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Abstract

A supersaturated design investigates k factors in only n ( <k + 1) experimental runs. The goal
for such a design is to identify, presumably only a few, relatively dominant effects with a cost
as low as possible. While the construction of supersaturated designs has been widely explored,
the data analysis aspect of such designs remains primitive. We study the following problem:
How many dominant effects are allowed to make a meaningful data analysis possible for a
supersaturated design with the maximum correlation p? The correlation here is defined as the
cosine of the angle between two column vectors. The obtained results support the fundamental
concern of the E(s?) criterion introduced by Booth and Cox (1962). Furthermore, under the
normality assumption, we obtained a lower bound of the probability that the factor with the
largest estimated effect has, indeed, the largest true effect. This bound depends on the relative
size of the largest effect and the maximum correlation of the underlying design. Under some
mild assumptions, we show that this probability is satisfactorily large. Consequently, by carefully
constructing supersaturated designs, we not only save the cost of the experiment, but also make
reliable inferences. (€ 1998 Elsevier Science B.V. All rights reserved.
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1. Introduction

Many preliminary industrial screening experiments typically contain a large number
of potentially relevant factors. Among them, only a few are believed to be active. The
goal in such situations is to identify those (relatively) few dominant active factors with
the least possible number of experimental runs. A (two-level) supersaturated design is
a matrix of +1°s with n rows and a large number of columns &k (larger than n in
general). Hence, it studies a large number of factors (k) with only a few runs (n).

First constructed systematically by Booth and Cox (1962), supersaturated designs
have received a great deal of attention in the recent literature (see, Lin, 1991,1993,
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1995; Wu, 1993; Tang and Wu, 1993; Seewald, 1994; Nguyen, 1996; Deng et al.,
1996; and Westfall et al., 1998). While the construction of supersaturated designs has
been widely explored, the inferential aspect of such designs needs more investigation.
This is the major interest of this paper.

Naturally, such a design will not allow us to estimate main effects of all £ factors.
This is, however, not always needed if we believe that only a small number (p) of
them are active. The underlying requirement is that if there are only a few active
factors, we should be able to identify them. Once these active factors are correctly
identified, the design can then be projected onto a lower dimensional space. The re-
sulting design is then an unsaturated design and ordinary data analysis can then be
applied.

To assure that all active factors can be properly estimated after the projection, we
must carefully select the supersaturated design. Suppose, for example, it is known that
there are at most four active effects among all the factors. To assure identifiability,
we need to select a supersaturated design such that any four columns of the design
are linearly independent. We shall show that the correlations between the columns of
the design are tools to guarantee linear independence. This is, in fact, the fundamental
concern in Booth and Cox (1962)’s E(s?) criterion.

Furthermore, in order to project the design onto the set of active factors, it is nec-
essary to identify those active factors correctly. Due to random noise and the partial
aliasing structure of the design, we may not always select the correct set of active
factors. However, we shall show that if the effects of the active factors are reasonably
large as compared with inert factors and random noise, the probability of obtaining the
correct set of active factors is satisfactorily high.

Our result here is different from the important work of search design in Srivastava
(1975), who first showed that a necessary and sufficient condition for having resolving
power p (i.e., identifying and estimating all p active factors) is that every 2p columns
of the design have to be linearly independent. While his results guarantee the search of
all active factors, we are interested in to what extent we can correctly identify active
factors in the sense that when the factor with maximal effect is given, we calculate the
probability that such a factor indeed has the largest estimated effect.

2. Estimability and correlation structure

Consider a supersaturated design in n experimental runs to investigate k (>n) fac-
tors. If X denotes the n x k design matrix (without intercept column), our model is

Y=ul+Xpf+e,

where Y is the (n x 1) observable data vector; u is the (scale) intercept term; 1 is an
n-vector of 1’s; f§ is a (k x 1) fixed parameter vector for the unknown factor effects;
and ¢ is the noise vector assumed to be distributed as N(0,521,). Because & is larger
than #, it is clear that the X matrix cannot be of full rank and orthogonality is only
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possible for certain pairs of design columns. Here and hereafter, we say a matrix is of
full rank when all of its column vectors are linearly independent.

Note that once the active factors are identified, the whole design X is then projected
onto a much lower dimension. Hence, the estimability of the effects of these factors
depends on whether or not the projected design has full rank. We will show that
the largest number of active factors which can be identified from a supersaturated
design depends on the correlations between columns of X. Let A= {ir,i2,...,ip} and
N= {ip+1,ip+2,...,ik} denote indexes of active and inert factors, respectively, so that
AUN ={1,2,...,k}. Also, denote the projective design matrix as X}, and the columns
of X as &, i=1,2,...,k. For a two-level equal occurrence design, each design column
contains an equal number of high- and low-level experimental values (denoted by + and
—, respectively). Consequently, we can define Corr(&;,&;)=¢&¢;/n for any 1<i,j<k
(because >, & =0 and >, &2 =n); thus, we have:

Theorem 1. If |Corr(&, &) <p=1/(p— 1) for all i#j, then X, is of full rank.

Proof. Write Xl’,Xp = (x;;) with x;; = nCorr(&;, {;). Hence, (i) x; =n and (ii) |x;;] < pn,
for all i# j. Therefore x;> 3 ., [|x;|- This implies that X, X, is positive definite.
Hence, X, has full column rank. OJ

Note that if X =(¢),...,&) is a supersaturated design, then X = (£&;1),..., =w))
for any choice of + signs and permutation function 7 is an equivalent design. We will
not distinguish equivalent designs in this paper.

When max |Corr(&;, &) = pl/(p — 1) for i#j, there is no definite answer to this
problem. A simple counterexample is the supersaturated design

!

Let p=2, we have |Corr(¢y, &) =p=1/(p — 1). However, X, =X is singular.

Despite this counterexample, X, of most useful supersaturated designs has full rank
when |Corr(&;,¢;)|<1/(p — 1). For the 12-run supersaturated designs given by Lin
(1991, 1993,1995) and Wu (1993), it can be verified that any submatrices consisting
of four columns have full rank.

Lemma 1. Let X =(&y,..., &) of size n x k be a supersaturated design with entries
+1. If |Corr(é, &) <p=1/(p — 1) for all i#j and a submatrix X, =(1,...,8p) is
singular, then there is an equivalent submatrix of X, such that X;,Xp/n =(1+p) —
pll1t,

Proof. If X, is singular and |Corr(&;, &) <p=1/(p—1) for all i # j, we must be able
to find a &, say &, such that |Corr(¢;,&;)| =p for all j#1, or else X, is not singular
by using the same proof of Theorem 1. Clearly, there is an equivalent design such that
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Corr(¢1,¢;)=—p for all j#1. So

1 —pl! 1 0 1 —pl

Now, we make an induction assumption that X, is singular only if Corr({;,&;)= £ 1/
(p—1) for 1<i#j< p. This assumption is obviously true for p=2. Let us assume
that it is also true for p— 1. Then, the above X, is singular if and only if W — p?11' is
singular. Note the order of W — p?11' is (p — 1) x (p — 1). By induction assumption,
we have, for i #j,

(py — PH(1 = p)= £ 1/(p ~2).

Solving this equation, we get p;=—1/(p —1). O

Thus, for a 12-run supersaturated design with the maximum absolute correlation
being %, if the submatrix X4 = (&4, ..., &) is singular, then Z?zl ¢; =0 for an equivalent
Xy. Clearly, designs in Lin (1991,1993,1995) and Wu (1993) do not contain such
structures. Therefore, the maximum estimable number of factors is at least four.

For a 20-run supersaturated design with maximum correlation }—‘, if the submatrix
Xs=(¢&4,..., &) is singular, then Zle £; =0 after choosing a proper equivalent design.
However, this is impossible since the summation of five +1’s cannot be zero. We can
summarize this example into the following theorem.

Theorem 2. If |Corr(&, )| <p=1/(p — 1) for all i#j, then X, has full rank when
p is odd.

Theorems 1 and 2 ensure that if there are at most p active factors, when using a
supersaturated design with maximum correlation less than or equal to 1/(p — 1) for
odd p, it is always possible to estimate all of them once their corresponding columns
are identified. An important question that needs to be addressed is thus: assuming
there are only p active factors, what is the probability these p factors have the largest
estimated effects? The answer to this question depends on the relative size of their
effects and also partially on the estimation method. We will discuss this problem in
the next section.

3. Identifiability

The conventional point estimation for the f;’s is (see, Box, 1959, p. 177)
Bi=(F — v)2=x¥/n, (1)
where )')(‘;) and y;, are the averages of the responses when factor x; is used at its high-

(+) and low-(-) levels, respectively. Consequently, we have E(Bi)= B+ ki piiBi,
where p;; is the correlation between columns ¢; and ¢;.
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Suppose B, is the maximal effect among all §;’s. We are interested in the probability
that the estimate f,, of f,, will be the largest among all estimates. To compute
¢m = Prob[f,, > max,, §;], the following two lemmas are needed.

Lemma 2. Assume Yi,...,Y, are independent and normally distributed with the same
variance and the design satisfies the condition that p<1/3. Let B;, i=1,...,k be
defined as in Eq. (1); ¢mq=Prob[f, > B,]; and ¢mp =Prob[B,, > B,]. Then

Prob[,, > max(Bg, 1)1 > bma - ms.
Proof. Note that
ProblB,, > max(B,, )] = ProblB,, > B,|B,, > By 1ProbiB,, > B,].
Hence, we need only to show
Prob[B,, > B.| B, > Bs]=ProblB,, > B,].
Let Z,=§, — B, and Z, =, — f,. Thus,
Cov(Z1,23)= Var(Bm) - Cov(ﬁm, ﬁa) — Cov(ﬁm,Bb) + Cov(ﬁa, Bb)ZO.

This is because the absolute correlation between any two estimates is no larger than
%. Now, from the joint normality of Z; and Z,, we can write Z, =aZ, + Z3 such that
a>0 and Z; is independent of Z;. Also,

I(aZy + Z3>0) > 1(Z;>0)

at any sample point such that Z, >0, where I(-) is the indicator random variable. Thus,
by taking expectation conditional on Z; >0 on both sizes,

Prob(Z, >0/ Z; >0) = Prob(Z; > 0] Z, >0) = Prob(Z; > 0).
Similarly, we have
(aZy + Z3>0)<I(Z3 >0)

at any sample point such that Z, <0. Thus, by taking expectation conditional on Z; <0
on both sizes,

Prob(Z; > 0| Z, <0) <Prob(Z; > 0| Z, <0) = Prob(Z; > 0).
Hence,
Prob(Z; > 0| Z, <0)<Prob(Z; >0)<Prob(Z,; > 0| Z, >0).
This implies
Prob(Z; >0) = Prob(Z; >0|Z, >0)Prob(Z, >0)
+ Prob(Z; >0| Z, <0)Prob(Z, <0)
< Prob(Z,>0|Z,>0)

as required. O
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Follﬂowinﬂg Lemma 2, by induction we have ¢,,> Hf;m =1 $mi where ¢, =
Prob[f,, = f,]. The induction can be done by showing

Prob(Z, >0,2,>0,...,Z,>0|Z,, >0)>Prob(Z, >0,2,>0,...,Z,>0)

in exactly the same way as is done in Lemma 2 by using properly defined normal
random variables Z1,...,Z, and where Z,, is jointly normal and positively related to
the other random variables.

Lemma 3. Given m and i,

h
miZP| [ 5 Omi |,
¢ ( 2(1 = pmi) )

where 5mi=(Eﬁm — E,l?,-)/a and ® is the standard normal cumulative distribution
Sfunction.

Proof. First note that
;g 2y 201 pm)

Thus,

Bn—B)-EB, B ~EB,—B)

L SU-pwe U —pme
[ VaEG, —B) | _ <F—7—— )
= 7 i =¢ 1 . '5mi . U
? \/2(1—;9,,.,-)0} 2(1 = pmi)

Prob(f, — f;=>0] = P

Note that whether ﬁm is larger than [}, depends on several factors. One important
factor is the value of p,,;. A positive p,,; makes n/[2(1—pp;)] larger and hence improves
the chance to identify f,. On the other hand, a positive p,; also brings Eﬂ, closer to
E ,Bm which makes &,; smaller and hence reduces the chance to identify f,.

It is straightforward then from Lemmas 2 and 3 that:

Theorem 3. The probability that ﬁm is the largest estimated effect is

k n
m= ¢ —_-——_.6”“. N
P> #,1,:,[:1 (\/ 21— pmi) )

The lower bounds given in Theorem 3 can be calculated directly for any specific
design.
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4. Simulation results

Table 1 shows some simulation results based on the supersaturated designs con-
structed by Lin (1991, 1993 and 1995) and Wu (1993). For each case, given the design
and the number of factors, the simulations were conducted in the following way:

(1) Randomly select a number m from 1 to k. Let all §;=0 when j#m, and
B, =either 1 or 2.

(2) Generate n of ¢’s from N(0, 1) to construct the responses y; = ZL, Xiw B + €,
i=12,...,n

(3) Obtain ﬁj by Eq. (1) for all j and record whether ﬁm is indeed the maximum
of the fs.

(4) Repeat (1)—(3) 5000 times.

Note that the supersaturated designs constructed by half-fraction Hadamard matrices
(Lin, 1993) can only examine k=N — 2 factors in »=N/2 runs, while the 12-run
supersaturated design using interaction columns (Lin, 1991 and 1995; Wu, 1993) can
study as many as 66 factors. The case &£ =10 is not supersaturated, but is a reference
benchmark to be compared with the performance of supersaturated designs. It is clear
that in all the cases the lower bounds are satisfactorily large.

Supersaturated designs with |p,~j|<% were recommended by Lin (1995). In fact,
all designs discussed in Table 1 have such a property. In this case, we can extend
Theorem 3 to:

Corollary 1. If |py| <3, then ¢pm>T] 1#,,” ) (\/—— 5,,,,)

Table 2 shows lower bound probabilities as given in Corollary 1 for various combi-
nations of (n,k,d,,;). Note that these probabilities do not depend on the design. Also,
the probabilities given here, as expected, are smaller than the probabilities given in
Table 1. In general, if §,,; =2, the largest effect can always be correctly identified, a
similar observation made by Lin (1995).

It is clear from Theorem 3 that if J,; <1, the lower bound probability given in
Corollary 1 will result in a small probability. This is the case where the overall variation
is larger than the factor effects. Supersaturated designs do not perform well in this case.
In fact, most (unsaturated) designs have difficulty in this situation in identifying active
factors. The top priority in this case should be variation reduction rather than factor
identification. The probability of a Type I error occurring in supersaturated designs
is an interesting issue, and, in fact, has been extensively discussed in Westfall et al.
(1998).

If there is a set of factors which are active, a bound can be found as follows. Recall
that for any two events E, and E,

Prob(EE;) =Prob(E) + Prob(£;) — 1.

Let A be the set of active factors. For any m € A, define ¥, = Prob(Bm = 5,-,for igA).
Then the probability that f,, and B, are larger than any of the estimated null effects
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Table 1
Successful identification probabilities in 5000 simulations

Design Run size p Number of factors (k)

10 20 30 40 50 60

HFHM 12 1 0.9462 0.9062 — — — —

2 1 1 — — — —

18 1 0.9888 0.9794 0.9694 — — —

2 1 1 1 — — —

24 1 — 0.9950 0.9934 0.9912 —_ —

2 — 1 1 1

IntCol 12 1 0.9560 0.9026 0.8556 0.8092 0.7842 0.7530
2 0.9999 1.0000 1.0000 1.0000 0.9999 0.9999

HFHM = Supersaturated designs using half Fraction Hadamard matrices (Lin, 1993).
IntCol = Supersaturated designs using interaction columns (Lin, 1991 and Wu, 1993).

Table 2
Lower bound probabilities given by Corollary 1

Run size Opmi Number of factors (k)
10 20 30 40 50
12 1 0.8574 0.7237 0.6092 0.5134 0.4327
2 0.9999 0.9998 0.9997 0.9996 0.9995
16 1 0.9374 0.8725 0.8121 0.7558 0.7034
2 1.000 1.000 1.000 1.000 1.000
20 1 0.9726 0.9430 0.9143 0.8865 0.8595
2 1.000 1.000 1.000 1.000 1.000
24 1 0.9879 0.9747 0.9616 0.9487 0.9360
2 1.000 1.000 1.000 1.000 1.000

is at least Yy + Y — 1. If both ¥y and yp,~ are larger than 99%, this bound is
98%. Obviously, we have 1, = ¢,, for any m € A. Hence, a lower bound of 4, can be
obtained from the last theorem.

More generally, we have

Theorem 4. Let A={1,2,..., p} correspond to p active factors in the design. Assume
the conditions in Theorem 1 are satisfied. Then the probability that B, i=1,..., p,
are the p largest factor estimates is no less than

Wty +-+ip—(p— 1

For example, if p=4 and each of ¥;, i=1,..., p, is larger than 99%, this bound
becomes 96% — a very satisfactorily large lower-bound probability. However, the bound
decreases rapidly when p increases or the t;’s become smaller. Of course, for such
cases, a supersaturated design is not recommended.
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Note that the results given above can be straightforwardly extended to the reverse
case to find Prob[f, <f;] where B, is the minimal effect among all f;’s.
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