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Introduction

Screening designs are typically used in the initial stage
of an experimental investigation where many possible fac-
tors are suggested but only a small subset are anticipated to
be “real” or to exhibit the so-called effect sparsity phenom-
enon. Conventionally, a first-order model is assumed, and
interaction effects are tentatively ignored. A design suitable
for such a first-order model is called a main-effect design.

The construction of first-order main-effect designs that
are optimal in some sense has received a great deal of at-
tention in the literature. Because of their relative simplicity
of use, Plackett and Burman-type designs (including 27
designs) are very popular in practice. When only main ef-
fects exist, these designs allow unbiased estimation of all of
them. They are extremely important in screening situations.

Draper (1) comments that Plackett and Burman designs
can be confusing unless (i) the interactions are small or neg-
ligible or (ii) there are relatively few “important” factors.
Indeed, if interactions exist, the estimation is blurred (see
Ref. 2), leading to incorrect conclusions. Box and Meyer (3)
comment that “. .. in actual experiments conducted using
Plackett and Burman nongeometric designs, potentially
important effects involving interactions have probably been
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missed.” It is shown here that important interaction effects
can, in fact, be found easily in such nongeometric designs.

Certainly, a main-effect design is not intended for iden-
tifying interaction effects. Statistical designs for detecting
interaction effects have been developed by many research-
ers, such as the resolution V design in Ref. 4 and the search
design in Ref. 5. In this article, we study the case in which
an experiment based on a main-effect design has been con-
ducted and how we can spotlight interaction effects (which
in the conventional wisdom is not believed to be possible).
The proposed method, building on the recent work in Refs.
2 and 6-38, is introduced through an example in the next
section. Some comparisons with existing methods are also
made there. Theoretical formulation and assumptions are
then discussed, followed by a more complicated example.
Discussion and future research directions are given at the
end.

Example

Consider the experiment in Ref. 9. A 12-run Plackett and
Burman design was used to study the effects of seven fac-
tors (designated here as A, B, . .., G) on the fatigue life of
weld-repaired castings. The design and responses are given
in Table 1. For the details of factors and level values, see
Ref. 9. See also Refs. 10 and 11, for analyses of these data.

Plackett and Burman designs are traditionally known as
main-effect designs because, if all interactions can tenta-
tively be ignored, they can be used to estimate all main
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Table 1. The Cast Fatigue Experiment

RUN A B C D E F G 8 9 10 11 RESPONSE
1 1 1 —1 1 1 1 -1 -1 -1 1 -1 6.058
2 1 -1 1 1 1 -1 -1 -1 1 —1 1 4733
3 -1 1 1 1 -1 -1 -1 1 -1 1 1 4.625
4 1 1 1 -1 —1 -1 1 -1 1 1 -1 5.899
5 1 1 -1 -1 -1 1 -1 1 1 -1 1 7.000
6 1 -1 -1 -1 1 -1 1 1 -1 1 1 5.752
7 -1 -1 -1 1 -1 1 1 -1 1 1 1 5.682
8 -1 -1 1 -1 1 1 -1 1 1 1 -1 6.607
9 -1 1 -1 1 1 -1 1 1 1 -1 -1 5.818

10 1 -1 1 1 -1 1 1 1 -1 -1 -1 5917

11 -1 1 1 -1 1 1 1 -1 -1 -1 1 5.863

12 -1 -1 —1 -1 -1 -1 -1 -1 -1 -1 -1 4.809

effects. There are many ways to analyze such a main-effect
design. One popular way is the normal plot (see Ref. 10,
Fig. 1). It appears that factor F is the only significant main
effect. Consequently, a main-effect model is fitted as fol-
lows:

»=573+0458F (R? = 44.5%).

Note that the low R? is not so impressive. Can we safely
ignore the interaction effects? Hunter et al. (9) claim that the
design did not generate enough information to identify spe-
cific conjectured interaction effects. If this is not the case
here, can we detect significant interaction effects?

Hamada and Wu (10) introduced the concept of effect
heredity. After main effects were identified, they used for-
ward selection regression to identify significant effects in a
group, which consists of (1) the effects already identified
and (2) the two-factor interactions having at least one com-
ponent factor appearing among the main effects in item 1.
In this particular example, a model for factor F and inter-
action FG was chosen and is given as follows:

» =35.7+0458F - 0459FG (R? = 89%). N

The assumption of effect heredity is debatable in prac-
tice. Much evidence indicates that strong interactions do not
necessarily contain factors associated with significant main
effects (see, for example, numerous examples with real data
sets in Ref. 12). Rather, the use of interaction plots in Ref.
13 to search two-factor interactions is considered to be an
improved method. Graphical methods are always subjective.
In this case, there are ; = 21 interaction plots to be com-
pared, meaning that some guessing will be necessary. There
is no basic guideline to determine which interaction should
be included in the final selection.

Now, from Table 1, if we generate all interaction col-
umns, AB, AC, ..., FG, together with all main-effect col-
umns, A, B,..., G, we have 7 + 21 = 28 columns. Treat
all of those 28 columns in 12 runs as a supersaturated de-
sign (Ref. 8) as shown in Table 2. The largest correlation
between any pairs of the 28 design columns is = 1/3.

Table 3 shows the results from a regular stepwise regres-
sion analysis (with a = 5% for entering variables). The
model

» =573+ 0394F ~ 0395FG - 0.191AE (R? = 95%) (2)

is a significantly better fit to the data than is Eq. (1). Note
that the AE interaction, in general, would never be chosen
under the effect heredity assumption. Practitioners may
consider adding main effects A, E, and G to the final model
because of the significance of interactions FG and AE.

In general, for most main-effect designs, such as Plackett
and Burman-type designs (except for 2%® fractional facto-
rials), one can apply the following procedure (but see the
limitation in a later section):

Step 1. Generate all interaction columns, and combine
them with the main-effect columns. We have now
k+ (;) = k(k + 1)/2 design columns.

Step 2. Analyze these k(k + 1)/2 columns with » experi-
mental runs as a supersaturated design. Data analysis
methods for such a supersaturated design are avail-
able; see, for example, Refs. 7, §, 14, and 15.

Note that if the interactions are indeed inert, the proce-
dure will work well; and if the effect heredity assumption
is indeed true, the procedure will end up with the same
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Table 3. Stepwise Selection for the Cast Fatigue Experiment
ENTERING VARIABLES
STEP FG F AE EF D E 62 R?
1 —0.459 0.558 44.74%
(-2.85)
2 ~0.459 0.458 0.260 89.25%
(—6.12) (6.11)
3 —0.395 0.394 —0.191 0.183 95.26%
(-7.01) (6.99) -3.19)
4 —0.395 0.394 —0.191 —0.087 0.159 96.86%
(-8.05) (8.03) (-3.66) (-1.89)
5 —0.365 0.406 —0.154 —0.130 —0.128 0.077 99.4%
(-14.82) (16.98) (5.85) (=5.41) (—4.87)
6 —0.387 0.408 —0.148 —0.128 —0.122 —0.054 0.033 99.9%
-33.97) (39.66) (-13.01) -12.34) (-10.76) (-5.24)

conclusion as that of Ref. 10. The proposed procedure will
always results in a better (or equal) performance than using
Hadama and Wu’s procedure. Next, we discuss the theoreti-
cal formulation, assumptions, and limitations of the pro-
posed method.

Theoretical Formulation

Consider a supersaturated design in » experimental runs
to investigate k (>n — 1) factors. If X denotes the n x k “de-
sign matrix” (namely original design matrix with all inter-
action columns, but without intercept column), our model
is

Y =pl+Xp+e,

where Y is the n x 1 observable data vector, p is the inter-
cept term, and 1 is an » vector of 1’s; B is a £ x 1 fixed-
parameter vector for the unknown factor effects, and € is a
vector assumed to be distributed as M0, c°I ). Because £ is
larger than n — 1, it is clear that the X matrix cannot be full
rank, and orthogonality is only possible for certain pairs of
design columns.

Let A= {i, ..., and N={i ,, i ., ..., i} de-
note indexes of active and inert factors, respectively, so that
NuUA={l1,2,..., k}=S. We have null and alternative
pairs H; : B, = 0 and Hf : B; # 0, with H; true for j €N and
H¢ true for j € A. Under an effect sparsity assumption, we
suppose that p is small relative to k. Forward selection pro-
ceeds by identifying the maximum F-statistics at successive
stages. Let F{*) denote the F-statistics for testing H, at stage
s, s =1,2,.... Sequentially, define the following:

J, = arg max Fj“),
jE€s

po— (2)
J, =arg max F7,
2 jes=Gy 7

Po= (3)
J; =arg max F;,
} jes-Guizh 7

and so forth, where

F.(S) - MSE(JI.]D .- ’js—l)
/ MSEU’jl""sj:—l)

Letting F® = max F”, the forward selection procedure is
defined by selecting variables j, . . . , j, where F/) < o and
FU*D > g. If FU > q, then no variables are selected.

The basic assumption made here is the presence of both
(1) effect sparsity (as will be discussed below) and (2) effect
prominence—the active factors have (main or interaction)
effects large enough to stand out from the experimental error
or from the combined effects of unimportant factors—an
assumption that is shared by all screening designs. In gen-
eral, if an effect (main or interaction) is three times (or
more) larger than the overall pooled standard deviation, such
an effect can always be identified (Ref. 14).

The success of a supersaturated design, like most main-
effect plans used in the screening process, depends heavily
on the assumption of effect sparsity, a tacit assumption in
many popular analysis tools, such as Normal plots. Box and
Meyer (3) suggest a “20% rule” as a standard. Whereas
Srivastava (5) shows that the number of active factors, p,
must not exceed half of the experimental runs, », for iden-
tifiability. This can be viewed as a guideline for the effect
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sparsity assumption. In our specific case, the proposed
method can only pick up, at most, n/2 relatively large (main
or interaction) effects, depending on the particular design.

A Second Example

To investigate the epoxide adhesive system, Ref. 15 con-
cerned 24 predictor variables. A 28-run Plackett and Bur-
man design was conducted as given in Table 4. Note that
columns 13 and 16 are identical. These are the temperatures
for Oven 1 and Oven 2, respectively. For the simplicity of
illustrating the proposed method, we simply delete column
16 in the following analysis.

A typical main-effect analysis (such as the Normal plot
or regression method) indicates that factors 15, 20, 17, 4
(and perhaps 22, 14, 8 and 1) are significantly important
with R? = 64% (or R? = 81% using all eight predicted vari-
ables; see Ref. 12, pp. 545-546). This conclusion, as noted
in Ref. 15 (Table III), is very different from other experi-
ments. Such an inconsistency clearly indicates the possibil-
ity of significant interaction effects. Of course, in the “stan-
dard” main-effect analysis, all interaction effects have been
ignored. Can we alleviate such an assumption here?

" If two-factor interactions are also under consideration,
can we identify certain potential two-factor interaction ef-
fects using the original experimental results in Table 4.
Following the procedure previously mentioned, we shall (1)
generate all two-factor interaction columns and (2) perform
a stepwise regression analysis with all main and two-factor
interaction (23 + 223 = 276) effects columns as regressors.
It is found that factor 15 and interactions 5§ x21, 18 x 21,
11 x 19, 10 x 11, 15 x 21, and 3 x § are significant (with
R? = 92%). This indicates that (1) factor 15 is indeed active
and (2) apart from factor 15, the response can be explained
either by main effects 20, 17, and 4, or by interactions 5 x
21,18 x 21, 11 x 19, 10 x 11, 15 x 21, and 3 x 5.

A close look at the correlation structure shows that fac-
tor 20 is somewhat correlated (correlation 3/7) with § x 21
and 18 x 21; Factor 4 is correlated with 5§ x 21 and 11 x 19;
all other effects are either orthogonal or with correlation +
1/7. This may well explain why factors 20 and 4 are signifi-
cant in the main-effect fitting. A follow-up experiment thus
needs to include factors 15, 21, 11, 10, 19, 18, and 5. A 12-
run Plackett and Burman design (or a resolution V design
of 16 runs) is recommended. Note that a regular approach
to estimate all two-factor interactions will result in a reso-
lution V design which requires 512 runs for examining 23
factors (see Ref. 6).

LIN
Discussion

Conventional wisdom for analyzing a main-effect design
is based on certain hierarchical assumptions, such as “all
interactions are null.” In this article, I have introduced a
technique from a supersaturated design perspective to spot-
light two-factor interactions from a main-effect plan, a more
flexible analysis to alleviate these assumptions. The major
risk taken here is a false positive effect (i.e., to misclassify
a null factor). Incorporating some hierarchical assumptions
may reduce such an error. Given the large number of ef-
fects, a smaller a-level (such as 1%) may be required. In
addition, as pointed out in Ref, 14, a screening experiment
is typically conducted in the early stage of a study. In this
case, a false negative effect (i.e., missing a real active fac-
tor) is much more serious than a false positive one. The
latter can generally be resolved by consequent confirmatory
runs. In fact, a data analysis method to control false posi-
tive errors can be found in Ref. 16.

The proposed method can be used for almost any main-
effect plan, provided that the interaction columns are not
Sfully confounded with the main-effect or other interaction
columns. Certainly, as a general rule, the weaker the con-
founding, the better. The 12-run Plackett and Burman de-
sign is a particularly good example for the application of
such a technique. Other examples given in Ref. 10, some
with more than two levels, can also be analyzed in a simi-
lar manner. For two-level Plackett and Burman-type de-
signs, the confounding patterns have been studied in Ref.
2. Theoretical justifications for those supersaturated designs
have been recently developed (see Ref. 17). Note that the
main-effect (resolution I11) 2% fractional factorial designs
do not form a good basis for the analysis described here.

Higher-order (higher than second-order) interactions can
also be considered, if necessary, provided they are not fully
confounded with other design columns. Of course, as more
columns enter the selection procedure, the probability for
a false positive error also increases. In general, it is wise to
combine several data analysis methods to ensure the results.
Because of its flexibility, it is recommended to include the
proposed procedure in the regular toolbox for analyzing
“main-effect” designs.
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