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Abstract 

Orthogonality has been considered as an important design priority in the design literature. This article provides a set of 
criteria to measure "how orthogonal" a design may be when it is not perfectly orthogonal. These criteria can be obviously 
applied to a wide variety of designs. Properties of these criteria are discussed, using some existing supersaturated designs 
as examples. 
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1. Introduction 

Screening experiments typically contain a large number of potential factors. Among them, only a few are 
believed to be active. The goal here is to identify those (relatively) few dominant active factors. A first-order 
model is tentatively assumed. When a small number of runs is desirable, the abandonment of orthogonality 
is sometimes inevitable. Since a lack of orthogonality results in lower efficiency (Box, 1959), it is always 
desirable to make the design as nearly orthogonal as possible when perfect orthogonality is unattainable. 

One simple way to measure the degree of orthogonality between any two given design columns x~ and xj 
is to consider their inner product, sij = x[xj; larger Isijl implies less orthogonality (sij = 0 implies perfect 
orthogonality). The measurement of  orthogonality for more than two design columns is less obvious. For a 
factorial design with n observations and k factors with k > n - 1, Booth and Cox (1962) and Lin (1993a) 
used E(s 2) 2 k = ~ sij/(2), the average of all s 2. pairs, as a measurement of the design orthogonality. 

Note that once the few dominant active factors are identified, the initial design is then projected into a 
much smaller dimension. The implicit assumption with E(s 2) is that there are, at most, two active factors. If  
the number of  active factors, c, is larger than 2, there is no guarantee that the projective (reduced) design 
will be of  full rank, i.e., a main effect model consists only of those active factors that may not be estimable. 

The simple truth, due to the fact that s, 7 is not transitive, is that while any two columns are highly 
near orthogonal, several (c>~3) columns may result in low orthogonality. A measurement for multi-factor 
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orthogonality is thus desired. As pointed out by Lin (1993b), the "optimality" for a screening design should 
focus on its projective design, not the initial design. Supplemented by such a projection property, a new class 
of  B criteria are proposed here. We first show how the classical design optimality can be extended as a 
competing alternative. 

2. Extension o f  classical criteria to measure orthogonality 

Let X be the design matrix with entries ± 1, and let c be the number of  active factors, i.e., the number of  
design columns of  the projected design matrix. For a given s = (ll . . . . .  lc), a set o f  size c from (1 . . . . .  k), 
we can construct a n × c sub-matrix Xs from X. Following the idea of  E(s  2) which gives an efficiency 
measurement in an average sense, we can measure the "orthogonality" of  X as follows: 

1 
Vc(X) = ( : ) "  E v ( X s ) ,  (2.1) 

K / 

where V(Xs) is a function to measure the "orthogonality" of  X, and the summation is taken over all possible 
choice of  s. 

As an extension of  the classical design optimality, some natural choices of  v(Xs)  are: 
(1) v(Xs)  = det(X~sXs) -1. 
(2) v(Xs)  = trace(Xs~X,) - l  . 
(3) v ( X ~ ) =  2(c)(Xs~X,) -1,  where 2(c) denotes the largest eigenvalue of  the matrix (X~X~) -1. 

Note .  (1) When c = k ~< n, these criteria are corresponding to (1) D optimal, (2) A optimal, and (3) E 
optimal criteria, respectively. When k > n (see Section 5), the value of  c cannot be larger than k, and in fact, 
is normally much smaller than k. 

(2) When c = 2, all criteria are reduced to being similar to that proposed by Booth and Cox (1962) and 
Lin (1993a). One should note that the first two criteria will optimize a design by minimizing 

E( 1/(n 2 - s 2 )), (2.2) 

whereas the criterion considered by Booth and Cox (1962) and Lin (1993a) is 

E(s2). (2.3) 

Note also that 

1 1 1 1 ( S 2 ) 
n 2 - -S  2 - -  n 2 1 - -s2/n  2 -- n 2 1 + -~ + . . .  . 

Therefore, two criteria in (2.2) and (2.3) should be approximately equivalent to each other because s 2 is 
normally much smaller than rt 2. 

3. A new class o f  B-optimal  criteria 

Clearly, if  a vector y is orthogonal to a group of  vectors Z = (zl,z2 . . . . .  Zp), then the regression sum 
squares must be null, when regressing y on (z l ,z2 . . . . .  Zp), i.e., y ' Z ( Z ' Z ) - ~ Z ' y  = 0. Thus the value of  
y ' Z ( Z ' Z ) - I Z ' y ,  or equivalently b ' (ZrZ )b ,  where b = ( Z ' Z ) - l Z ~ y  is the regression coeffÉcient, provides 
a good measurement on how orthogonal the vector y to Z. Motivated by this, the proposed criteria, called 
"B optimality," reflects the dependence of  a column to all other c -  1 columns by computing the regression 
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coefficients o f  one column in Xs, Xi, over the remaining columns X~_i. For any specific projection design Xs 
with size n x c, we a v e r a g e  xlXs_i(Xts_iXs_i)-lXts_iX i over all possible i (i = 1,2 . . . . .  c) as a measurement 
of  the design orthogonality. Of  course, the value of  c is typically small (see, e.g., Lin, 1993b). 

In general, consider a class of  new functions v~(Xs) to measure the "orthogonality" of  Xs for V,(X) in 
(2.1): 

v,,(X,) = ~ fi;_,(X'_iXs_,)°fls_,, (3.1) 
iEs 

namely, 

1 p t g 

where 
(1 )  f l , - i  = 
(2) x~ is the n x 1 column corresponding to the ith unit in s, 
(3) Xs-i is the n x (c - 1) matrix corresponding to units in s - {i}, 

and g can be any scalar value to present the degree of  penalty to the near-singularity of  the X[_~Xs-i matrix. 
In principle, the B-criteria can apply to any design when the projection property is under concern, regardless 
the number of  levels, the number of  factors and the number of  runs. Three cases 9 = 2, 1,0 deserve special 
mentioning: 

(1) When 9 = 2 (B2 criterion), we have 

vz(X~.) = ~ (x;X,-i)(X:_eXi) = Z Z s2 (3.2) 
iEs iEs jT~i 

where sij = x[xj. Thus, for 9 = 2 and any value of  c, v2(Xs) is closely related to the E(s 2 ) criterion considered 
by Booth and Cox (1962) and Lin (1993a). 

(2) When 9 = 1 (B1 criterion), we can see that 

/ ) l ( X s )  = Z f l s ! _ i X f _ i X s - i f l s - i  = Z 3 £ [ 3 C i ~ -  ~'~X/Ps-iXi, (3.3) 
iCs iCs iEs 

where 

P,-i = X,-i(X~-iXs-i)-1Xls_i (3.4) 

is the projection matrix and i i  = X~.-~fl,-i = P~-~Xi is the predicted value of  x~ with all remaining columns 
in the design matrix. 

(3) When 9 = 0 (B0 criterion), vo(X~) is the unweighted sum of  squares of  the regression coefficient fl~.-i. 
Intuitively, if the matrix X~s_iXs_i is nearly singular, the magnitude of  the regression coefficients should be 
large. In that case, putting 9 = 1 in v q(Xs) will reduce the "penalty" of  near-singularity of  X ; _ i X s _  i. I n  

contrast, vo(XD, which treats all regression coefficients with equal weights, will impose a greater penalty for 
the inclusion of  near-singular sub-matrices. It is easy to see that 

= 

iCs 

where 

= X s _ i ( X s _ i X s _ i )  X s _  i. --~s--i t --2 / 

Another advantage of  vo(Xs) is that it is scale invariant. 
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(4) For a g < 0, we will penalize even more for including a nearly singular sub-matrix X~_iXs_i. The 
general formula is given as 

v~(Xs) : ~ (x'Xs_,)(x;_,x~_,)g-2(x'_ix,). 
iEs 

In general, the experimenter can use any value of g to compare designs. Of course, the smaller the g 
value is, the more penalty to the near-singularity of projective designs. The near-singularity (multicollinearity) 
problem has also received a great deal of attention in linear regression models. One popular measurement for 
multicollinearity is variance inflation factors (VIF) criterion introduced by Marquardt (1970). 

The VIF are the main diagonal elements of the X~X matrix in correlation form. They can also be defined 
a s  

VIFj ---- 1/(1 - R~) 

where R~ is the coefficient of multiple determination obtained from regressing xj, on the other regressor 
variables, when the X matrix under study is of full rank. As pointed out by one referee, this VIF criterion is 
closely related to the B1 (g = 1) criterion for certain small values of c. Certainly, the VIF was obtained via 
the normalized X~X matrix (i.e., in the correlation form). This can also be applied to all B criteria in general. 
For our major interest in two-level designs, the diference is only marginal, however. On the other hand, the 
B criteria may be useful measurements for multicollinearity. Further research in this direction is encouraging. 

4. Some properties of the B-criteria 

To compute the value of vy(Xs) given in (3.1), we need the value of (X~!_iX~_i) -I for each i E s. Now, 
(X'~_iXs_i) -1 easily can be computed from (X'sXs) -1. Theorem 1 below gives the formula for vl(Xs) and 
vo(Xs) in terms of the elements in (X~Xs) -1 . Throughout this section, we will consider, without loss of 
generality, the sample s = (ll . . . . .  l~) as s = (1 . . . . .  c). 

Theorem 1. Let X~ = (xl . . . . .  xc) be a matrix with full rank of  dimension n × c and let 

w = (x 'xs )  -~ = (w~j). 

c c 2 2 Then (1) V l ( X s ) :  n c -  ~i=l 1/wii and (2) vo(Xs)= ~i#2 wij/wii . 

Proof. Let Si be a c × c matrix representing a shift operation that will move the ith column to the last column 
of the matrix Xs. That is, XsSi = (Xs-i ,x i) .  Clearly, Si is an orthogonal matrix, i.e. SiSi = I. 

The inverse of 

is 

/ I = s;x;xss~ x, ,x,) (x'_,~(Xs_,,.,<,) 
xl~, =t, -i ) 

(X's_,Xs_, 
M = \ x'Xs_, 

M-' , ,  _ ,  , fro,, m,2] =s;(X;Xs)  s i = s ; w s , =  \m(2 w, / '  

where 

m 1 2  = ( W i l , W i 2 , . .  • , w i ,  i - i , w i ,  i + l ,  . .  • , W i c )  t 

- 1  t - 1  t =Q (X~_/X,_i) X ~ _ i x  i . 

(4.1) 

(4.2) 



L.- Y. Deng et al. / Statistics & Probability Letters 28 (1996) 203-209  207 

Applying Eq. (7) in Draper and Smith (1981, p. 127) with A = X~_iX~_i, B = C I = Xts_iXi and D = x 'x i ,  

we can see the (c ,c)  element of  M -1 is 

Q - I  1/(X:Xi ' ' -1 ' : --  x i X s _ i ( X ; _ i X s _ i )  X ' s_ i x i  ). 

Part (1) now follows because 

1 _ Q  , , , - l  , 
l .~. X i X i  --  x i X s _ i ( X ~ _ i X s _ i )  S ; _ i x i  
wii 

= n --  f l , ~ _ i X ~ ! i X s _ i ~ s _ i  (4.3) 

and 

v l ( g s )  z_.. = (n - wi7 ~ ). 
i--I i=l 

To prove Part (2), we rewrite (4.2) as 

fls-i = ml2Q = ml2(1/wii ). 

Therefore, 

1 
v0(x , )  = ~ ~ ' _ : s - ,  = I 

i=1 i=l W-'~'2i ml 2m 12 

This proves Part (2). [] 

i:, Z wb 
j#i 

c As we can see in Theorem 1, Vl(Xs) = n c -  ~ i = l  (1/wii) is closely related to the classical A-optimal 
c criterion where v(X , )  = trace(X[Xs) -~ = ~i=1 wii. Using Theorem 1, we can also express the classical 

A-optimal and D-optimal criteria in another forms as stated in Theorem 2. 

Theorem 2. Let  Xs = (Xl . . . . .  xc)  be a matr ix  with fu l l  rank o f  dimension n × c. 
(1) The A-opt imal  criterion can be written as 

trace(X~Xs)_ 1 ~ 1 
i=1 e ie i  

where 

ei = Xi --  ,,~i =- ( I -  e s _ i ) x  i 

is the residual vector o f  the ith column vector xi over the remainin9 column vectors in X~.. 
(2) The D-optimal criterion can be written as 

c 

det (X~Xs)- l  = H 1 
,< C a , '  

where 

d i =  d ( x i l x  , . . . .  ,x i_1)  = ( I -  X i_ l (X:_ lXi_  1 ) - i x : _  1 )x i 
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Table 1 
Comparisons on (n, k) = (12, 20) supersaturated design 

c Criterion Booth and Cox Lin 

2 D 1.0757 1.0533 
A 0.1793 0.1755 
B2 19.3684 13.6421 
Bl 1.6140 1.1368 
B0 0.1345 0.0947 

3 D 0.1050 0.0983 
A 0.2927 0.2801 
B2 58.1053 40.9263 
BI 4.9567 3.5801 
B0 0.4556 0.3301 

4 D - -  0.0099 
A - -  0.4025 
Be 116.2105 81.8526 
Bl 10.1541 7.5520 
B0 1.0433 0.7791 

5 D - -  0.0011 
A - -  0.5523 
B2 193.6842 136.4211 
BI - -  13.2535 
Bo - -  1.5631 

is the residual vector o f  the ith column vector xi over the column vectors in xl  . . . . .  x i - l , f o r  i~>2; d ( x i l x l , . . . ,  

x i -  l ) = xi,  f o r  i = 1 and the ma t r i x  X i -  1 is 

X,._1 = ( x l , x 2 , . . . , x ~ - i ) .  

Proof .  Part (1)  follows easily from (4.3) derived in Theorem 1 and the fact that Ps- i  is a projection matrix. 
Part (2) can be easily proved by using Eq. (9) in Draper and Smith (1981, p. 127). [] 

I f  the column vectors are orthogonal to each other, then the residual vector should remain "large". Thus, 
we offer another interpretation o f  the classical A criterion using the residual vectors ei. Similarly, we also 
present an interpretation o f  the classical D criterion using the residual vectors d (x i l x l  . . . . .  x i - i  ). 

5. Application to existing supersaturated designs 

Recently, much attention has been focused on constructing systematic supersaturated designs. When such 
a design is used, the abandonment of  orthogonality is inevitable. Thus the degree of  orthogonality is clearly 
a major issue to be addressed. The classical optimal design criteria can not be used because the full design 
matrix is not of  full rank here. We use the case ( n , k )  = (12,20)  as an example to illustrate and compare 
all the criteria discussed above (D, A and various B criteria). Supersaturated designs proposed by Booth and 
Cox (1962) and Lin (1993a) are considered here. 

Table 1 summarizes the results. Whenever  certain projective designs result in a singular matrix, this is 
indicated by  " - - "  in the table. Of  course, this is not desirable. As we can see, Lin (1993a) designs are clearly 
superior to the Booth and Cox (1962) design, judging by all criteria. 
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Note that the D criterion, which averages determinants of all possible projective design matrices, becomes 
smaller and smaller (i.e., higher orthogonality), as c increases. This contradicts to the fact that adding columns 
will only reduce the orthogonality, when the run size n is fixed. Such an unappealing property, however, does 
not appear in other criteria. The B2 and BI criteria, on the other hand, are in a much larger scale to distinguish 
two designs and they are consistent with B0 criterion. 
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