Connections Between Two-Level Factorials
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The Venn diagram is widely used in many textbooks to
illustrate relationships in logic, algebra and probability
events. Most applications are limited to £ = 2 or 3 sets.
Attempts have been made to construct Venn diagrams for
many sets. This paper illustrates the connection between
Venn diagrams and the well-known two-level factorial de-
signs. Such a connection provides: (1) a simple way to con-
struct a Venn diagram for any & sets, and (2) a graphical
understanding of two-level factorials. Examples are given
for k=2, 3, 4, and 5.
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1. INTRODUCTION

One of the most important tools to describe event opera-
tions in elementary probability theory is the Venn diagram.
Following conventional notations the events are denoted by
A, B,C,...; the intersection of any two events A and B is
denoted by AB; the intersection of any three events A, B,
and C' is denoted by ABC; and so forth. Furthermore, we
define lower case a = A\ (all intersections of two or more
sets), namely, the set of elements in set A, but not in the
intersection of A with any other set or sets, ab = AB\
(intersections of three or more sets), and so on. The Venn
diagram then partitions the sample space into 2* disjoint
regions. For k = 2, 3, and 4 these 2" regions are

k=2: {O,a,b,ab} (1)
k=3: {O0,a,b,c,ab,ac,bc, abc} (2)
k=4: {O,a,b,c,d, ab,ac,ad, be, bd,

cd, abe, abd, acd, bed, abed } (3)

where O denotes the part that does not intersect with any
of these events.

On the other hand, a two-level factorial design is one
in which k factors, labeled (A, B, C, ..., K), are each allo-
cated to two levels, conventionally called “high level” and
“low level,” and every possible combination of the levels is
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arun. We follow the classical notation for two-level designs.
The high level of each factor is indicated by the presence
of the corresponding lower case letter in a symbol; the low
level is indicated by the absence of that letter. For example,
in a three-factor experiment (factors A, B, and C) ab means
that a experiment is to be run at the high level of the two
factors A and B and the low level of C. The symbol (1)
means an experiment with all factors at their low levels
(see, for example, John 1971). For k = 2, 3, and 4 these 2k
runs then can be represented as

k=2 {(1),a,b,ab}
k=3 {(1),a,b,c,ab,ac,bec,abc}
k=4: {(1),a,b,c,d,ab,ac,ad,

be, bd, cd, abe, abd, acd, bed, abed}.

Symbolically, these are, of course, (1), (2), and (3), respec-
tively. :

2. CONSTRUCTION METHOD AND EXAMPLES

As mentioned, the Venn diagram partitions the sample
space into 2* regions. More precisely, as pointed out by a
referee, these regions must be convex, such as rectangle-
type. Given such a Venn diagram for k events one can
construct a Venn diagram for k + 1 events by drawing a
continuous line that passes through each of these 2* region
exactly once, and finally returns to the starting point. Note
that the notations for any two adjacent regions differ by
exactly one symbol (i.e., they have one more or one less
additional symbol), but are otherwise identical. For exam-
ple, bc and abc are adjacent regions, but a and bc are not.
(See Figures 1-3, discussed below.) In terms of two-level
factorial designs this is equivalent to running the 2* runs
by altering the factor levels one at a time, that is, varying
only one factor from the condition of the last preceding run
(Daniel 1973). Thus a Venn diagram for k + 1 events can
be obtained by drawing a line following the run-order se-
quence of a one-at-a-time 2* design on the Venn diagram
for k events.

One-at-a-time run-order sequences for 2% design are
given below for £ =1, 2, 3, and 4.

k=1 (1) —a

k=2 (1) >a—ab—b

k=3 (1) —a—ab—b—bc—abc—ac—c
k=4: (1) >a—ab—b—bc— abc — ac — c—

cd — acd — abed — bed — bd — abd — ad — d.

These can be used to construct the Venn diagrams for k + 1
=2, 3,4, and 5, respectively, as shown in Figures 1-3. For
example, to construct the Venn diagram for k& = 4 (shown
in Figure 2) one can draw a path in the order of a one-at-a-
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Figure 1. Constructing Venn Diagrams for k = 2and k = 3.

time sequence for £ = 3 given above to the Venn diagram
of £k = 3. Namely, based on the Venn diagram formed by
the solid lines for £ = 3 one begins with point O, makes a
path (indicated by the dotted line) to region A, then region
AB, region B, ..., finally region C, and then returns to
point O. Such an algorithm ensures that each partition is
included exactly once. In addition, one can always collapse
the proper boundaries to eliminate any specific region for
an empty intersection if so desired.

In general, the sequence can be generated by induction
(as is the Venn diagram) as follows. Let X be the run-order
sequence for £ = N —1 and let X™ be its reverse sequence.
Then the run-order sequence for £ = N is formulated by
(X,X*N), where X*N means attaching the symbol “N”
to all elements of X*. Thus for £ = 5 the sequence is as
follows:

k=5: (1),a,ab,b,bc, abc, ac, ¢, cd, acd, abed, bed, bd, abd,
ad, d, de, ade, abde, bde, bede, abede, acde, cde,
ce, ace, abce, bee, be, abe, ae, e.

This essentially proves the existence of one-at-a-time run-
order sequence. Consequently, one can construct the Venn
diagram for any k.
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Figure 2. Constructing Venn Diagram for k = 4.
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Figure 3. Constructing Venn Diagram for k = 5.

3. UNDERSTANDING TWO-LEVEL FACTORIALS
VIA VENN DIAGRAMS

We now discuss how Venn diagrams give a useful graph-
ical understanding of two-level factorials. Two important
issues in the 2% design are of particular interest: run order
and blocking.

3.1 Run Order of the 2* Design

The standard advice given to the experimenters in using
2% design is that the order of the run should be random-
ized before the design is performed. Randomization of the
runs, however, can lead to unfavorable sequences. For ex-
ample, certain input factor combinations may be difficult
to alter or certain main effects can be highly confounded
with a time trend; see Cheng (1985). In certain circum-
stances, therefore, it may be desirable to adopt a specific
run order. Two particular useful sequences that have re-
ceived a great deal of attention in the design literature are:
(1) the (time) trend-free sequence, and (2) the one-at-a-time
sequence. Although the trend-free sequence is orthogonal
(unconfounded) to a prespecified time trend (linear trend is
most likely to be assumed here), the one-at-a-time sequence
is shown to be most economical (Daniel 1973). The latter
sequence is particularly useful when the time trend itself is
not fully obvious.

Constructing a one-at-a-time sequence is a natural ap-
plication of the Venn diagram because any path that goes
through each region exactly once will result in a one-at-a-
time sequence. The specific sequences given in Section 2
are special cases. For example, for the case k& = 3 there
are precisely three intrinsically different one-at-a-time se-
quences: (1)-a-ab-b-be-c-ac-abe, (1)-a-ab-b-be-abe-ac-c, and
(1)-a-ab-abc-ac-c-be-b. Without loss of generality we begin
all sequences with (1). The multiple correlations of these
three sequences with linear time trend are .14, .24, and .43,
respectively. Although not perfectly trend-free, many one-
at-a-time sequences are reasonably robust (low correlation)
to the linear trend. A computer algorithm for generating all
possible one-at-a-time sequences is given in Lin (1994).
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Figure 4. Venn Diagrams for k = 4. (a) Main effect A as the blocking
variable. (b) Two-factor interaction AB as the blocking variable. (c) Three-
factor interaction ABC as the blocking variable. (d) Four-factor interaction
ABCD as the blocking variable.

3.2 Blocking 2* Designs

With the help of Venn diagrams we can also see how to
block 2% designs into two blocks. Consider the case k = 4
for illustration. We discuss how to block on a main effect
A, a two-factor interaction AB, a three-factor interaction
ABC, and the four-factor interaction ABCD. Of course,
the last choice is the sensible one. Figure 4 illustrates these
four possible blocking schemes. Runs from those two dif-
ferent blocks are represented by different colors (blank and
shaded).

(1) Factor A as the blocking variable. All regions
associated with A form one block, while the other
block consists of the other eight regions not associated
with A. These blocks, (a, ab, abd, abed, abe, ac, acd, ad) and
((1),b,bd, bed, be, ¢, cd, d) are shown in Figure 4a. If the run
order is considered within the block, the eight runs in Fig-
ure 4a may form a one-at-a-time sequence, for example,
a-ab-abd-abed-abc-ac-acd-ad.

(2) Interaction AB as the blocking variable. If two-factor
interaction is used as the blocking variable, we see from

Figure 4b that each block consists of eight runs that form
two separate groups of one-at-a-time sequences, for exam-
ple, a-ad-acd-ac and b-bd-bed-be.

(3) Interaction ABC as the blocking variable. Similar to
the above case, the eight runs in both blocks form four
separate pairs of one-at-a-time sequences, for example, a-
ad, b-bd, c-cd, abc-abed as shown in Figure 4c.

(4) Interaction ABCD as the blocking variable. The re-
gions in the Venn diagram fall into several layers. Figure
4d shows that the five layers, layers 1-5 say, correspond
to the null set (O), the pure sets (A4, B, C, D), the two-set
intersections (AB, AC, AD, BC, BD, C D), the three-set in-
tersections (ABC, ABD, ACD, BCD), and the four-set in-
tersection (ABCD). We use the even layers for one block
and the odd layers for the other. The eight runs in the even
layers are a, b, ¢, d, abe, abd, acd, and bed. This is the optimal
blocking scheme using ABCD interaction as the blocking
variable (Box, Hunter, and Hunter 1978). The eight runs in
either block cannot be derived from one run to the other
via one-at-a-time, however.

Of course, from a blocking perspective case 4 is more
sensible than case 3, than case 2, than case 1. This seems to
indicate (see Figure 4) that a better blocking scheme is to
isolate as many runs from one block to another as possible.
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