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ABSTRACT

The search of construction methods for a “good” supersaturated design has
received a great deal of attention in recent years. Many single-valued criteria have
been proposed for comparison purposes. In this paper, we propose/review three
criteria based on the information matrix of a projective design and provide two
graphical methods for comparing different types of supersaturated designs: the line
plot and the boxplot methods. Four different construction methods are compared
using the proposed graphical techniques. These construction methods were proposed
by Booth and Cox (1962), Lin (1993), Wu (1993) and Lin (1995). A thorough

discussion on the proposed graphical techniques is given.
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1. INTRODUCTION

A supersaturated design is a factorial design useful when the number of factors
to be investigated are many and the experimental runs are expensive. Often in an
experimentation, there are a large number of potentially relevant factors, but only
a few are believed to have actual effects. Knowing the main effects of insignificant
factors is usually not of interest and investigating these insignificant factors is a
waste of resources. Supersaturated designs provide an approach for constructing an
experimental design where the first order model is assumed and where the number
of significant factors is small and the cost of an additional run is high.

In this paper we present a comparison of seven cases using four different su-
persaturated design construction methods proposed by Booth and Cox (1962), Lin
(1993), Wu (1993) and Lin (1995), based on three criteria via tabular and graphical
methods. Using these criteria, we can graphically identify and numerically support
an optimal choice for design construction. In Section 2, we review the four different
supersaturated designs. Section 3 presents the evaluation criteria which are com-
pared via summary table and line plot in Section 4 and by boxplot in Section 5.

The conclusions are then presented in Section 6.

2. FOUR SUPERSATURATED DESIGN CLASSES

Booth and Cox (1962) first suggest a systematic construction method for super-
saturated design. Based on the E(s?) criterion, they provide seven supersaturated

designs via computer search. These seven designs are for the cases:
(n, k) = (12,16), (12,20), (12, 24), (18, 24), (18, 30), (18, 36) and (24, 30),

where n is the number of experimental runs and k is the number of experimental
factors.

Based on half-fraction Hadamard matrix, Lin (1993) proposes a simple con-
struction method for a new class of supersaturated design. Besides the simplicity of

construction, these designs are shown to exhibit nice mathematical properties. For
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this method, the value of n must be even. Wu (1993) makes use of the interaction
columns of the Hadamard matrix in proposing another class of supersaturated de-
sign. Here, the value of n must be a multiple of four. To the best of our knowledge,
these are the two most recent construction methods proposed in the literature since
Booth and Cox’s result. The first computer algorithm specifically for construct-
ing supersaturated design is given by Lin (1995). This algorithm is based on the
“exchange procedure,” given the value of n and k (n can be even or odd).

Designs resulting from these four construction methods will be compared here.
We next discuss the details of the construction methods, the criteria and the com-

parison methods.

A: Booth and Cox (1962) Booth and Cox first propose a systematic method for
the construction of a supersaturated design based on computing the maximum
cross-product between a trial set of vectors and new trial vectors with an equal
number of +'s and -'s. The criterion is also known as E(s?) = 3" c;cj/(';) where

¢ and c; are design columns.

B: Lin (1993) Lin proposes a class of supersaturated designs constructed by
using half fractions of Hadamard matrices, choosing a branching column from
a given Hadamard matrix to split the whole matrix into two half fractions
corresponding to those rows when the branching column has a value of + (or
- ). The resulting matrix has a dimension (n,k) = (N/2,N — 2) where N is

the order of the Hadamard matrix.

C: Wu (1993) For a given Hadamard matrix of order N, one can generate all
(N;l) interaction columns. Combining the original matrix with all the in-
teraction columns results in a supersaturated design of dimension (n,k) =

(N,N =1+ (*71).

D: Lin (1995) Using the exchange procedure, Lin's algorithm examines all pos-
sible candidate columns with equal occurrence to minimize two criteria: the
maximal pairwise correlation (the primary criterion) and the E(s?) (the sec-

ondary criterion).
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3. CRITERIA USED

To compare the different supersaturated designs, Booth and Cox (1962) propose
a criterion analogous to a commonly used determinant criterion. As an extension
of the classical optimal design, Wu (1993) proposes the D, A, and E criteria for
the situations where there are more than two active factors. For a review of all the
related criteria on supersaturated design, see Deng and Lin (1994). Note that the
projection property plays a crucial role here.

For any n x k supersaturated design X, define a n x p matrix Xj, to be a projective
design with its p columns chosen from the X matrix. There are (:) such submatrices.
Denote Ay,..., Ap as the eigenvalues of the information matrix %X;,Xp.

Three criteria will be considered here: the a—value, d—value and r—value.

1. The a—value is defined as the harmonic mean of the A;'s

RN
= 25" ,
¢ [pg}

and a = 0 if any )\; = 0. The a—value of a projective design is always between
0 and 1, with 1 as the most desirable case and 0 the least desirable. Note that

the classical A—optimality is defined as
1 -1
trace (;X;,Xp) = Z,\i—l
which is equivalent to the a—value defined above when \; # 0.

2. The d—value is defined as the geometric mean of the A;’s,

P t/p
d= (H ,\,-) .
i=1

Similar to the a—value, the d—value is always between 0 and 1, with 1 as
the most desirable case and Q the least desirable. Note that 0 < a — value <
d — value < 1. The d—value is probably the most popular criterion in optimal

design literature.

3. The r—value is defined as the absolute correlation coefficient between every

pair of design columns ¢; and c;,



r — value = |corr(ci, ¢;)| = E

cicj
n

The average of the r;s is essentially the popular E(s2) criterion proposed by
Booth and Cox (1962). Unlike the a and d—values, small r—values are more

desirable in that r — value = 0 implies perfect orthogonality.

The geometric and harmonic means are used because they are insensitive to
outliers in the sense that neither a large nor a small (though non-zero) eigenvalue
will affect the measure of center as much as with the arithmetic mean. In the case
of an orthogonal design, the resulting information matrix will have the number of

columns on the diagonal and zero elsewhere.

4. SUMMARY TABLE AND LINE-PLOT

The goal of this investigation is to determine which method of supersaturated
design construction is best in any particular situation. To evaluate each design

method, we consider each of the seven cases given in Booth and Cox (1962) for
(n, k) = (12, 16), (12, 20), (12, 24), (18, 24), (18, 30), (18, 36) and (24, 30)

and evaluate the criteria for the set of test vectors with columns p = {2,3,4,5}.
Note that Lin (1993) is not available for (n,k) = (18,36) and Wu (1993) is not
available for n = 18 so no complete comparison studies can be made for these cases.
Also note that for each situation, there are (:) projective matrices to be evaluated.
For example, when p = 5 and (n, k) = (12, 20), there are (250) = 15,504 X, matrices.
Recently, Balkin and Lin {(1998) have obtained the means and standard deviations
of these seven cases. Their results for Case 1 are reproduced in Table I.

Due to the huge number of projective designs, only the summary statistics, such
as the mean, of each criterion are reported in the literature. However, as we can
see from the table, in many situations, the means can be very close to each other.
Here, the standard deviation can be useful as a secondary criterion in separating
one case from another. It is not easy to discern which of the methods is the best

from such tables. To combat this difficulty, we create line plots of the means and
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(a) CASE 1: (n,k) = (12,16)
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(b) CASE 2: (n,k) = (12, 20)

Meanof a-vaive Wean of ¢-vaiue Mean of r-vaiue
!1:\\ : :\\ '
. \\ : \.\ :
* ~ ]
N : N
l : . R AN ;!
\\ .
g ~N | L3 \ ~
g = N Y o e
el % T2 .
H
r . . F
5.0 ofd-value
84 H
}
i 1E /;_:.,,/-""'//' i H
! ,;&V ]
& °
§<

FIGURE 1

Line plots for the means and the standard deviations

of criteria values
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FIGURE II

Bozplots for CASE 1 of criteria values for each design and dimension

standard deviations of the criteria values for each of the four designs over the values
of p. This allows us to quickly see how the design techniques behave relative to each
other.

For example, we can see from Figure I where the means and standard deviations
for Cases 1 and 2 are plotted, that Design A performs worse with regards to the
a and d-values. When the means of two designs are similar, one may use their
standard deviation as a secondary criterion for comparison. For example, Designs B
and C have a close mean in Case 2, but Design C performs better in the sense that it
has a smaller standard deviation. The standard deviations indicate the “stability”
of the projective designs. A small standard deviation implies that the projection

results are more robust to the final columns chosen.
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FIGURE III

Bozplots for CASE 2 of criteria values for each design and dimension

Based on the standard deviations plots (see Balkin and Lin (1998) for complete
set), Design B out performs the others overall (i.e., Design B is most stable). Design
A has the largest standard deviation in most situations.

However, we still lack information concerning the distribution of the criteria val-
ues over all the test vector combinations. In addition, we know that the mean and
standard deviation are point estimate summary statistics that are not robust to out-
liers. This may cause problems if some of the test vector combinations’ crossprod-
ucts are singular, resulting in eigenvalue(s) equal to 0. To learn more about the

distribution of the criteria, a better approach is to use boxplots.
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FIGURE IV

Bozplots for CASE 3 of criteria values for each design and dimension

5. BOXPLOTS AND FURTHER DISCUSSION

In order to get an idea of the distribution of the criteria values, we create modified
boxplots of the criteria values for each case and each design. A modified boxplot
is created by drawing lines at the first, second and third quartiles denoted by Q1,
Q2 and Q3, completing the box by connecting the first and third quartiles, and
extending whiskers to the smallest criterion value greater than Q1 — 1.5 x IQR
and to the greatest criterion value less than Q3 + 1.5 x IQR where IQR is the
inter-quartile range. Values lying outside of the whisker limits are deemed possible
outliers and denoted by a dot. The statistics used in creating a modified boxplot

are known to be robust to outliers.
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FIGURE V

Bozplots for CASE 4 of criteria values for each design and dimension

From these plots, we get an idea about the distribution of the criteria. For
instance, we can see if criterion values are symmetric or skewed, concentrated about
a single value or spread out, and most importantly, if there are any combinations of
test vectors whose crossproduct is singular. This last fact is an important piece of
information hidden by the summary table.

Figures II-VIII display the boxplots for Cases 1-7 respectively. The distributions
of all three criteria are given. The conclusion from the line plots can be confirmed by
the boxplots, such as the highest/lowest mean and standard deviation, etc. There
are other important messages that can not be found from the line plot. The boxplots
for Cases 6 and 7 when p = 5 do not appear because they are too computationally

intensive at this point of time. For example, the data file for Case 6 when p =5 is
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Bozplots for CASE 5 of criteria values for each design and dimension

Case 8, p=2; & Case §,p=2;d Case 8, p=2;r
[Senemusmm— R S - - o
A o ° A o ¢ A o
Case 6.p=3, 4 Case 6, p=3;d Case 6, p=3; ¢
e ——— s * .
LY o ° L) o ° A -]
Case 6, p=4. A Case 6;p=a;d Case 8. p=4; ¢
% # - {7 _r— -_—t =
t i
A o ° A o ° A o

FIGURE VII

Bozplots for CASE 6 of criteria values for each design and dimension
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FIGURE VIII

Bozplots for CASE 7 of criteria values for each design and dimension

63 megabytes. To perform the necessary calculations to produce the boxplots would
require more computer power than we currently have access to.

For an analysis example, from Figure III, Design A has some singular projections
for p=4 and 5 (or its resolution rank is only 3, see Deng, Lin and Wang (1994). This
is not desirable at all, but cannot be seen from the summary tables or the line plots.
Similarly, Design A has a high r-value for Case 3 (see Figure IV), although its E(s?)
(or equivalently, the average r-value) is reasonably low. It is also interesting to note
that Design B has a higher median in most of cases (even though its means are not
particularly high). Such boxplots provide a better comparison and can detect many

important characteristics.

6. CONCLUSION

For the supersaturated designs tested in this study, no single-valued criterion is
capable of characterizing their properties. If it is to be used, the line plot will provide

a better visual comparison than the summary table. When the projection properties



are important, as in supersaturated design context, the boxplot can provide more
information concerning the distribution of the criteria over the set of test vectors,
than the summary table.

A new criterion based on the harmonic mean of eigenvalues, called the a-value,
similar to the traditional A—criterion, is proposed here. Accompanied with the well
known a-value and r-value, the projection properties of a supersaturated design can
be revealed. Note that all of these three criteria have a value between 0 and 1 for
a fair comparison. For the designs tested in this study, Design A seems to perform

worse than others, in terms of these three criteria.

ACKNOWLEDGEMENTS

The authors wish to thank co-editor Pi-Erh Lin and two anonymous referees for
their valuable comments which considerably added to the quality of this manuscript.
This research was partially supported by the National Science Foundation via

Grant DMS-9704711.

BIBLIOGRAPHY

Balkin, S. D. and Lin, D. K. J. (1998), “A Graphical Comparison of Supersaturated
Designs,” The Pennsylvania State University, Department of Management Sci-

ence and Information Systems Working Paper Series, No. 98-01.

Booth, K.H.V. and Cox, D.R. (1962), “Some Systematic Supersaturated Designs,”
Technometrics, 4, 489-495.

Deng, L.Y. and Lin, Dennis K.J. (1994), “Criteria for Supersaturated Designs,”
Proceedings of the Section on Physical and Engineering Sciences, American

Statistical Association, 124-128.

Deng, L.Y., Lin, Dennis K.J. and Wang, J.N. (1994), “Supersaturated Design Using
Hadamard Matrix,” IBM Research Report, RC19470, IBM Watson Research

Center.



SUPERSATURATED DESIGNS 1303

Lin, Dennis K.J. (1991), “Systematic Supersaturated Designs,” Working Paper,

No. 264, College of Business Administration, University of Tennessee.

Lin, D. K. J. (1993), “A New Class of Supersaturated Designs,” Technometrics,
35 28-31.

Lin, D. K. J. (1995), “Generating Systematic Supersaturated Designs,” Techno-
metrics, 37, 213-225.

Plackett, R. L. and Burman, J. P. (1946), “The Design of Optimum Multifactorial
Experiments,” Biometrika, 33 303-325.

Wy, C. F. J. (1993), “Construction of Supersaturated Designs Through Partially
Aliased Interactions,” Biometrika, 80, 661-669.



