.75 5.27 3.86 0.73

(b) N = 36

Frequency (�2 values)
Lower �2-

K 0.00 4.00 4.50 10.00 18.00 max �2 ave �2 bound e�.

44 0 880 0 0 66 18.00 5.44 2.54 0.47
264 2640 9900 10560 7920 3696 18.00 6.71 3.86 0.57

(c) N = 48

Frequency (�2 values)
Lower �2-

K 1.50 6.00 7.50 19.50 24.00 37.50 max �2 ave �2 bound e�.

60 0 1680 0 0 90 0 24.00 6.92 2.53 0.36
288 816 30800 4272 2448 426 1424 37.50 8.20 3.76 0.46

4. Examples

This section shows an application of the construction method based on Theorem 1 for N = 24; 36 and 48.
Extension of these results for larger N is straightforward. We apply Theorem 1 to both two-level orthogonal
designs and two-level supersaturated designs.

4.1. Designs generated from two-level orthogonal designs

Let C be an n-run Plackett and Burman design. Theorem 1 can be used to generate three-level supersaturated
designs with N = 3n rows and K = 4k = 4(n − 1) columns from the Hadamard matrix of order n. Table 2
shows the frequency of the �2 values from the generated designs. For example, when N =24 and K =28, the
�2 values of all KC2 = 378 pairs are examined. The values of the design criteria (max �2 and ave �2) from
the generated designs are also shown in the table. The maximum dependency max �2 is 12 from Theorem 1.
In fact, the designs takes two �2 values, 3.00 and N=2 = 12:00. Furthermore, most pairs result in a �2 value
of 3.00, meaning a low dependency. A similar result can be found in (N; K) = (36; 44) and (48, 60).

4.2. Designs generated from two-level supersaturated designs

For N = 24, Tang and Wu (1997) and Yamada and Lin (1997) obtained two-level supersaturated designs
with n= 8 rows and k = 35 columns such that p2 = max{(cTi cj)2 | 16i¡ j6k}= 42. These two designs are
in fact equivalent, as given in Table 1. Theorem 1 generates a three-level supersaturated design with N = 24
rows and K = 140 columns by substituting the two-level supersaturated design shown in Table 1 as C into
Eq. (3). In addition, max �2 is 18.75 by Theorem 1.
A three-level supersaturated design with N = 36 rows can be generated from a two-level supersaturated

design with n = 12 rows. Wu (1993) showed a two-level supersaturated design by adapting a Plackett and
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Burman (1946) design. He produced additional columns by the interaction columns in the original design
and obtained a two-level supersaturated design with n = 12 rows and k = 66 columns where p2 = 42.
A three-level supersaturated design with N = 36 rows and K = 264 columns can be generated from the
two-level supersaturated design where max �2 = 18:00.
For N = 48, Tang and Wu (1997) obtained a two-level supersaturated design with 16 rows that minimizes

E(s2). Yamada and Lin (1997) obtained a two-level supersaturated design that minimizes the maximum
squared inner product. From Theorem 1, a two-level supersaturated design with small maximum squared
inner product is desirable to minimize max �2 on the constructed three-level supersaturated design. Thus the
two-level supersaturated design obtained by Yamada and Lin (1997) is preferable here. Speci�cally, let C0 be
the two-level supersaturated design with n=8 rows and k =35 columns shown in Table 1 such that p2 = 42.
A two-level supersaturated design C with n= 16 rows and k = 71 columns is constructed by

C =

[
u C0 C0
−u C0 −C0

]
;

where u is a vector of length eight consisting of 1’s and p2 = 82. A three-level supersaturated design with
N=48 and K=4k=284 thus can be generated by substituting the matrix C into Eq. (3), where max �2=37:50.
Table 2 also shows the frequency of �2 values and the values of max �2 and ave �2 from the three-level

supersaturated designs generated from two-level supersaturated designs.
In all generated designs, most �2 values occur at a relatively low dependency level. For example, 78% of

the �2 values are 63:75 for (N; K) = (24; 140); 67% of the �2 values are 64:5 for (N; K) = (36; 264). In all
cases, the average of �2 value, ave �2 is relatively small compared to 2N , the completely dependent case.

4.3. Design evaluation

For supersaturated designs with any number of levels, Yamada and Matsui (1997) derived a lower bound
on ave �2. The lower bound includes the lower bound of E(s2) for two-level supersaturated design as a special
case, where the bound of E(s2) was obtained by Nguyen (1996) and Tang and Wu (1997) independently.
For three-level supersaturated designs, the lower bound of ave �2 is given by

L�2 =
2N (2K − N + 1)
(N − 1) (K − 1) : (7)

Using this lower bound, �2-e�ciency is de�ned as

L�2
ave �2

: (8)

A design is �2-optimal when �2-e�ciency is equal to 1.00. For example, Eq. (7) gives a lower bound of
3.86 for a three-level design with N =24 rows and K =140 columns. Since ave �2 = 5:27 for the constructed
design with N =24 rows and K =140, the �2-e�ciency of the design is 0.73. Table 2 also shows the values
of �2-e�ciency for the constructed designs.
The lower bound and �2-e�ciency are also applicable for two-level supersaturated designs. Table 3 shows

the �2-e�ciency values of the early two-level supersaturated designs by Satterthwaite (1959), and Booth and
Cox (1962). The values are around 0.2–0.6, not close to 1. Table 3 also shows the values of �2-e�ciency
for some designs constructed by Lin (1993) and Wu (1993). While some of those more recent designs are
optimum, some are still far from optimum.
For the constructed designs in this paper, the values of �2-e�ciency are 0.36–0.73, comparing favorably

to the early works listed in Table 3. This fact implies that the constructed three-level designs should be
acceptable as initial work on three-level supersaturated designs.
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Table 3
The values of �2-e�ciency on the early works of two-level supersaturated de-
signs

Author(s) n k �2-e�ciency

Satterthwaite (1959) 12 22 0.52
Satterthwaite (1959) 18 30 0.45
Satterthwaite (1959) 24 30 0.24
Booth and Cox (1962) 12 18 0.56
Booth and Cox (1962) 18 30 0.56
Booth and Cox (1962) 24 30 0.50
Lin (1993) 12 22 1.00
Lin (1993) 24 30 0.52
Wu (1993) 12 16 0.73
Wu (1993) 12 66 1.00

5. Concluding remarks

This paper shows a new class of supersaturated designs, those with three-level. The designs can be used for
qualitative factors as well as quantitative factors. The �2 statistic of a two-way contingency table is used to
measure the dependency between design columns. Furthermore, we construct some three-level supersaturated
designs using a method which assures minimization of dependency. The three-level supersaturated designs are
evaluated in terms of the average �2 value and should be acceptable as initial work on this new class of
designs.

Acknowledgements

The authors would like to thank a referee who made important suggestions to improve the presentation of
the paper. Dennis Lin is partially supported by the National Science Foundation via Grant DMS-9704711
and National Science Council of ROC via Contract NSC 87-2119-M-001-007.

Appendix

Proof of Eq. (4): Consider the two vectors,

d1i =



�12(ci)

�23(ci)

�31(ci)


 and d1j =



�12(cj)

�23(cj)

�31(cj)


 :

The �rst n rows of d1i and d1j are �12(ci) and �12(cj), respectively, and their correspondence is[
n11(�12(ci); �12(cj)) n12(�12(ci); �12(cj))

n21(�12(ci); �12(cj)) n22(�12(ci); �12(cj))

]
=

[
N=12 + pij=4 N=12− pij=4
N=12− pij=4 N=12 + pij=4

]
:



38 S. Yamada, D.K.J. Lin / Statistics & Probability Letters 45 (1999) 31–39

Similarly, the correspondence between d1i and d1j is

n11(d1i ; d1j) n12(d1i ; d1j) n13(d1i ; d1j)

n21(d1i ; d1j) n22(d1i ; d1j) n23(d1i ; d1j)

n31(d1i ; d1j) n32(d1i ; d1j) n33(d1i ; d1j)


=



N=6 + 2pij=4 N=12− pij=4 N=12− pij=4
N=12− pij=4 N=6 + 2pij=4 N=12− pij=4
N=12− pij=4 N=12− pij=4 N=6 + 2pij=4


 :
(A.1)

Now, substituting Eq. (A.1) into Eq. (1) gives �2(d1i ; d1j) = (N + 9pij)2=8N; as desired. For the general
case of �2(dmi; dmj); we have N=12 − pij and N=6 + 2pij=4 appear six and three times respectively in the
correspondence matrix. Eq. (4) is proved by substitution into Eq. (1).
Proof of Eq. (5). Consider the two vectors,

d1i =



�12(ci)

�23(ci)

�31(ci)


 and d2i =



�12(ci)

�13(ci)

�23(ci)


 :

The correspondence between d1i and d1j is

n11(d1i ; d2i) n12(d1i ; d2i) n13(d1i ; d2i)

n21(d1i ; d2i) n22(d1i ; d2i) n23(d1i ; d2i)

n31(d1i ; d2i) n32(d1i ; d2i) n33(d1i ; d2i)




=



n11(�12(ci); �12(ci)) 0 n13(�31(ci); �23(ci))

n21(�23(ci); �13(ci)) n22(�12(ci); �12(ci)) 0

0 n32(�31(ci); �23(ci)) n33(�23(ci); �13(ci))




=



N=6 0 N=6

N=6 N=6 0

0 N=6 N=6


 : (A.2)

Now, substituting Eq. (A.2) into Eq. (1) gives �2(d1i ; d2i) = N=2. For the general case of �2(dmi; dm∗i); we
have N=6 and 0 appear six and three times respectively in the correspondence matrix. Eq. (5) is proved by
substitution this appearance into Eq. (1).
Proof of Eq. (6). For the two vectors,

d1i =



�12(ci)

�23(ci)

�31(ci)


 and d2j =



�12(cj)

�13(cj)

�23(cj)


 ;

we have

n11(d1i ; d2j) n12(d1i ; d2j) n13(d1i ; d2j)

n21(d1i ; d2j) n22(d1i ; d2j) n23(d1i ; d2j)

n31(d1i ; d2j) n32(d1i ; d2j) n33(d1i ; d2j)


=



N=12 + pij=4 N=6− 2pij=4 N=12 + pij=4

N=6 N=12 + pij=4 N=12− pij=4
N=12− pij=4 N=12 + pij=4 N=6


 :

(A.3)
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Again, substituting Eq. (A.3) into Eq. (1) gives �2(d1i ; d2j)= ((N − 3pij)2 + 36p2ij)=8N . For the general case
of �2(dmi; dm∗j); N=12 + pij=4; N=12 − pij=4; N=6 and N=6 − 2pij=4 appear four times, twice, twice and once
respectively in the correspondence matrix. Eq. (6) is proved by substitution this into Eq. (1).
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