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In modern quality engineering, dual response surface methodology is a powerful tool. In this paper, we
introduce a fuzzy modeling approach to optimize the dual response system. We demonstrate our approach
in two examples and show the advantages of our method by comparing it with existing methods.

Introduction

ESPONSE surface methodology consists of a group
R of techniques used in the empirical study of the
relationship between the response (y) and a num-
ber of input variables (x;’s). Consequently, the ex-
perimenter is able to find the optimal setting for
the input variables that maximizes (or minimizes)
the response. A quadratic (second-order) polynomial
model, along with least squares fitting, is widely used
to study such an empirical relationship. As a result,
all observations are typically assumed to have equal
variation.

However, evidence from real problems suggests
that the equal variation assumption may not be prac-
tically valid. Indeed, when the variances for all ob-
servations are not equal, classical response surface
methodology can be misleading. Recently the dual
response surface approach, popularized by Vining
and Myers (1990), has received a great deal of atten-
tion in response to its attempt to tackle such a non-
equal variance problem (see, e.g., Del Castillo and
Montgomery (1993); Lin and Tu (1995); Del Castillo
(1996); Copeland and Nelson (1996)). Basically, the
dual response surface approach builds two empirical
models—one for the mean and one for the standard
deviation—and then optimizes one of these responses
subject to an appropriate constraint on the other’s
value.
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The dual response surface approach consists of
roughly three stages: data collection (design of ex-
periment), model building and optimization. In this
paper we focus on optimization, assuming the data
have been collected and suitable models have been
fitted. Two questions must be addressed in the
optimization stage: “what to optimize” (determin-
ing the objective function) and “how to optimize”
(the optimization algorithm). Here we are particu-
larly interested in “what to optimize” rather than
“how to optimize”. The latter issue can be solved
by popular standard software packages such as EX-
CEL (Microsoft, 1993), the Generalized Reduced
Gradient method (see, e.g., Del Castillo and Mont-
gomery (1993)) or LANCELOT (see, e.g., Lin and
Tu (1995)).

Consider the situation in which a response y de-
pends on k variables, coded z1,zo,...,zs. The true
response function is unknown so we shall approx-
imate it over a limited experimental region by a
polynomial representation. If a first-order model,
y = By + Brx1 + Poxo + -+ + Brxk, suffers lack of
fit arising from the existence of surface curvature, we
might then wish to fit, by least squares, a quadratic
response of the form

k k k
y=p5+ Z;Bixi + Zﬁnﬂf + Z Zﬁij’ﬂﬂj +e.
i=1 i=1 i<y

Again, such a model works well when the variance of
the response is relatively small and stable (a constant
value), but when the variance of ¥ is not a constant,
classical response surface methodology could be mis-
leading.

Vining and Myers (1990) used the dual response
approach, introduced by Myers and Carter (1973),
and proposed an ingenious method to tackle such a
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problem. They modeled both the location effect (w,)
and the dispersion effect (w,) as separate responses.
Namely,

k k
wy =B+ Y Biwi + Y Bux]
i=1 i=1

k
+ ZZﬁij:Eﬂj +Eu,

i<j
k k
We = Y0 + Z Yi%i + Z Vi,
i=1 i=1

k
+ Z Z’yij;cizj + &5.

i<j
They fit second-order models to both of the responses
and then optimize the two fitted response surface
models simultaneously. Specifically, they optimize
one fitted response subject to an appropriate con-
straint on the value of the other fitted response using
the Lagrangian multiplier approach. For example,
for the case “Nominal the best” (NTB), the opti-
mization scheme will

Minixmize Wy
subject to  w, =T (target).

Del Castillo and Montgomery (1993) optimize
the dual response system based on the same objec-
tive function, but use a more advanced computa-
tional algorithm to avoid the dimensionality problem
(see also, Del Castillo (1996)). Lin and Tu (1995)
point out that the optimization scheme based on La-
grangian multipliers can be misleading due to the
unrealistic restriction of forcing the estimated mean
(w,) to a specific value. Consequently, they propose
a new objective function to be minimized, namely,
the Mean Squared Error, MSE = (u@,—T)* + w2.
Copeland and Nelson (1996) note that minimizing
the MSE places no restriction on how far the result-
ing value of 1, might be from the target value T
They suggest the use of direct function minimiza-
tion.

Proposed Optimization Scheme

We propose a novel mathematical programming
formulation for the dual response problem based on
fuzzy optimization methodology. Our approach con-
siders both the deviation of @, from 7" and the mag-
nitude of ., simultaneously. We shall focus on the
NTB case for the mean to illustrate the basic idea.
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It is assumed that the degree of satisfaction of the
experimenter {(or decision maker, DM) with respect
to the mean is maximized when 4, equals T and de-
creases as W, moves away from T'. If wj™” and wj**
represent the lower and upper bounds of aspirations,
respectively, then the DM does not accept a solu-
tion x for which @, < w or @, > w®, Thus
the satisfaction level with respect to the mean can
be modeled by a function which decreases monoton-
ically from 1, at w,= T, to 0, at @, < w;™ or @,>
w, . In this paper, we will refer to such a function
as a membership function (as in fuzzy set theory).

The membership function value of the mean re-
sponse, denoted as m(w,), is interpreted as the de-
gree to which <, satisfies the target on the mean, and
is a value between 0 and 1. Assuming the degree of
satisfaction changes linearly as a function of (&, —T),
a membership function (also depicted in Figure 1(a))
can be expressed as

LA min
0 ifw, < wy
M 2 max
or if W, > wy

m(w,) = _ T-% : min ~ 1
(W) 1 T—wﬁrr if wy" <y, < T (1)
w,, —T . ~ ma.
l- = T <w, < wy .

The degree of satisfaction with respect to the es-
timated standard deviation, w,, can be modeled in
a similar way. The membership function value of the
standard deviation, m(, ), would decrease mono-
tonically from 1, at w™™, to 0, at w™a*, where win
and wi®* represent the lower and upper bounds
of aspirations with respect to the standard devia-
tion. Figure 1(b) shows a linear membership func-
tion which is stated as

1 if 1, < wmin
o min 2 max
= if wi™ <, < wy (2)

- w — W,
m(y) = 5
0 if W, > wix,

,MAaX __4,min
We We

The value of w™™® is typically set equal to zero. If

the DM, however, does not care about the variabil-
ity up to a certain level, w™™ can be given a pos-
itive value (in Figure 1(b)). [Figure 1(c) shows an
example of a nonlinear membership function. The
determination of a membership function shape will

be discussed later in this paper.]

A dual response problem requires an overall opti-
mization—that is, a simultaneous satisfaction with
respect to both the mean and the standard deviation.
If a “minimum” operator is employed for aggregat-
ing the two objectives, a dual response optimization
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(¢) Membership Function of t,: Nonlinear Case.

FIGURE 1. Example Membership Functions of 10, and
W,

problem can be stated as
Maximize A
X

subject to m(d,) > A
m(Wy) > A (4)

m
SRV,

X

Vol. 30, No. 1, January 1998

where W, and ¥, are functions of x (i.e., fitted re-
sponse surfaces) and € defines the feasible region
of x. The above formulation aims to identify x*
which would maximize the minimum degree of satis-
faction, A, with respect to the mean and standard de-
viation within the feasible region, that is, maximize
(minimum[m(w, ), m(@,)]) with respect to x € .

The optimization approach proposed has two
main methodological advantages over the existing
methods. First, the proposed approach achieves a
better balance between bias and variance compared
to the existing methods. As an example, in the ap-
proach proposed by Vining and Myers (1990), the
requirement on the mean (or variance) is expressed
in an equality constraint, which may be unrealisti-
cally constraining. The MSE criterion (Lin and Tu
(1995)) minimizes the MSE value without regard to
the relative magnitude of bias and variance. For in-
stance, in the printing process example given in Lin
and Tu (1995, p.37, Table 3, x'x < 1), the MSE
criterion results in an optimal setting at which the
bias is 29.81 (= (494.54 — 500)?) and the variance is
1,992.73. The bias explains only 1.47% of the MSE,
and thus the minimization of MSE was essentially
driven by the minimization of variance, although a
small amount of bias might have a significant impact
on the design performance. The opposite scenario,
where variance is dominated by bias, is also possible.
The formulation proposed by Copeland and Nelson
(1996) is deemed more realistic in this regard. How-
ever, it does not consider the effect of the bias up
to a certain point. Specifically, all solutions within
tolerance limits are not necessarily equally desirable
(which is a fundamental concept from Taguchi). The
proposed approach explicitly takes into account prac-
tically allowable ranges on the mean and standard
deviation and then maximizes the satisfaction level
which is defined within the specified range. There-
fore, the optimal setting obtained from the proposed
approach would be much more balanced in the sense
that the contribution of both bias and variance is
properly reflected in the optimization process. This
point will be demonstrated in an example later in the

paper.

Secondly, the proposed approach is flexible as it
allows the DM to incorporate his or her preference
into the model. For example, the membership func-
tion of @, can be asymmetric, as when the DM’s de-
gree of satisfaction changes at a different rate when
W, moves away from T in the left or right direction.
The DM’s preference can be easily implemented by
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min

properly specifying w;"" and w;"**. If an “under-
size” deviation is more costly than an “oversize” de-
viation, the bounds should be set in such a way that
(T—wﬂ““) is smaller than (w;**~T). As an extreme
case, setting w:j“i“: T = 0 (assuming @, is nonneg-
ative) represents the “smaller-the-better”, while set-
ting w;**= T at a sufficiently large value represents
the “larger-the-better” type situation.

Moreover, a nonlinear membership function
(shown in Figure 1(c)) can model the DM’s prefer-
ence change very flexibly compared to the existing
approaches, where the DM’s degree of satisfaction
changes linearly with bias and/or variance. Another
possible advantage of the proposed approach is that
the objective function value, A, allows a good phys-
ical interpretation: A is the overall degree of satis-
faction (0 < A < 1) based on the specified ranges of
both w, and w,.

It is worth noting the similarities and differences
between the membership function and the desirabil-
ity function (see, e.g., Derringer and Suich (1980)).
The membership function of a fuzzy set assigns each
possible element a value representing its grade of
membership in the set (see, e.g., Zadeh (1965)). Ob-
jects may belong in a fuzzy set to a greater or lesser
degree as indicated by a larger or smaller member-
ship value. The desirability function approach is
probably one of the most frequently used multire-
sponse optimization techniques. The methodologi-
cal basis for the desirability function approach is to
transform the estimated response on a quality char-
acteristic to a value, known as “desirability,” for each
response. The geometric mean of all individual de-
sirability values is then used to represent the overall
desirability—the larger, the better.

Although the two functions have been developed
from different perspectives, they have some common
characteristics: they are scale-free, they are between
0 and 1 (0 being the worst and 1 the best), and
they are flexible in shape. Conceptually, a desirabil-
ity function can be viewed as a special case of the
membership function in the sense that the degree
of desirability of an estimated response is essentially
the grade of membership to a fuzzy set representing
the “ideal” response. For a discussion on the use of
fuzzy methods in statistical problems, see Laviolette,
Seaman, Barrett and Woodall (1995).

Membership Function Assessment

As discussed in the previous section, the proposed
approach requires that the membership function of
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the estimated mean and standard deviation be spec-
ified. A linear membership function, as in (1) and
(2), is defined by fixing the upper and lower levels of
acceptability (and a target value in the NTB case).
If the marginal rate of change of membership val-
ues as a function of the response is not constant, a
nonlinear membership function should be employed.
Nonlinear shapes offer potential benefits in terms of

realism and are chosen with varying perception of
the DM.

When a nonlinear membership function is desired,
the process of selecting an admissible functional form
is difficult and time-consuming. However, it can be
simplified by employing a general functional form
which can generate a rich variety of shapes by adjust-
ment of its parameters. In view of this, we suggest
the use of an exponential function of the form

el—edlzi ¥
_ < ifd#0
m(z) = { 1205 ifd=o, (5)
where d is a constant (—oc < d < o0), called the ex-
ponential constant, and z is a standardized parame-
ter representing the distance of the response from its
target in units of the maximum allowable deviation.
For a symmetric case, the estimated mean, denoted
as z,, is defined as

o o= Wu T W, =T
L max __ - __ ,,ymin
wy, T T-wy
min - max
for wy'™ < b, < wp. (6)

Equation (6) can be easily modified for an asymmet-
ric case. Similarly, the standard deviation, denoted
as z,, is defined as

Wy — ,w(rjnm
Zg =— T
max __ 5,I71iN
wd wU'
for wi' <, < Wi (7)

Note that z, ranges between —1 and 1 while 2,
ranges between 0 and 1. In both cases the mem-
bership function value m(z) achieves its maximum
value of 1 when z = 0, that is, when ¥,= T and
W,= w™®. The function m(z) given in (5) has been
proven to provide a reasonable and flexible repre-
sentation of human perception (Kirkwood and Sarin
(1980), Moskowitz and Kim (1993)) and is conve-
nient to handle analytically.

The function m(z) can represent many differ-
ent shapes depending upon the exponential constant
d; it is convex, linear, and concave when d < 0,
d = 0,and d > 0, respectively. As d increases (from
negative infinity to positive infinity), m(z) becomes
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decreasingly convex and increasingly concave. If
a convex-shaped membership function is used, the
membership value changes more rapidly when z is
close to 0 (and more slowly when z gets close to 1)
than when using a linear or concave-shaped member-
ship function. Therefore, using a convex membership
function implies that the deviation of the response
from its target value should be smaller (in units of
z) than when using a linear or concave membership
function to maintain the same degree of satisfaction.
(See the points a, b, ¢ at m{z) = myg in Figure 2.) Ex-
amples of the exponential membership function with
several different d values are shown in Figure 2.

The membership function reflects the DM’s belief
and, by some, has been viewed analogous to a utility
function in decision analysis {(Zimmermann (1987)).
A membership function can thus be measured using
procedures similar to those used for assessing a utility
function. For the exponential membership function
case, m(z) can be assessed by identifying just one
point on the curve because it has only one unknown
parameter d. At an arbitrary point zp, (0 < 2o < 1),
the DM assesses the degree of satisfaction, denoted
as s, and then solves the equation m(z) = s for d:

€d o edZ()

=35 0<z <1, 0<s<1l. (8)
et —1

There is no closed form solution to (8), hence it must
be solved numerically. However, when zp = 0.5, d is
obtained as

08

m(z)

¢=-10

g! 04

0.0

0.0 a 02

FIGURE 2. Example of Exponential Membership Func-
tions. Note: The graph is shown only for 0 <z < 1;
m(z,) may not be symmetric for —1 < z < 0.
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TABLE 1. The Printing Process Study Data

U Ty T2 T3 Yul Yu2  Yu3 Yu Su

1 -1 -1 -1 34 10 28 24.0 12.49
2 0 -1 -1 115 116 130 120.3 8.39
3 1 -1 —1 192 18 263 213.7 42.80
4 -1 0 -1 82 88 88 86.0 3.46
5 0 0 -1 44 178 188 136.7 80.41
6 1 0 -1 322 350 350 340.7 16.17
7T -1 1 -1 141 110 8 112.3 27.57
8 0 1 —1 259 251 259 256.3 4.62
9 1 1 =1 290 280 245 271.7 23.63

0 -1 -1 0 81 81 81 81.0 0.00
1 0 -1 0 90 122 93 101.7 17.67
121 -1 0 319 376 376 3570 3291
13 -1 0 0 180 180 154 1713 15.01
14 0 0 0 372 372 372 3720 0.00
15 1 0 0 541 568 396 501.7 92.50
16 -1 1 0 288 192 312 264.0 63.50
170 1 0 432 336 513 4270 88.61
18 1 1 0 713 725 754 730.7 21.08
19 -1 -1 1 364 99 199 220.7 133.80
20 0 -1 1 232 221 266 239.7 2346
21 1 -1 1 408 415 443 422.0 18.52
22 -1 0 1 182 233 182 199.0 29.45
23 0 0 1 507 515 434 4853 44.64
24 1 0 1 846 535 640 673.7 158.20
25 -1 1 1 236 126 168 176.7 55.51
26 0 1 1 660 440 403 501.0 138.90
27 1 1 1 878 991 1161 1010.0 142.50

The function m(z) is convex, linear, and concave
when 0 < s < 0.5, s = 0.5, and 0.5 < s < 1, re-
spectively.

Example 1

As an example, we use a problem taken from Box
and Draper (1987), which was also used in Vining
and Myers (1990) and Lin and Tu (1995), referred to
as VM and LT, respectively, to make a fair compari-
son. The purpose of the experiment was to determine
the effect of speed (x1), pressure (x3), and distance
(z3) on the quality of a printing process. The ex-
periment was conducted in a 3% factorial design with
three replicates at each design point. The data set is
reproduced in Table 1.

Assuming quadratic models were adequate, re-
sponse surfaces for the mean and standard deviation
of the characteristic of interest were fitted as follows
(Vining and Myers (1990)),

W, = 327.6 + 177.02; + 109.4x
+131.523 + 32.0x% — 22,423
—29.123 + 66.0z;1 2

Journal of Quality Technology
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We = 34.9+ 11.5z; + 15.3x5
+29.2z3 +4.227 — 1.323
+16.823 + 7.7z122
+ 5.1x23 + 14. 12025,

For illustration, the exponential membership func-
tion given in (5) was employed with the follow-
ing bounds: wﬁ““:490, wi**=510, T=500, wii"=
V1500, and w]'**= +/2100. To examine the effect
of the membership function shape, various values of
d,,, ranging from —4.39 to 4.39, were tested with d,
fixed at 0. (The subscripts p and o, represent the
mean and standard deviation, respectively.) The re-
sults of the proposed approach, based on a cuboidal
region —1 < z; <1 (i =1, 2, 3), are summarized
and compared with those of VM and LT in Table 2.

Effect of Membership Function

Table 2 shows that the results of the VM and
LT approaches are not affected by the membership
function, except for the A value from LT which was

computed a posteriori for comparison with the pro-
posed approach. The value of A from the VM method
turns out to be zero for all d because @, of v/2679.70
is out of the allowable range of m(z) for the stan-
dard deviation; that is, A\ = min{m(@,), m(ds)} =
min{m(500), m(v/2679.70)} = min{1.0,0.0} = 0.0.
If w2 had been set at a value greater than
Vv2679.70, however, the VM method would have
achieved a positive level of A.

The effect of a change in the value of d, can be
easily seen in the results of the proposed approach.
Increasing the value of d,,, with d, fixed, indicates
that m(z,) is becoming more concave, and thus the
requirement on the mean is becoming less stringent.
The result shows that as d,, increases (from a neg-
ative value to zero, and then to a positive value),
|, —T| increases and W, decreases because the satis-
faction level on the standard deviation becomes more
crucial, in a relative sense, compared to that of the
mean.

The optimal objective function value, A\*, in-
creases as d,, increases. This is because the member-

TABLE 2. Comparisons of Results: Proposed vs. Existing Approaches

d, = —4.39 d, =—1.70 d, = 0.00 d, =1.70 d, = 4.391
method
Optimal
Setting  (0.62,0.23,0.10) (0.62,0.23,0.10) (0.62,0.23,0.10) (0.62,0.23,0.10) (0.62,0.23,0.10)
Wy, 500 500 500 500 500
W2 2679.70 2679.70 2679.70 2679.70 2679.70
MSE 2679.70 2679.70 2679.70 2679.70 2679.70
A 0.00 0.00 0.00 0.00 0.00
LT
Optimal
Setting  (1.00,0.07,—0.25)  (1.00,0.07,—0.25)  (1.00,0.07,-0.25) (1.00,0.07,—0.25) (1.00,0.07,—0.25)
Wy, 494.44 494.44 494.44 494.44 494.44
W2 1974.02 1974.02 1974.02 1974.02 1974.02
MSE*(11) 2005.14 2005.14 2005.14 2005.14 2005.14
A 0.08 0.19 0.20 0.20 0.20
Proposed
Optimal .
Setting  (1.00,0.086,—0.254) (1.00,0.067,—0.251) (1.00,0.055,—0.248) (1.00,0.047,—0.247) (1.00,0.041,—0.246)
W, 496.08 493.84 492.32 491.34 490.67
Wy 1991.74 1967.88 1951.79 1941.45 1934.48
MSE 2007.07 2005.80 2010.77 2016.47 2021.44
A 0.17 0.21 0.23 0.25 0.26

() d, = —4.39, —=1.70, 0.00, 1.70, 4.39 corresponds to s (membership value at z = 0.5) = 0.1, 0.3, 0.5, 0.7,
0.9, respectively. d, was set at 0.00 throughout the example.

(1) The expression with “*” is the quantity that was optimized.
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ship value m(z) at an arbitrary z € (0,1) increases
as the membership function shape becomes decreas-
ingly convex or increasingly concave. The MSE
value, however, does not display a systematic pattern
as a function of d, because the MSE was computed
at x*, which yields the maximum A*.

It should be noted that the membership function
shape affects A", but not x*, nor MSE, if d, = d,
(e.g., x* is the same for d, = d, = —4.39 or for
d, = d, = 4.39). Assigning the same membership
function shape to both 1, and w, implies that they
have the same level of stringency within the specified
range. Therefore, the membership function shape,
either convex or concave, should not affect the opti-
mal setting when a common shape is used for both
objectives.

Comparison with VM and LT

The solution of the proposed approach is much
closer to that of LT than VM in terms of the op-
timal setting x* and MSE, as well as A*. When
d, = —4.39, the membership function is highly con-
vex, which indicates the high stringency associated
with the mean compared to a linear membership
function for the standard deviation (d, = 0.00). The
proposed approach explicitly considers such prior-
ity manifested by the membership function shape in
contrast to the existing methods. As a result, the
proposed approach results in a better w,, and the
LT method, in a better w,. Both @, and w, of
the proposed approach are 17% satisfactory, hence
A* = 0.17. In LT’s method, the satisfaction is 20% in
Wy, but only 8% in ,,. Thus the overall satisfaction
level would be 8%, which is significantly lower than
the satisfaction level from the proposed approach.
Figure 3 shows the solutions from both methods on
the common axes for the above mentioned case.

In all cases, as expected, the proposed and the LT
methods give a higher A* and a lower MSE*, respec-
tively. Furthermore, except for when d, = —4.39,
the proposed method yields a smaller w,, while LT’s
method yields a value of 1, which is closer to 500.

Practical Concerns

The following steps are suggested to implement
the proposed model. A simple subroutine can be
constructed to perform all the computations.

Step 0:  Develop the experimental design, conduct
the experiments. and collect the data.
Step 1:  Fit response surfaces for the mean ()

and the standard deviation ().

Vol. 30, No. 1, January 1998

Step 2:  Determine the bounds of aspirations on
the mean (w™, w**, and T for the
NTB case) and the standard deviation
(w;uin and ,wgmx)‘

Assess the membership functions of the
mean (m(i@,,)) and the standard deviation
(m(d,)), as given in (5)—(7).

Formulate and solve the optimization
problem using the information from Steps

1 to 3, as given in (3) and (4).

Step 3:

Step 4:

Notes on Implementation Issues

Step 0 typically employs the classical first- and
second-order design as discussed in Box and Draper
(1987) and Myers and Montgomery (1995). When
fitting models for the responses in Step 1, the pre-
dictive capability of the model is a very important
consideration and should be justified by meaningful
criteria, such as a high R? value. In order to im-
prove the R? value, various model selection proce-
dures such as stepwise regression, all possible sub-
sets regression, Cp, and PRESS may be employed
(Lin and Tu (1995)), possibly with a transformation
of the data (see, e.g., Vining and Myers, (1990)).

miw,)

wal 44 T =300 ) ; “u
£ a0 . 496.08 =50 o

(a) Proposed vs. LT method: m(2&,,).

m(v’z‘ni

(b) Proposed vs. LT method: m ().

FIGURE 3. Comparison of Solutions from the methods
at (d,,d,) = (—4.39,0.00). Note: The axes are shown
in the original units.
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The bounds to be determined in Step 2 are the
ones in a practical (rather than theoretical) sense,
representing the extreme values of the DM’s aspira-
tion interval. The determination of the bounds is
not always straightforward. One possible way to de-
termine the bounds is to use the current operating
condition (which is to be improved) as a baseline,
that is, set w}'™(or w®*) and wj'®* at the current
process mean and standard deviation, respectively.

The assessment of a membership functional form
in Step 3 can be simplified by employing the expo-
nential function given in (5), which can generate var-
ious shapes through adjustment of the exponential
constant d. The value of d is chosen depending on
the range of the responses and the DM’s preference
change within the range. Although there are no the-
oretical bounds on d, realistic values of d will gen-
erally have a magnitude between —10 and 10 (Kirk-
wood (1996)). Figure 2 shows that the membership
functions are very curved at d = —10 or d = 10.
Generally, a negative (positive) value of d represents
the high (low) stringency of the requirement that the
characteristic (mean or standard deviation) should
be close to its target value.

Once all the modeling components described
above are determined, an optimization problem for
the dual response can be formulated as in (3) and
(4). The important concept of specification limits
for the mean and standard deviation can be easily
incorporated here. The region of interest of a design
point, X, is defined by x € Q. If there are regula-
tions or standards to be met, such conditions can be
included as part of x €  to further restrict the fea-
sible range of x. Assuming that the fitted response
models are of a second-order or higher, the formu-
lation represents a constrained nonlinear optimiza-
tion with a single objective. In principle, any gen-
eral algorithm for a nonlinear problem can be used,
including the Generalized Reduced Gradient (GRG)
method (Del Castillo and Montgomery (1993), Del
Castillo (1996)), and the Nelder-Mead simplex pro-
cedure (Copeland and Nelson (1996)). A built-in
optimization routine based on the GRG algorithm,
Microsoft Excel’s Solver, Microsoft (1993), was used
to solve the example problems in this work.

It should be noted that a gradient-based opti-
mization method, like the GRG algorithm, may fail
to reach an optimal point if the membership func-
tion (in (3) and (4)) has non-differentiable points
(Del Castillo, Montgomery and McCarville (1996)).
Moreover, the nonlinear optimization may result in
a local optimum because the ultimate solution found
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can depend on the starting point supplied by the
user. It is recommended that the optimization pro-
gram be run with several different starting points
when the optimization result is suspect.

Example 2

In a Roman-style catapult experiment, Luner
(1994) used three variables, z1 (arm length), x5 (stop
angle), and x3 (pivot height), to predict the distance
to the point where a projectile landed from the base
of the catapult. The experiment is a central compos-
ite design with three replicates, as shown in Table
3. We will solve this problem using our suggested
steps, discussed in the previous section. The infor-
mation required for Steps 0, 1, and 2 is taken from
Luner (1994).

Step 0:  The results of the experiment are summa-
rized and reproduced in Table 3.
A weighted least squares regression anal-
ysis was performed for the mean response.
The fitted second-order model is

W, = 84.88 + 15.29x, + 0.24x;

+ 18.80z3 — 0.5277 — 11.80z3
+0.3923 + 0.22z7 72

+ 3.60z,x3 - 4.42x5x3. (10)

Step 1:

The fitted second-order model for stan-
dard deviation is

Wy = 4.53 + 1.84z, + 4.28x,
+3.73x3 + 1.1627 + 4.4023
+0.9423 + 1.20z, 79
+0.732,73 + 3.49z025.  (11)

Step 2:  The target value for the mean is 80. A
mean value between 79 and 81 is deemed
acceptable, thus wL“i“ and w;"™* were set
at 79 and 81, respectively. It is desired
that the standard deviation be minimized
and not exceed 3.5. Therefore, w™* and
wih?* were set at 0 and 3.5, respectively
(see, e.g., Luner (1994, page 701)).

Since it is presumed that the satisfaction
level with respect to the mean changes
linearly with the deviation from the tar-
get value, a linear membership func-

tion is employed for the mean, that is,

Step 3:

m(y)
0 if w,< 79
or iy, > 81
1 — |80 —b,|
if 79 <, <81

Vol. 30, No. 1, January 1998

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



DUAL RESPONSE SURFACE OPTIMIZATION: A FUZZY MODELING APPROACH 9

TABLE 3. The Catapult Study Data

U s} T2 Yul Yu2 Yu3 Yu Su

Factorial 1 -1 -1 -1 39 34 42 38.3 4.0
Points 2 -1 -1 1 80 71 91 80.7 10.0
3 ~1 1 -1 52 44 45 47.0 4.4

4 -1 1 1 97 68 60 75.0 19.5

5 1 -1 -1 60 53 68 60.3 7.5

6 1 -1 1 113 104 127 114.7 11.6

7 1 1 —1 78 64 65 69.0 7.8

8 1 1 1 130 79 75 94.7 30.7

Axial 9 —1.682 0 0 59 51 60 56.7 4.9
Points 10 1.682 0 0 115 102 117 111.3 8.1
11 0 —1.682 0 50 43 57 50.0 7.0

12 0 1.682 0 88 49 43 60.0 24.4

13 0 0 —1.682 54 50 60 54.7 5.0

14 0 0 1.682 122 109 119 116.7 6.8

Center 15 0 0 0 87 78 89 84.7 59
Points 16 0 0 0 86 79 85 83.3 3.8
17 0 0 0 88 81 87 85.3 3.8

18 0 0 0 89 82 87 86.0 3.6

19 0 0 0 86 79 88 84.3 4.7

20 0 0 0 88 79 90 85.7 5.9

This membership function corresponds to
the case d = 0 in m(z), given in (5). The
requirement on the standard deviation is
assumed to be less stringent than that on
the mean. Hence a concave-shaped ex-
ponential membership function with d =
1.70 (corresponding to s = 0.70 in (9)) is
chosen, that is,

) e1.7 _ e].?zo
mite) =
where
Wy — w?“” W, —0 W,
o T ymax _ymin T 350 35

for 0 < w, < 3.5.
The complete formulation for the catapult
study problem is as follows

Step 4:

Maximize A

subject to 1 — 180 —w,| > A,

1.7 1.7z4

79 < 1, < 81,
0 <1, < 3.5,
1<z <1, i=1,2,3

Vol. 30, No. 1, January 1998

where w0, and 0, are given as a function
of ;’s (i = 1,2,3) in (10) and (11), re-
spectively, and z, = w,/3.5.

The optimal design point turns out to be x* =
(0.12, -0.27,—-0.32), where %, =79.23, 1»,=3.06, and
the resulting A* = 0.23. Different membership func-
tions (i.e., different d,, and/or d, values in Step 3)
would have resulted in different x*. The sensitivity
of the results to the changes in d, and d, or to the
ratio (d, /d,) is now under investigation. This should
provide some useful insights as to under what con-
ditions the membership function shape has a critical
effect, and thus the assessment of d,, and d, could
be done more carefully.

Conclusion

A fuzzy modeling approach to optimize the dual
response system has been presented. The proposed
approach aims to identify a set of process parameter
conditions to simultaneously maximize the degree of
satisfaction with respect to the mean and the stan-
dard deviation responses. In using two real examples,
it was shown that the proposed method can model
the decision maker’s preference on the estimated re-
sponses very flexibly and achieves a better balance
between bias and variance. Comparisons with other
existing methods were also discussed.
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An explicit procedure was presented that allows
one to map steps for the application of the proposed
procedure. In particular, Steps 0 and 1 {data collec-
tion and empirical model building) are well known
subjects and were not further pursued here. Steps
2 and 3 (membership function assessment and prob-
lem formulation) have been discussed in detail. Step
4 (optimization) requires a constrained nonlinear op-
timization solver, in general. We have used Microsoft
Excel in this paper, although other algorithms in this
area, as previously mentioned, can be used as well.
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