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Summary & Conclusions - This paper estimates component 
reliability from masked series-system life data, viz, data where the 
exact component causing system failure might be unknown. It 
focuses on a Bayes approach which considers prior information 
on the component reliabilities. In most practical settings, prior 
engineering knowledge on component reliabilities is extensive. 
Engineers routinely use prior knowledge and judgment in a varie- 
ty of ways. The Bayes methodology proposed here provides a for- 
mal, realistic means of incorporating such subjective knowledge 
into the estimation process. In the event that little prior knowledge 
is available, conservative or even non-informative priors, can be 
selected. 

The model is illustrated for a 2-component series system of 
exponential components. In particular it uses discrete-step priors 
because of their ease of development & interpretation. By taking 
advantage of the prior information, the Bayes point-estimates con- 
sistently perform well, ie, are close to the MLE. While the approach 
is computationally intensive, the calculations can be easily 
computerized. 

1, INTRODUCTION 

Acronyms’ 

MLE maximum likelihood estimate 
MTTF mean time to failure. 

Reliability analysts are often interested in estimating the 
reliability of each component in a system through the analysis 
of system life data. Unlike individual component life testing, 
this type of analysis yields estimates that reflect component 
reliability after their assembly into an operational system. As 
such, the estimates account for the many degrading effects in- 
troduced by the system manufacturing, assembly, distribution, 
and installation. The resulting estimates can then be used to 
predict performance of new systems better. 

Because of these advantages, companies are beginning to 
implement this type of estimation methodology; [9] describes 
one such implementation at IBM that has been successfully used 
to predict the reliability of newly developed computer hardware. 

Component-reliability is often estimated from system-life 
data by using a series’ system assumption and applying a 
competing-risks model. The observable quantities of interest 
are the system-life (failure or censoring time) and the exact com- 
ponent causing failure. Finding MLE for component-life 
distribution parameters has been widely addressed in the 
literature. However, in practice, this approach is often con- 
founded by masking (the exact cause of system failure is 
unknown). Masking occurs frequently when exact diagnosis of 
the failure cause is too resource-consuming to conduct on every 
failed system. For example, in a complex system like a com- 
puter, it is often more cost effective to isolate the failure-cause 
to only a few circuit cards which can be quickly replaced. The 
analyst is then left with the time to system failure, but only par- 
tial knowledge of the failure-causing component. 

Estimating component reliability from masked system-life 
data has received attention in the literature, but mostly from 
a classical statistics perspective. For example, Miyakawa [5] 
considers a 2-component series system of ‘ ‘exponential” com- 
ponents and derives closed-form expressions for the MLE. 
Under the same exponential assumption, [SI extend the 
Miyakawa results to a 3-component system; in all but a few 
special cases, closed-form MLE are intractable, and a simple 
iterative solution was proposed. Ref [3] further developed a pro- 
cedure for finding the exact MLE in the 3-component case. 

Ref [l] extends & clarifies the derivation of the general 
likelihood in the masked data case and examines the effect of 
masking on the s-bias and mean square-error of the MLE for 
a special-case, 3-component system of “exponential” com- 
ponents. Ref [l] also points out that these results are based upon 
s-independent (of failure cause) masking. Ref [2] extends [l] 
by investigating the effects of degrees of proportional-dependent 
masking on the MLE for a 2-component system; [7] provides 
a pseudo-graphical approach for estimating Weibull component 
reliability from masked data. 

This paper presents a Bayes methodology for estimating 
component reliabilities from masked system-life data. This type 
of approach allows the analyst to quantify directly the prior 
engineering judgment in the development of the component 
reliability estimates. The prior function represents the degree- 
of-belief in each component and is incorporated into the reliabili- 
ty estimates. Our focus is on the use of step-wise functions to 
represent the component priors under the assumption that each 
component has exponentially distributed life. Section 2 illustrates 
the development of the Bayes model. Section 3 applies the model 
to a 2-component system. Section 4 illustrates its use with a 
numerical example. 

’The singular & plural of an acronym are always spelled the same. 
’The terms, series & parallel are used in their logic-diagram sense, 
irrespective of the schematic-diagram or physical-layout. 
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The Bayes analysis uses probability as a measure of degree- 
of-belief, not of relative frequency. 

Notation 

1 

T, random life of system-i 
T,j 
&(t ) ,  R j ( t )  
e j  

4 

system index, i = 1,. . . ,n unless otherwise stated 

random life of component-j in system-i 
[pdf, Sfl of life of component-j 

scale parameter of life distribution (also MTTF) 
l/8j: failure rate of component-j 
set of components known to contain the true cause of 
failure 
likelihood function of the sample data 

posterior distribution for 0 
implies: [MLE, Bayes point-estimate] 

number of observations (in the sample) where Si = 

Si 

f ( t l 0 )  
f(0,) prior distribution for 8, 
g ( 0  It) 

111, n2, 

n1,2 

A -  

[{11> (21, {1>211 

, rl[ [sum, product] over all i 
i 1 

9( e )  indicator function: S(True) = 1, S(Fa1se) =O.  

Other, standard notation is given in “Information for Readers 
& Authors” at the rear of each issue. 

2. BAYES MODEL 

2.1 Assumptions 

1. The Ti,j are s-independent r.v., and are i.i.d r.v. for 

2a. Component-j life is exponentially distributed, with 

2b. The ej are s-independent. 
3. Systems are observed until failure (no censoring). 
4. All system-components are in series. 
5 .  Masking is s-independent of the failure-cause. 

each j .  

mean Oj and failure rate A,. 

2.2 Model Derivation 

A sample of n J-component series systems is life tested. 
Series implies: T, = min, { T,,,} for all i= 1,2,. . . ,n. We obtain 
estimates of e,, based upon our prior knowledge and our sam- 
ple data. Under the Bayes framework, this is done by organiz- 
ing one’s prior degree-of-belief into prior distributions on all 
0,. These priors then represent the degree-of-belief about the 
value of 0, prior to taking sample data. When combined with 
the sample results (the masked system-life data), the priors are 
then suitably transformed into one’s posterior degree-of-belief, 
viz, a posterior distribution, through the use of Bayes theorem, 
Bayes estimates of the 0, are then found as the mean of 
posterior distribution. 

For each system, the observed quantities are ti, and S, C 
{ 1,2,. . . ,J} . If SI contains a single element j ,  then the cause of 
system failure is known to be component j .  If SI contains all 

possible elements, 1,2,. . . ,J, then the cause of failure is com- 
pletely unknown. This subset approach considers the full range 
of possible information on system-failure causes. 

Under assumption #5 ,  a reduced (partial) likelihood is [ 11 : 

(1) 
S 

implies: product over s from 1 to J ,  excluding s= j .  
S 

For exponentially-distributed component-lives, 

f ( 4 @  = ex(-( i ti). (A,)). [ Aj]*  (2) 
I j € S ,  s = l  

We use a simple step-function prior of the form: 

m 

k =  I 

There is always a partition of the time axis [O,m) where this 
equation holds for all priors. 

Then, 

f ( O j )  = a j , k ’ g ( e j  E Lak-1, a k ) ) .  
k =  1 

The use of such step-function (discrete) priors is advan- 
tageous due to the ease with which one can quantify degree-of- 
belief in each component’s mean life. Martz & Waller [4] 
discuss various methods that can be useful to engineers faced 
with the task of developing such step-function distributions. 

Under assumption a b ,  the joint prior is: 

J m  

f(O> = a ~ , k * g ( o ~  [ a k - l ,  a k ) ) *  
j = 1  k = l  

3. 2-COMPONENT SYSTEM 

The system has 2 components in series. A sample of n such 
systems is placed on test. For each system we observe a life, 
and a) Si = (1) or Si = { 2 } ,  or b) Si = {1,2}. Then, 
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4. NUMERICAL  EXAMPLE^ 

As in section 3, consider a series system of 2 "exponen- 
tial" components. The data in table 1 represent the life and the 
true cause of failure for a random sample of n=30 systems. 
(The true cause of failure was found by observing the minimum 
life of the 2 components.) The data were simulated under the 
exponential assumption with O1 = 12, 02= 15. The total time on 
test is: 

ti = 209.8018. 
1 

To simulate the effect of various levels of masking, we ran- 
domly masked l o%,  30%, 50%, 70% of the failure causes. 
Masked observations are denoted in table 1 (columns 4-7). 

The 01, O2 in table 2A are evaluated as: 

r n  7 

as presented in [3, 51. The engineer's degree-of-belief is ex- 
pressed by the discrete f ( O j )  : 

0.6, for 11 5 O1 < 12 

0.3, for 12 I O1 < 13 

0.1, for 13 5 O1 < 14 

0, otherwise; 

jThe number of significant figures is not intended to imply any ac- 
curacy in the estimates, but to illustrate the arithmetic. 

Table 1. Simulated System-Life Data 
[for a 2-component (j= 1,2) system with masking 

i - system index 
column headings in [I - masking-level (%) 
column [O] gives true failure-cause: j =  1,2 
in other columns: 'blank' - non-masked, ? - masked] 

Masking-Level (%) 

1 12.099 1 
2 21.516 1 
3 9.436 1 
4 4.197 1 
5 3.939 2 

6 1.492 1 
7 3.249 2 
8 1.535 1 
9 11.534 2 

10 2.113 1 

11 3.624 2 
12 11.756 1 
13 3.058 1 
14 9.605 1 
15 1.291 2 

16 8.299 1 
17 27.049 2 
18 5.998 2 
19 8.492 1 
20 7.865 2 

21 7.214 2 
22 0.613 1 
23 2.551 2 
24 7.487 1 
25 4.651 2 

26 4.926 1 
21 14.453 1 
28 3.732 1 
29 0.059 2 
30 5.373 2 

? 
? 
? 

? 

? 

? 
? ? 

? 

? 

? 

? 

? 

? 

? 
? 

? 
? 

? 

? 

? 

? 
? 

? 

? 
? 

? 
? 

? 

? 

? 

? 

? 

? 

? 
? 
? 

? 

? 

? 

? 
? 

? 

? 
? 
? 
? 
? 

- 

f ( O 2 )  = (8) 

0.2, for 12 I O1 < 13 

0.5, for 13 I O1 < 14 

0.3, for 14 I O1 < 15 

0, otherwise. 

Then, as shown in figure 1, f ( O , ,  0,) = a,,l = (9) 

0.12, for 11 I O1 < 12 and 12 5 O2 < 13 

0.30, for 11 I O1 < 12 and 13 I O2 < 14 

0.18, for 11 I O1 < 12 and 14 I O2 < 15 
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0.06, for 12 I O 1  < 13 and 12 I O2 < 13 

0.15, for 12 I O1 < 13 and 13 I O2 < 14 

0.09, for 12 I O1 < 13 and 14 I O2 < 15 

0.02, for 13 I O1 < 14 and 12 I O2 < 13 

0.05, for 13 I O1 < 14 and 13 I O2 < 14 

0.03, for 13 5 O1 < 14 and 14 5 O2 < 15 

0. otherwise. 

"-i '" 

Figure 2. The Joint Likelihood Function: f ( t l 0 )  
[for (n l ,  n2, q 2 )  = (14, 12, 4)l 

.5 

Figure 1. The Joint Prior: f ( O , ,  0,) 

While these degree-of-belief priors are generated arbitrarily 
for this illustration, discussions with engineers at IBM, Research 
Triangle Park reveal that they represent the manner by which 
subjective engineering judgment could be easily quantified. The 

Figure 3. The Joint Posterior: g(0, t )  
[for (n , ,  n2, n1,2)  = (14, 12, 4)]  f(m, for 

Table 2. Component Parameter Estimates 
[O, = 12, 0, = 151 

as an example, is shown in figure 2 .  The resulting degree-of- 
belief posterior, a function of nl, n2, n1,2 as in ( 5 ) ,  is shown 

Masking-Level ( W )  

in figure 3 and can be written as: [01 U01 ~301 ~501 ~701 

nI 16 14 13 8 4 
n2 14 12 7 8 6 
nl 2 0 4 10 14 20 

A. MLE 

e, 13.11 12.99 10.76 13.93 17.48 
42 14.99 15.15 19.98 13.93 11.66 

B. Bayes Point-Estimate (Posterior Mean) 

81 11.52 11.52 11.58 11.54 11.55 
62 12.99 13.00 13.09 12.97 12.94 
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Table 2B shows the Bayes point-estimates (posterior Mean) for 
each of the 4 levels of masking. The Bayes point-estimates 
(posterior Mode) are very sensitive to the prior distribution, 
viz, they are (el, 0,) = (11.90, 14.00) for all cases. They are 
not very sensitive to the data. This means that the prior (what 
the engineer believes before the experiments) is so strong that 
the posterior (what the engineer believes after the experiments) 
is not influenced much at all by the actual data. 
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