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ABSTRACT

A special class of supersaturated design, called marginally over saturated de-
sign (MOSD), in which the number of variables under investigation (k) is only
slightly larger than the number of experimental runs (n), is presented. Several
optimality criteria for supersaturated designs are discussed. It is shown that
the resolution rank criterion is most appropriate for screening situations. The
construction method builds on two major theorems which provide an efficient
way to evaluate resolution rank. Examples are given for the cases n=8, 12,

16, and 20. Potential extensions for future work are discussed.
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1. INTRODUCTION

Screening cxperiments typically contain a large number of potential fac-
tors. Tt is not unusual, however, that among thosc factors only a small portion
are, in fact, active. The usual advice given to practitioners is to run the so-
called maiu-effect designs (Resolution III designs in the orthogonal case) which
require at least k + 1 runs for investigating k factors. However, estimating all
main effects may be wasteful if the goal is only to detect the active factors.
This is particularly true when only a small number of runs is desired. In such

a situation, a supersaturated design can save considerable costs.

A supersaturated design is a fraction of a factorial design having n factor-
level combinations while the number of factors, k, is more than n — 1. When
such a design is used, the abandonment of orthogonality is inevitable, because
otherwise, the factor columns would form a set of more than n orthogonal
vectors in n-dimensional space. Apart from some dd hoc procedures and
computer-generated designs, tlhe construction of supersaturated designs has
been addressed only recently; see for example, Lin (1991, 1993a, 1995), Wu
(1993), Tang and Wu (1993), and Deng, Lin and Wang (1994).

When running an experiment with a small run size, users should be aware
of the increcased risk of both false positive and false negative signals, corre-
sponding to Type I and II errors in classical hypothesis testing settings. How-
ever, the difference between saturated main-effect designs and supersaturated
designs is not of nature but only of degree. As shown in Lin (1995), this degree
increase with £ — n. That is, if k is slightly larger than n, then the difference
is only marginal. A supersaturated design is equally as good as a saturated

design in this case.

Of particular interest in this paper is a special class of supersaturated

designs called the marginally over-saturated design (MOSD). In these designs,



MARGINALLY OVERSATURATED DESIGNS 2559

the number of factors, k, is only slightly larger than the number of runs,
n. Specifically, we consider supersaturated designs for the cases k = n and
n + 1. Optimality criteria are discussed in Section 2, where the resolution
rank criterion is shown to be the most appropriate for evaluating the goodness
of a supersaturated design, and thus will be used for design construction. In
Section 3, we prove the main theorems for our construction method. Section
4 gives some results for n = 8,12,16, and 20. Finally, summary comments,

conclusions and possible extensions for future work are presented in Section 5.
2. OPTIMALITY CRITERIA

As previously mentioned, abandonment of orthogonality in a supersatu-
rated design is inevitable. Since a lack of orthogonality results in lower effi-
ciency in estimation, it is desirable to make the design as nearly orthogonal
as possible when perfect orthogonality is unattainable. To be able to measure
the degree of orthogonality of a .Supersaturated design, several criteria come
to mind. A naive measurement is the maximum correlation among any pair

of design columns, denoted by s.
s = max (|s;]), where s;; = xjx;, forall 1 <7< j <k (1)

Here the ¢-th column of the design matrix X is denoted by x;. The smaller s,

the better. Note that s = 0 implies perfect orthogonality.

Booth and Cox (1962) first proposed the E(s?) criterion to evaluate the
goodness of a supersaturated design, and it has been extensively used by oth-
ers. The E(s%) criterion is

E(s%) = Zsfj/<2), where s;; = xjx;, forall 1 <i< j <k. (2)

In a sense, the £(s?) criterion is an average of the s%; values between all possible

pairs of design columns x; and x;.
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Lin (1995) modified the F(s?) criterion, by taking the run size n into ac-
count and proposed an equivalent criterion, called the mean square correlation

p as shown below,
5 (K o
p= 2'7'1_// 5 ] where r;; = Corr(x;,x;), forall 1 <i<j <k, (3)

It is apparent that this criterion is more appropriate than E(s?) for comparing

supersaturated designs with different run sizes.

Now, let X be the design matrix with entries 1, and let ¢ be the number
of active factors, i.c., the number of design columns of the projected design
matrix. For a given s = (f;,---, 1), which is a set of size ¢ from (1,--- k),
we can construct a n x ¢ sub-matrix X, from X. Following the idea of E(s?),
which gives an efficiency measurement in an average sense, we can measure

the goodness of X as follows:

Vi(X) = <1T) . Z (X)), (4)
R :

where v(X,) is a function that measures the “orthogonality” of X, where the

summation is taken over all possible choices of s.

As an extension of classical design optimality, some natural choices of

v(X,) are:

v(X,) = det (X, X)) (5)
v(X,) = trace (X,X,) ™, (6)
v(X,) = Ao (X,X,) 7, (7)

where Ay denotes the largest eigenvalue of the matrix (X[X,) ™"

Note that when ¢ = k < n, these criteria correspond to (i) D optimal,

(i1) A optimal, and (iii) E' optimal criteria, respectively. When k& > n, the
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value of ¢ cannot be larger than k, and in fact, is normally much smaller than
k. Note also that when ¢ = 2, all criteria are reduced to the criterion similar
to the one that proposed by Booth and Cox (1962) and Lin (1993a). One
should also note that the first two criteria, (5) and (6), will optimize a design
by minimizing E(Q—sf)7 whereas the criterion considered by Booth and Cox

(1962) and Lin (1993a) is E(s?).

Clearly, if a vector y is orthogonal to a group of vectors Z = (zy, 2o, .. ., 2,),
then the regression sum squares must be null, when we regress y on (z, ..., z,),
that is, y'Z(Z'Z)"'Z'y = 0. Thus the value of y'Z(Z'Z)"'Z'y, or equivalently
b'(Z'Z)b, where b = (Z'Z)~'Z'y is the vector of regression coefficients, pro-
vides a good measurement on how orthogonal the vector y is to Z. Motivated
by this, a series of criteria, called “B optimality,” measures the dependency of
a column to all other ¢ — 1 columus by computing the regression coefficients of
one column in X, x;, over the remaining columns X,_;. For any specific pro-
jection design X, with size n x ¢, we can average x!X,_;(X} X, ;)X _.x,
over all possible i (i = 1,2,...,¢) as a measure of the design orthogonality. Of

course, the value of ¢ is typically small (See, for example, Lin, 1993b).

In general, consider a class of new functions v,(Xs) to measure the “or-

thogonality” of X, for V,(X) in (4):
= Z ﬁ;-i(xls—ixs—l)g/js—h
1€s
namely,

Vi(X) = T) Z_ Z i Xsmi)? s i, (8)

[

where

L B = (X Xoma) 71X X,

2. x; is the » x 1 column corresponding to the i-th unit in s,
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3. X,_; is the n x {¢ — 1) matrix corresponding to units in s — {1},

and ¢ can be any scalar value to present the degree of penalty to the near-
singularity of the X, X, ; matrix. In principle, the B-criteria can be applied
to any design when the projection property is of concern, regardless of the
number of levels; the number of factors and the number of runs. For dctails,

see, Deng, Lin and Wang (1996).

Note that once the few dominant active factors are identified, the initial
design is then projected into a much smaller dimension. The implicit assump-
tion with E(s?) is that there are, at most, two active factors. If the number
of active factors ¢, is larger than 2, there is no guarantee that the projective
{reduced) design will be of full rank, i.e., a main effects model consisting only

of thosc active factors may not be estimable.

A criterion based upon such an important projection property, called res-

olution rank, is defined as follows.

Definition.: Let X = {x), Xy, -+, Xz} be a n x k matrix. Then the resolution-
rank of X (r-rank, for short) is defined as » = max{c: for any (x;1," -+, X;.) of
X, X;1, - . X;, are linearly independent}.

Clearly, if a supersaturated design, X, has an r-rank of f, then when X
is projected on to any submatrix of f (or less) factors, the main effects of the
projected design are all estimable. Moreover, in many situations where the
r-ranks are very different for two supersaturated designs, most of the other

criteria values considered in this section are nearly the same.

3. MAIN THEOREMS

For a MOSD, the number of factors k is only slightly larger than n — 1.

The basic idea here is to begin with an orthogonally based saturated design
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and search for the best column(s) to optimize the r-rank criterion. For a two-
level design, a Hadamard matrix is generally adopted as the orthogonal base.
Since the evaluation for r-rank is very time-consuming, the brute-force search
is not possible, even for small values of n. The following theorem has proven

useful for constructing one additional column.

Theorem 1. Let X = [H,v], w = H'v, where H is a Hadamard matrix of

order n. Let R; be the number of non-zero entries in w. Then
r= Ry,
where r is the r-rank of X.
Proof. Pre-multiplying H on both sides of equation
w = H'v,
and noticing that HH' = nI, we have
nv = Hw

= (h17h27---7hn) (U/‘l,'lL’Q,...,'lUn)l

n
= Z w;h;.
1=1

Therefore, v can be written as a linear combination of the columns of H and
the coefficient associated with h; is w;. Since there are R; non-zero entries in
w, we have

T S R17

where 7 is the r-rank of X.

On the other hand, since r is the r-rank of X, there exists r + 1 columns in
X that are linearly dependent. Clearly, these » + 1 can not all be columns of
H because H is an orthogonal matrix. Therefore, we know that v is a linear
combination of the remaining  columns. ;From the unique representation of

v, we know that
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T'>R1.

Combining these two inequalities, we have r = R;. O

Remarks:

Usually, v is chosen as being column-balanced, that is, v has equal numbers
of high- and low-level values. Clearly, there are a total of <n72) different cases.
For large values of n, a complete scarch of the MOSD may not be possible. As

a alternative, v can be selected via

(a) Product method: D(h;)h;,1 <4 < j < n, where D(h;) is the diagonal
matrix with diagonal vector h;, the ¢-th column vector of H, i = 1,2, ...n.

In this case, there is a total of "_("2;9 cases.

(b) Random Permutation method: Ph;, where P is a matrix representing a
row permutation. Since the number of permutations is very large, we

restrict it to a fixed (say, 1000) number of searches.

Our empirical study shows that the product method in general fails to find a
“good” design (in terms of r-rank) as compared with the random permutation
method. We will only report the outcomes of the random permutation method
in this paper. To add two additional columns to an orthogonal base, the

following theorem provides an efficient approach.

Theorem 2. Let X = [H, vy, v;] and w; = H'vy, wy = H'v,, where H is a
Hadamard matrix of dimension n. Let
R; = min[S(w;), S(w3)]

and

Ry = min[S(bywy + baws)] + 1,
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where S(u) represents the number of non-zero elements in the vector u and

by, b, can take on all possible values. Then
7 = min[R,, Ry),

where 7 1s the r-rank of X.

Proof. Using a similar technique as in Theorem 1, we see that
n
nvy = Z wy;h;
i=1

n
nvey = Z'Iﬂ‘zih“
i=1
where wi = (wi1, w2, *,Win) and wo = (way, way, - - -, Way)'. This implies
that
T S Rl-

Furthermore, for any scalars b; aud by, we have

n

Tl(b1V1 + b2V2) = Z(blwli + I)Q’ll)zi)hi.

ci=1

In other words, any linear combination of the columns of v, and v, can be
represented by a combination of the coluinns in H, with coefficients (byw; +

bywy;). Therefore, from the definition of r-rank, we have
T S Rg.
Consequently,

I S min[]?,l. Rﬂ

On the other hand, since r is the r-rank of X, there exist » +1 columns in
X that are linearly dependent. Clearly, these r + 1 can not all be in columns
of H because H is an orthogonal matrix. Therefore, we know that there are

three possibilitics:
1. Only v, is contained in these r + 1 column vectors.

2. Only vy is contained in these r + 1 column vectors.
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3. Both v, and v, are contained in these r + 1 column vectors.

For the case (1) or the case (2), we can sce that
r> Ry.
For the case (3), we can see that
r > Rs.
Combining all three cases, we have

r Z min[Rl, RQ]

Hence,

r = min[R;, Ry].

|

Remarks:

e It is not necessary to consider all choices of b, and b, as in R,. Rather,

we need to consider only the solution set of
bywy; + bawe; = 0,

with either b; or b, set to 1. That is, we need consider by = 1,b; =
—wy,; [wa; or by = 1,b) = —we; /wy; in Ry, for 1 < i < n with wy; # 0 and

wa; 7 0.

e [f it is not practically possible to test for all the solutions of b; and
by, (due to a large dimension n and computing time consideration) we
can consider only the most likely cases (to produce many zeros in coef-

ficients) when b = 1 and b, = 1. In this case, the Ry computed is
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only an estimate. However, according to our extensive empirical study,
it is an excellent estimate of r-rank for MOSD. Deng, Lin and Wang
(1994) proposed a similar estimate of the true r-rank for a constructed

supersaturated design.

4. SOME RESULTS

In this section, we provide some useful MOSD’s based on Theorems 1 and
2, for n=8, 12, 16, and 20 and k¥ = n or n + 1. In what follows, MOSD’s with

high r-rank are constructed using the following procedures:

e v is selected first (using permutation methods) with the highest r-rank

for [H, vi].

® v, is then selected (again using permutation methods) with the highest

r-rank for [H, vy, vy].

Table 1 summarizes the optimal r-rank possible for these cases under consid-
eration. Note that in all cases, the r-rank is no less than n/2, even when
two columns are added. In fact, Srivastava (1975) shows, in “search design”
context, that the number of active factors must be less than n/2 to insure the
identifiability. All designs in Table 1 fulfill such a condition. We next discuss

each design in detail.
4.1 Case n = 8.

Columns (1, x1, X3, ..., X7) form a Hadamard matrix. By Theorems 1 and
2, we found the optimal added columns v, and v, to form a MOSD as given
below. Table 2 summarizes most of its optimalities as discussed in Section 2.

In addition, this design has (s, p, E(5%))=(4,0.0625,4).
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Table 1. Resolution Rank for Some Marginally Over-Saturated Designs

n | Number of Columns Added
0 1 2

8 7 4 4
12 11 9 7
16 15 13 10
20 19 17 15

Table 2. Various Criteria Values, n = 8.

f A D B, B B,

210.267 | 4.792 1 6.400 | 0.800 | 0.100

310435 | 3.756{ 19.200 { 2.511 | 0.368

410.653 | 2.979 | 38.400 | 5.321 | 0.958
1 X; X9 X3 X4 X5 Xg X7 V] V3
o+ o+ o+ + - - + o+
o+ o+ - - -+ o+ o+
e
-+ - - 4+ o+ o+ o+ o+
4+ - -+ 4+ + - - %
.
-+ o+ o+ -+ - = -
o - - - o~ o~ o~ - o

4.2 Case n = 12.
Columns (1, x;, X3, ..., X11) form a Hadamard matrix. By Theorems 1 and

2, we found the optimal added columns v; and vy to form a MOSD as given

below. Table 3 summarizes most of its optimalities as discussed in Section 2.

In addition, this design has (s, p, E(s?))=(4,0.02707,3.89744).
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Table 3. Various Criteria Values, n = 12.
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f A D B2 B BO
21 0.171 | 7.947 6.681 | 0.557 | 0.046
310.264 | 6.489 | 20.044 | 1.734 | 0.159
410.366 | 5.314 | 40.088 | 3.621 | 0.369
510479 | 4365} 66.813 | 6.341 | 0.736
6 | 0.609 | 3.600 | 100.220 | 10.073 | 1.363
7 10.767 | 2.985 | 140.308 | 15.090 | 2.455
1 x1 X2 X3 X4 X5 Xg X7 Xg Xg X109 X11 V] V2
+ 4+ + - + 4+ - - -+ - 4+ -
+ 4+ - + + 4+ - - 4+ - o+ o+ o+
+ -+ + + - - -+ -+ o+ o+ o+
4 o+ - - -+ -+ o+ -+ 4
+ o+ +F - - -+ -+ o+ - 4 o+ o+
+ 4+ - - - 4+ - 4 4+ - + o+ - 4
+ - - -+ -+ 4+ -+ o+ o+ o+ -
+ - - + - 4+ + - 4+ + + - - 3
-+ -+ 4+ -+ 4+ + - - - -
+ + -+ + - 4+ o+ + - = - -
+ - + + - 4+ o+ o+ - - - -
- - - o - o~ - o~ Lo
4.3 Case n = 16.
Columns (1, X, X3, ..., X;5) form1 a Hadamard matrix. By Theorems 1 and

2, we found the optimal added columns v; and v, to form a MOSD as given

below. Table 4 suinmarizes most of its optimalities as discussed in Section 2.

In addition, this design has (s, p, E(5%))=(8,0.01654,4.23529).

4.4 Case n = 20.

Columns (1, x1, X2, ..., X19) form a Hadamard matrix. By Theorems 1 and

2, we found the optimal added columus vy and vy to form a MOSD as given

below. Table 5 summarizes most of its optimalities as discussed in Section 2.

In addition, this design has (s, p, £{s?))=(12,0.00971,3.88571).
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Table 4. Various Criteria Values, n = 16.

! A D B, B, | By
910127 | 11.325 |  7.529 | 0.471 | 0.029
310195 | 9.543 | 22588 | 1.443 | 0.097
410265 | 8052 | 45.176 | 2.960 | 0.216
510340 | 6.802 | 75.294 | 5.076 | 0.407
610421 | 5756 | 112,941 | 7.869 | 0.703
710500 | 4.879 | 158.118 | 11.440 | 1.155
8 10.608 | 4.144 | 210.824 | 15.937 | 1.850
910.721 3.529 | 271.059 | 21.560 | 2.933
110 | 0858 | 3.014 | 338.824 | 28.612 4.667

1 X1 Xy X3 X4 X5 Xg X7 Xg X9 X190 X11 X12 X13 X14 X15 V1 V3
+ + + + + + + + + + + + o+ o+ o+ 4+ - 4
+ + + + + + + + - - - - - - = - 4+ 4
+ 4+ + + - - - - + + + + - - - - + 4+
+ + + + = = = = = = - -+ 4+ 4+ o+ 4+ 4+
+ 4+ - - 4+ + - - 4+ + - - 4+ + - ~- + +
+ + - -+ + - = = = o+ o+ = = 4+ 4+ 4+ -
+ + - - = -+ + + - + - o+ = 4+ = 4+ 4+
+ + - - - — + + - + - + = 4+ - 4+ = =
+ - + -+ -+ -+ + = = = = 4+ 4+ 4+ 4+
+ - + + -+ - - -+ o+ o+ o+ = =~ - o+
+ + - -+ - 4+ + - - o+ - o+ o+ = o+ -
+ - + - - + I T e T
+ - =+ + - -+ + = + = = 4+ - 4+ - -
+ - - + + - + -+ - + + - + - - -
+ - - 4+ — + + - + - - + o+ = = 4 = -
+ - + -+ + - - 4+ 4+ - = o+ o+ = - -

5. CONCLUSION

In this paper, we present a special class of supersaturated design called
marginally over saturated design (MOSD), for which £ = n or n+1. The
fundamental theorems for constructing such designs are provided. Although

examples are given here only for n = 8,12, 16 and 20, in principle, the theorems
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EEE R T Tk TF T T S S S S S R S A R

ks

T T S S T T T N SR [ SO B S S S S R (S

X2 X3

T+ 1 ++ 1 11 &t +1 4+ 1 ++++1 1+

L+ + 0+ + 0000+ 1+ ++++1 1

b+ + 0+ + 100+ + 1+ ++ 4+ 1

Table 5. Various Criteria Values, n = 20.

f A D B, B.| B
210.101 | 14.830 | 7.065| 0.353 | 0.018
310.153 | 12.779 | 21.195 | 1.086 | 0.058
410207 | 11.019 | 42390 | 2229 | 0.126
510262 | 9.506 | 70.649 | 3.822 | 0.231
610320 | 8209105974 | 5.913| 0.386
710380 | 7.088 | 148.364 | 8.559 | 0.608
810443 | 6.131|197.818 | 11.839 | 0.923
900512 | 5.316|254.338 | 15.851 | 1.369
10 | 0.585 | 4.603 | 317.922 | 20.726 | 2.002
11]0.664 | 3.986 | 388.571 | 26.630 | 2.913
12 | 0.753 | 3.469 | 466.286 | 33.760 | 4.244
13| 0.860 | 3.020 | 551.065 | 42.479 | 6.231
14| 0.985 | 2.632 | 642.909 | 53.246 | 9.301
15 | 1.148 | 2.302 | 741.818 | 66.767 | 14.233

L+ 4+ 0+ + 000 0+ + 1 ++++

+

+

I ++ 1 1 ++ i ++ 0 0001+ 1+ 1 + +

I+ 1 10 ++ 1t ++ 10 01+ 1+ 1 + +
I+ ++ 1 1 ++ 0 ++ 01010+ 1 +1

+

L+ +++ 1 L+ + 10 ++ 00 01+ 1+ 1
L+ +++ 0 0 ++ 10+ + 00 001+ 1

+

L+ b+ 4+ L ++ 0+ 01001+
L+ L+ L+ 4+ 4+ 0 L ++ 0 ++ 1111

P+ ++++ 00+ 4+ 8+ 4000001

L+ L+ 0+ +++ 1 0 +4+ 1 ++ 111
I A . R R

+

[ T T T S R T A N B B T S B 2 5
T T T T T S S B S S S S O R T T e 2

+

P+ 0011+ 0 + 1 ++++1 10 ++ 1

P+ 4+ 0 L+ + 1+ 44400+ +

+

et b+ 1010 +++++1+++11
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can be used to construct MOSD for any n = 4¢, as long as the computing time

permits.

Several optimality criteria has been discussed here. Because MOSD’s are
used mainly for screening purposes, the projection property plays an important
role. Specifically, a main-effects only model consisting of only those active
factors must be estimable. Since we do not know which factors are active in
advance, the criterion of resolution rank seems most appropriate for evaluating

the goodness of a MOSD.

Some possible extensions from this work are:
(1) a generalization of Theorems 1 and 2 to k > n + 2;

(2) a generalization of Theorems 1 and 2 to factors having more than two

levels (a generalized Hadamard Matrix can be used as a starting point);

(3) a generalization of Theorems 1 and 2 to an arbitrary design matrix D,

rather than one with an orthogonal base defined as H.

In conclusion, we live in a supersaturated world in which there are always
more factors than we can handle. For screening a large numbers of factors, a
supcersaturated design have proven their worth. The false signal rates, present
in most screening situations, will also increase with large k. In these cases
where the experimental costs are moderate, and both Types 1 and II errors
arc of concern, we view the MOSD as a compromise between the classical

saturated and supersaturated designs.
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