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1 Agriculture and Industrial
Experiments

Industrial management is increasingly aware of the
benefits of running statistically designed experi-
ments. Statistical experimental designs, developed
by Sir R.A. Fisher in the 1920’s, largely originated
from agriculture problems. Designing experiments
for industrial problems and agriculture problems is
similar in the basic concerns. There are, however,
many differences. The differences listed in Table
1 are based upon the overall characteristics of all
problems. Exceptions can be found in some partic-
ular cases, of course.

e In contrast to agriculture problems, industrial
problems tend to contain a much larger num-
ber of factors under investigation and usually
involve a much smaller number of runs in total.

e Industrial results are more reproducible, i.e.,
industrial problems contain a much smaller
replicated variation (pure error) than that of
agriculture problems.

e Industrial experimenters are obliged to run
their experimental points in sequence and nat-
urally plan their follow-up experiments guided
by previous results; unlike agriculture, which
harvests all results at one time. Doubts and
complications can be resolved in industry by
immediate follow-up experiments. Confirma-
tory experimentation is readily available for in-
dustrial problems and become a routine proce-
dure to resolve assumptions.

e The concept of blocking arised naturally in
agriculture, but often is not obvious for indus-
trial problems. Usually, industrial practitioners
need certain specialized training to recognize
and handle blocking variables.

e Missing values seem to occur more often in agri-
culture (mainly due to natural losses) than in-
dustry. Usually, such problems can be avoided
for industrial problems by well-designed exper-
iments.

The supersaturated design method suggests one
kind of screening methods for industrial problems
involving a large number of potential relevant fac-
tors. It may not be an appropriate proposal for
some agriculture problems.

Table 1: Differences Between Agriculture and In-
dustrial Ezperiments

Subject Agriculture Industry
Number of Factors Small Large
Number of Runs Large Small
Reproducibility Less likely  More Likely
Time Taken Long Short
Blocking Nature Not Obvious
Missing Values Often Seldom

2 Introduction

Consider the simple fact that where there is an ef-
fect, there is a cause. Quality engineers are con-
stantly faced with distinguished between the factors
which have an effect and those that are due to ran-
dom error. Those "null” factors are then adjusted
to lower the cost; those "non-null” (effective) fac-
tors are used to yield better quality. To distinguish
the difference, a large number of factors can often
be listed as possible sources of effect. Preliminary
investigations (e.g., using professional knowledge)
may quickly remove some of these ”candidate fac-
tors”. It is not unusual, however, to find that more
than twenty sources of an effects exist, and among
those factors only a small portion are actually ac-
tive. This is sometimes called ”effect sparsity”. A
problem frequently encountered in this area is how
to reduce the total number of experiments. This is
particularly important in situations where the cost
of an individual run is expensive (e.g., regarding
money or time). With powerful statistical software



readily available for data analysis, there is no doubt
that data collection is the most important part of
such problems.

For an unbiased estimate of the main effect of each
factor, the number of experiments must exceed (or
at least be equal to) the number of factors plus one
(for estimating the overall grand average). When
these two numbers are equal, the design is called a
saturated design, which is the minimum effort pos-
sible to estimate all main effects. Standard advice
given to users in such a screening process is to use
the saturated design, which is ”optimal” based upon
certain theoretical optimality criteria. However, the
nonsignificant effects are not of interest. Estimating
all main effects may be wasteful if the goal is simply
to detect those few active factors. If the number of
active factors is indeed small, a slightly biased esti-
mate will still allow one to accomplish the identifi-
cation of the active factors but significantly reduce
the amount of experimental work. Developing such
screening designs has long been a well-recognized
problem, certainly since Satterthwaite (1959).

When all factors can be reasonably grouped into
several groups, the so-called group screening designs
can be used (see, for example, Watson, 1961). Only
those factors in groups that are found to have large
effects are studied further. The grouping scheme
seems to be crucial but has seldom been discussed.
The basic assumptions here (such as the directions
of possible effects are known, etc), in fact, heav-
ily depend upon the grouping scheme. While such
methods may be appropriate in certain situation
(e.g., blood tests), we are interested in systematic
supersaturated designs for two-level factorial de-
signs that can be examine k factors in N < k+1
experiments where no grouping scheme needs to be
made. Recently work in this area includes, for ex-
ample, Lin (1991, 1993a, 1993b , 1994, 1995); Tang
and Wu (1993); Wu (1993); Deng and Lin (1994,
1996); Chen and Lin (1995); Cheng (1995, 1997);
Deng, Lin and Wang (1996, 1997); and Nguyen
(1996).

3 Supersaturated Designs Us-
ing Hadamard Matrices

Recently, Lin (1993) proposed a class of special
supersaturated designs which can be easily con-
structed via half- fractions of Hadamard matrices.
These designs can examine k = N — 2 factors with
n = N/2 runs, where N is the order of Hadamard
matrix used. The Plackett and Burman (1946) de-

signs, which can be viewed as a special class of
Hadamard matrices, are used to illustrate the ba-
sic construction method.

Table 2 shows the original 12-run Plackett and
Burman design. If we take the column 11 as the
branching column, then the total 12 runs (rows) can
be split into two groups: Group I with the sign of
+1 in column 11 (rows 2, 3, 5, 6, 7, and 11), and
Group II with the sign of -1 in column 11 (rows
1, 4, 8, 9, 10, and 1 2). Deleting column 11 from
Group I causes the columns 1-10 then to form a su-
persaturated design to examine N —2=10 factors in
N/2=6 runs (Runs 1-6, as indicated in Table 2). It
can be shown that if Group II is used, the resulting
supersaturated design is an equivalent one. In gen-
eral, a Plackett and Burman (1946) design matrix
can be split into two half fractions according to a
specific branching column whose signs equal +1 or
-1. Specifically, take only the rows which have +1
in the branching column. Then, the N-2 columns
other than the branching column will form a su-
persaturated design for N-2 factors in N /2 runs.
Judged by a criterion proposed by Booth and Cox
(1962), these designs have been shown to be supe-
rior to other existing supersaturated designs.

Table 2: A Supersaturated Design Derived From the
Hadamard Matriz of Order 12

R # 1 2 3 4 5 6 7 8 9 10 11
1 + + - + + + - - - + -
1 2 4+ - + + 4+ - - - 4+ - +
2 3 - 4+ 4+ + - - - + - + +
4 4+ + 4+ - - -+ -+ o+ -
305 + 4+ - - - o+ - + 4+ - +
4 6 + - - - 4+ - 4+ + - + +
5 7 - - - 4+ - + 4+ - + + +
8 - - 4+ - 4+ 4+ - 4+ o+ o+ -
9 - + - 4+ + - + 4+ + - -
10 + - + + - 4+ + 4+ - - -
6 11 - + + - + + + - - - +
12 - - - - ..o oL

The construction methods here are simple. How-
ever, knowing in advance that Hadamard matrices
entail many ”"good” mathematical properties, the
optimality properties of these supersaturated de-
signs deserve further investigation. For example, the
half fraction Hadamard matrix (of order n = N/2 =
4t) is closely related to a balanced incomplete block
design with (v,b,r,k)=(2¢t — 1,4t — 2,2t — 2,1 — 1)
and A=t-1. Consequently, the E(s?) value (see next
section) for a supersaturated design from a half-



fraction Hadamard matrix is n?(n—3)/[(2n—3)(n—
1)] which can be shown to be the minimum within
the class of the design with same size. Potentially
promising theoretical results seem possible for the
construction of a half-fraction Hadamard matrix.
Theoretical implications deserves detailed scrutiny
as will be discussed below. More details in this is-
sue, please consult with Cheng (1997) and Nguyen
(1996).

Note that the interaction columns of Hadamard
matrices are only partially confounded with any
other main effect columns. Wu (1993) makes use of
such a property and proposes a supersaturated de-
sign that consists of all main-effect and two-factor
interaction columns from any given Hadamard ma-
trix of order N. The resulting design thus has N
runs and can accommodate upto N(N — 1)/2 fac-
tors. When there are k < N(IV —1)/2 factors to be
studied, choosing columns becomes an important is-
sue to be addressed there.

4 Optimality Criteria

When a supersaturated design is needed, as previ-
ously mentioned, the abandonment of orthogonality
is inevitable. It is well known that lack of orthogo-
nality results in lower efficiency, therefore we seek a
design that is as "near orthogonal” as possible. One
way to measure the degree of non-orthogonality be-
tween two columns, ¢; and ¢; , is to consider their
cross-product, s;; = cjc;; a larger |s;;| implies less
orthogonality. Denote the largest |s;;| among all
pairs of columns for a given design by s, and we
desire a minimum value for s (s=0 implies orthogo-
nality). The quantity s can be viewed as the degree
of orthogonality that the experimenter is willing to
give up~the smaller, the better. This is by nature
an important criterion. Given any two of the quan-
tities (n, k, s), it is interested to find what value can
be achieved for the third quantity. Some computa-
tional results have been reported in Lin (1995). No
theoretical results are currently available, however.
It is believed that some results from the coding the-
ory can be very helpful in this direction. Further
refinement is currently under investigation.

If two designs have the same s, we prefer the one
in which the number of |s;;] = s is a minimum.
This is intimately connected with the expectation of
s%, E(s?) first proposed by Booth and Cox (1962),

which is computed by > s; 7/ ( K , where f; is

2

the frequency of s; of all ( ’; ) pairs of columns.

Intuitively, E(s?) gives the increment in variance
of estimation arising from non-orthogonality. It is,
however, a measurement for pairwise relationships
only. More general criteria have been obtained in
Deng, Wang and Lin (1997) and Wu (1993). Deng
and Lin (1994) outline eight various criteria useful
for supersaturated designs. Further theoretical jus-
tification is currently under study. Optimal design
in light of these approaches deserves further inves-
tigations. In addition, the notion of multi-factor or-
thogonality is closely related to the multicollinearity
in linear model content. It is anticipated that results
from the current project can be very useful in both
areas.

5 Data Analysis Methods

Several methods have been proposed to analyze the
k effects, given only the n{< k) observations from
the random balance design contents (see, for ex-
ample, Satterthwaite, 1959). These methods can
also be applied here. Quick methods such as these
provide an appealing straightforward comparison
among factors, but it is questionable how much
available information can be extracted using them;
combining several of these methods provides a more
satisfying effect. In addition, three data analysis
methods for data resulting from a supersaturated
design are discussed as follows in Lin (1995): (1)
normal plotting, (2) stepwise selection procedure,
and (3) ridge regression.

To study so many columns in only a few runs,
the probability of a false positive reading (Type-I
error) is a major risk here. The principal investiga-
tor plans to study an alternative to forward selection
procedure to control these false positive rates. Let
N = {i3,42,-",%} and A = {ip +1,---, 4 } denote
indexes of inert and active factors, so that N U A
={1, -+, k}=S. If X denotes the n x p design ma-
trix, our model is Y = pl1 + X3 + € where Y is the
n x 1 observable data vector, u is the intercept term
and 1 is an n-vector of 1’s; # is a k x 1 fixed and
unknown vector of factor effects, and € is the noise
vector. In the multiple hypothesis-testing frame-
work, we have null and alternative pairs H; : §; = 0
and H; : 3; # 0, with Hj true for j € N, and H;
true for j € A.

Forward selection proceeds by identifying the
maximum F-statistics at successive stages. Let

Fj(s) denotes the F-statistics for testing H;



at stage s. Consequently, define j =
arg mamjeS~{j1,---,ji_1}Fj(t) where Fj(s) = RSS
(ﬂjl;"'yjs-—l) / MSE (jvjla"'ajs-—l)- Letting

ma:ch(s):F(s), the forward selection procedure
is defined by selecting variables ji,-:-,jf, where
F() < a and FU+D) > o, If F() > @, then no
variables are selected.

The Type-I (false positive) error may be con-

trolled using the adjusted p-values method (West-
fall and Young, 1993). Algorithmically, at stage j,
if p) > a, then stop; otherwise, enter X, and con-
tinue. This procedure controls the Type-I error rate
exactly at level o under the complete null hypothe-
sis, since
P( Rejects at least one H; | all H; true )
=P(F) < f&l)) = a.
In addition, if the first s variables are forced, and
the test is used to evaluate the significance of the
next entering variable (of the remaining k — s ), the
procedure is again exact under the complete null
hypothesis of no effects among the k — s remaining
variables. The exactness disappears with simulated
p-values, but the errors can be made very small, par-
ticularly with control variates. The analysis of data
from supersaturated designs along this direction can
be found in Westfall, Young and Lin (1997).

6 Theoretical Construction

Methods

Recently, Deng, Lin and Wang (1997) proposed a
supersaturated design of the form X.=[H, RHC]
where H is a normalized Hadamard matrix; R is
an orthogonal matrix; and C is an n x (n — ¢) ma-
trix representing the operation of column selection.
Besides the fact that some new designs with nice
properties can be obtained this way, the X, matrix
covers many existing supersaturated designs as spe-
cial cases. This includes the supersaturated designs
proposed by Lin (1993), Wu (1993) and Tang and
Wu (1993). Some justifications of its optimal prop-
erties have been obtained.
It can be shown that

nl, H'RHC
CHRH nl,.

X/CXC = ( - ( Clwl

where W = H'RH=(w;;)=(h;Rh;) and h; is the
jth column of H. It can be further shown that:

THEOREM Let H be a Hadamard matrix of
order n, and B=(by,---, b,) be a n X r matrix with
all entries £1 and V = H'B = (v;;) = h}b;, then

nl, WwWC

nl, .

1. for any fixed 1 <j <7, n® =37 ;0.

2. In particular, let B = RH, W = HRH
(ws;), we have

It

e LW is an n x n orthogonal matrix,

2 _ 2 _ 2
enf=3%7" wij-‘Zj:lwij’

e w;; is always a multiple of 4, and

e If H' is column balanced, then +n =
Die1 Wi = Yjag Wij-

COROLLARY. For any R and C such that (1)
R'R = I and (2) rank(C)=n—c, then the X. matrix
has the same E(s?) values.

This implies that the popular E(s?) criterion used
in supersaturated designs is invariant for any choice
of R and C. Therefore, it is not effective in com-
paring supersaturated designs. In fact, following
the argument in Tang and Wu (1993), the designs
given here will always have the minimum E(s?) val-
ues within a class of the same size. One important
feature of the goodness of a supersaturated screen-
ing design is its projection property (see, Lin, 1993b;
Cheng, 1995). We thus consider the r-rank property
as defined below.

Definition. Let X be a column-balanced design
matriz. The resolution rank (or r-rank, for short)
of X is defined as f=d-1, where d is the minimum
number subset columns that will be linearly depen-
dent.

The following results have been obtained (see,
Deng, Lin and Wang, 1997).

1. If no column in any supersaturated design, X,
is fully aliased, then the r-rank of X is at least
3.

2. nRh; = 307 wijh,.

3. Let W = H'D(h,)H, where D(h,) is the diago-
nal matrix associated with h;, namely, the [-th
column vector of H, and n = 4¢, then

e If tis odd, then there can be exactly three
0’s in each row, or each column of W. The
rest of w;; can only be of the form +8k 4,
) for some nonnegative integer k.

e If t is even, then every entry w;; in W can
be of the form +8k, for some nonnegative
integer k.

These results are only the first step. The princi-
pal investigator proposes to extend these results to
a more general class of supersaturated design in the



following form: Sg = (R{HCy,---,RkHCg). We
anticipate obtaining a general theorem for supersat-
urated designs in the future study.

7 Computer Algorithmic
Construction Methods

More and more researchers are benefiting from us-
ing computer power to construct designs for spe-
cific needs. Unlike some cases from the optimal de-
sign perspective (such as D-optimal design), com-
puter construction of supersaturated designs is not
well developed yet. Lin (1991) introduced the first
computer algorithm to construct supersaturated de-
signs. Denote the largest correlation in absolute
value among all design columns by r , as a simple
measurement of the degree of the non-orthogonality
willing to be given up. Lin (1995) examines the
maximal number of factors that can be accommo-
dated in such a design, when r and n are given.

Mr. Church, at GenCorp Company, utilized
the projection properties in Draper and Lin (1992)
to develop a software package named "DOE(” to
generate designs for mixed-level discrete variables.
Such a program has been used by several sites in
GenCorp. A program named "DOESS” is one of
the results, which is currently in a test stage. Dr.
Nam-Ky Nguyen (CSIRO, Australia) also indepen-
dently works on this subject. He uses an exchange
procedure to construct supersaturated designs and
near-orthogonal arrays. Algorithmic approach of
constructing supersaturated design seems to be a
hot topic in the recent year. Many nice work are
anticipated in the near future.

8 Examples

Examples of supersaturated design with real data
sets can be found in Lin (1993, 1995). Here we
apply the concept of supersaturated design to iden-
tify interaction effects from a main-effect orthogonal
design. This example is adapted from Lin (1995).
Consider the experiment in Hunter, Hodi and Ea-
ger (1982). A 12-run Plackett and Burman design
was used to study the effects of seven factors (des-
ignated here as A, B, .-, G) on the fatigue life of
weld-repaired castings. The design and responses
are given in Table 3 (tentatively ignore Columns 8-
28). For the details of factors and level values, see
Hunter, Hodi and Eager (1982).

Plackett and Burman designs are traditionally

known as main-effect designs, because if all inter-
actions can tentatively be ignored, they can be used
to estimate all main effects. There are many ways
to analyze such a main-effect design. Omne popu-
lar way is the normal plot (see, Hadama and Wu,
1992, Figure 1). It appears that factor F is the only
significant main effect. Consequently a main-effect
model is fitted as follows: § = 5.73 + 0.458F with
R? = 44.5%.

Note that the low R? is not so impressive. Can
we safely ignore the interaction effects? Hunter et
al. claim that the design did not generate enough
information to identify specific conjectured interac-
tion effects. If this is not the case here, can we
detect significant interaction effects? Hamada and
Wu (1992) introduced the concept of effect hered-
ity. After main effects were identified, they used
forward selection regression to identify significant
effects among a group, which consists of: (i) the ef-
fects are already identified, and (ii) the two-factor
interactions have at least one component factor ap-
pearing among the main effects in (i). In this partic-
ular example, a model for factor F and interaction
FG was chosen, and given below:

§ = 5.7+ 0.458F — 0.459FG (R? = 89%). (1)

Now, if we generate all interaction columns,
AB,AC,---,FG, together with all main eflect
columns, A, B, -, G, we have 7+21=28 columns.
Treat all of those 28 columns in 12 runs as a super-
saturated design (Lin, 1993) as shown in Table 3.
The largest correlation between any pairs of the 28
design columns is £1/3. The results from a regular
stepwise regression analysis (with a=5% for enter-
ing variables) yields the model

§ = 5.734+0.394F —0.395FG—0.191AE (R? = 95%)

(2)
is a significantly better fit to the data than is (1).
Note that the AE interaction, in general, would
never be chosen under the effect heredity assump-
tion. Of course, most practitioners may consider to
add main effects A, E, and G to the final model,
because of the significance of interactions FG and
AE. The goal here is only to identify potential in-
teraction effects. In general, for most main-effect
designs, such as Plackett and Burman type designs
(except for 25~P fractional factorials), one can ap-
ply the following procedure (see Lin, 1994, for the
limitations):

Step 1. Generate all interaction columns, and
combine them with the main-effect columns. We
have now k(k+1)/2 design columns.



Step 2. Analyze these k(k+1)/2 columns with n
experimental runs as a supersaturated design. Data
analysis methods for such a supersaturated design
are avatlable.

Note that if the interactions are indeed inert, the
procedure will work well, and if the effect heredity
assumption is indeed true, the procedure will end up
with the same conclusion as that of Hamada and Wu
(1992). The proposed procedure will always results
in a better (or equal) performance to Hadama and
Wu’s procedure.

9 Conclusion

1. Using supersaturated designs involves more
risky than using designs with more runs. How-
ever, their use is far superior to other exper-
imentation approaches, such as subjective se-
lection of factors or changing factors one-at-a-
time. The latter can be shown to have unre-
solvable confounding patterns while such con-
founding patterns are important for data anal-
ysis and follow-up experiments.

2. Supersaturated designs are very useful in early
stages of the experimental investigation of com-
plicated systems, and processes involving many
factors. They are not used for a terminal exper-
iment. Knowledge of the confounding patterns
makes possible the interpretation of the results,
and provides the understanding of how to plan
the follow-up experiments.

3. The success of a supersaturated design depends
heavily on the ”effect sparsity” assumption.
Consequently, the projection properties play an
important role in designing a supersaturated
experiment.

4. Combining several data analysis methods to an-
alyze the data resulting from a supersaturated
design is always recommended. Besides the
stepwise selection procedure (and other meth-
ods mentioned in Lin (1993)), PLS (partial
least squares), Adjusted p-value (see Westfall,
Young and Lin (1997)), and Bayesian approach
are promising procedures used to identify active
factors.

5. Another particularly suitable use for these de-
signs is in testing “robustness” where the ob-
jective is not to identify important factors, but
to vary all possible factors so that the response
will remain within the specifications.
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