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Practitioners are routinely faced with distinguishing between factors that have real effects and those
whose apparent effects are due to random error. When there are many factors, the usual advice given
is to run so-called main-effect designs (Resolution III designs in the orthogonal case), that require
at least k + 1 runs for investigating k factors. This may be wasteful, however, if the goal is only
to detect those active factors. This is particularly true when the number of factors is large. In such
situations, a supersaturated design can often save considerable cost. A supersaturated design is a
(fraction of a factorial) design composed of n observations where n < k + 1. When such a design is
used, the abandonment of orthogonality is inevitable. This article examines the maximum number of
factors that can be accommodated when the degree of the nonorthogonality is specified. Furthermore,
interesting properties of systematic supersaturated designs are revealed. For example, such a design
may be adequate to allow examination of many prespecified two-factor interactions. Comparisons are
made with previous work, and it is shown that the designs given here are superior to other existing
supersaturated designs. Data-analysis methods for such designs are discussed, and examples are
provided.
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In a book by Schmidt and Launsby (1991, pp. 8-192-
8-199), Curry, Tomick, and Yost described a successful
case study for testing and validating an acquired immune
deficiency syndrome (AIDS) model. The AIDS model,
developed by the U.S. Bureau of the Census, Center for
International Research, is a set of approximately 100
deterministic differential equations with over 150 input
variables. Each run of the AIDS model requires approx-
imately 15 minutes on a 386 microcomputer. Clearly, an
efficient design was needed to investigate which variables
in the model are important. From among the 150 input
variables, an analysis team selected 97 variables that were
of the most interest, using “expert knowledge.” A 98-run
plan was finally set up from a 100 x 100 Hadamard ma-
trix (e.g., see Hedayat and Wallis 1978) and the five most
“important” variables were identified. As we shall later
see, using the results described in this article, 24 runs are
sufficient to study all 150 variables in this context.

This AIDS-model example corresponds to a typical
problem in industry. Routinely, engineers must distin-
guish between factors that have an actual effect and those
factors whose apparent effects are due to random error.
Often, the “null” factors are then adjusted to lower cost,
and the “nonnull” (active) factors are used to yield better
quality results. Many factors can often be listed as pos-
sibly important. It is not unusual, however, that among
those factors only a small portion are active. In fact, many
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practitioners believe that the effects are typically Pareto
distributed. This is sometimes called “effect sparsity.”
Usually, further investigation on the nonsignificant effects
is not of interest. Estimating all effects may be wasteful
if the goal is simply to detect those few active factors.

When all factors can be reasonably clustered into sev-
eral groups, the so-called group screening designs some-
times can be used (e.g., see Watson 1961). Only those
factors in groups that are found to have large effects are
studied further. Although such methods may be appropri-
ate in certain situations (e.g., blood tests), we are interested
in supersaturated designs in which no grouping is made.
We study fractions of two-level designs for examining k
factors inn < k + 1 runs.

Satterthwaite (1959) stands as a pioneer in this area. He
suggested constructing such designs at random. Although
the idea of random balance designs is interesting, the de-
signs themselves are not of maximum efficiency. [See the
discussions (Box 1959; Hunter 1959; Kempthorne 1959;
Tukey 1959; Youden 1959) that follow Satterthwaite’s
(1959) article.] Booth and Cox (1962) first examined
this problem systematically (i.e., with designs that were
generated using a specific optimality criterion). They pro-
vided seven supersaturated designs obtained via computer
search. Recently, Lin (1993) provided a new class of su-
persaturated designs based on half factions of Hadamard
matrices and showed a real-data example using an efficient
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study of 24 variables in only 14 runs. For other supersat-
urated design methods and applications, see Rosenberger
and Smith (1984), Barnett and Hurwitz (1990), Voelkel
(1990), and Lin (1991, 1993).

This article examines the maximum number of factors
that can be accommodated when the number of runs is
given and when the degree of nonorthogonality is spec-
ified. The construction method and computer algorithm
to search for such systematic supersaturated designs are
illustrated in Section 1. Some major results are summa-
rized and comparisons with previous work are made in
Section 2. Methods for analyzing data from such designs
are discussed in Section 3. Examples are given for illus-
tration in Section 4. Finally, I provide some concluding
remarks in Section 5.

1. THE CONSTRUCTION ALGORITHM

When a supersaturated design is needed, the abandon-
ment of orthogonality is inevitable. (Otherwise, these
columns would form a set of more than n orthogonal
vectors in n-dimensional space.) Because in most fa-
miliar contexts lack of orthogonality typically results in
lower efficiency, we here seek designs as “near orthogo-
nal” as possible. One simple way to measure the degree
of nonorthogonality between two columns, ¢; and c;, is
to consider their correlation, r;; = c;cj/n. Note that the
level values for ¢; and c¢; are coded as &1 here. We de-
note the largest absolute value of r;; among all pairs of
columns for a given design by r, and we desire a min-
imum value for r (r = 0 implies orthogonality). If two
designs have the same degree of nonorthogonality, r, we
prefer the one in which the number of occurrences of r
is a minimum among all ( ) pairs. Justification for using
this minimax rule for r is given in later sections.

The algorithm, which is illustrated by a flow chart in
Figure 1, can be described in the following way. When
the run number, n, is specified, the algorithm generates all
possible column combinations among the so-called equal-
occurrence columns. When 7 is even, these are n/2 +1s
and n/2 —1s; when n is odd, these are (n + 1)/2 +1s and
(n — 1)/2 —1s. Permute these signs in every way possi-
ble. For example, if n = 12, then 12!/(6! x 6!) = 924
columns are generated; if n = 25, then 25!/(12! x 13!) =
5,200,300 columns are generated. These columns con-
stitute the set of candidates for the design. Next, the
algorithm randomizes the order in which these columns
are considered as candidates. At each stage, a candidate
column enters and its inner products associated with all
other columns retained are calculated to check whether
the requirement is satisfied (i.e., whether the maximum
correlation is less than the prespecified r value). If not,
the candidate column is dropped and the search contin-
ues. Because of the equal-occurrence property, it can be
shown that c;c; + n = 0 (mod 4). Thus the program
examines only selected values of r (= cicj/n). Com-
putationally, this algorithm is much simpler than the one
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Figure 1. Flow Chart of the Algorithm (one complete loop).

given by Booth and Cox (1962). Of course, today’s com-
puting facilities are much more powerful than those of
the 1960s.

One difficulty for this algorithm arises because the r-
value property is not transitive. That is, when columns c;
and c; produce c;cj/n < r and columns ¢;j and ¢, pro-
duce c}cm /n < r, it does not follow that columns ¢; and
cm Will necessarily have c/c,, /n < r. To handle this, two
more features are added to the program. Those candidate
columns that meet the requirement for all but one retained
column will be saved in a queue. Whenever two columns
in the queue link to the same retained columns, the retained
columns will be replaced by the two columns in the queue.
Note that such an “exchange process” may remove certain
columns that have smaller r values so that more columns
can be saved to meet the r requirement. Another difficulty
with this algorithm is that the extent to which the results de-
pend on the random order of column entry is unknown. To
help address this, the program has been rerun with differ-
ent random orders of entrance for the candidate columns.

Once the design is constructed, the final step of the pro-
gram is then to sort all columns in order. In other words,
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when fewer columns than the full design are needed, the
experimenter can pick the first few columns that are con-
sidered to be the best choice in the sense of being the
most nearly orthogonal. The criterion used here is the
minimization of the average of r , called mean squared
correlation, p? = Tr?2 il (). This criterion is equivalent to
the E (s2) criterion given by Booth and Cox (1962). In
fact, p2 = E(s?)/n?, and this will be discussed in more
detail in Section 3.

2. SOME RESULTS AND COMPARISONS

Tables 1 and 2 show the maximum number of factors,
kmax, that can be accommodated when both # and r are
specified for 3 < n < 25and 0 < r < % (Table 1
is for even n and Table 2 is for odd n.) Because the
inherent property of cjc; + n = 0 (mod 4), we tabu-
late the results using n and cjc; as the column heading
and row heading, respectively. We see that for r < %
many factors can be accommodated. For fixed n, as the
value of r increases, kn.x also increases (read Tables 1
and 2 by rows). That is, the larger the nonorthogonal-
ity, the more factors can be accommodated. In fact, kpyqax
increases rapidly. Certainly, the more factors accommo-
dated, the more complicated are the biased estimation re-
lationships that occur (as will be shown), leading to more
difficulty in data analysis. On the other hand, for fixed
r, the value of k,,x increases rapidly as n increases. For
example, when r is specified as 3, kmax can be as large
as 276 for n = 24. (As will be shown in Sec. 4, this
design can allow one to study 150 variables, as in the
AIDS model described in the introduction.) For r < l,
one can accommodate, at most, 111 factors in 18 runs or
66 factors in 12 runs; for r < 1, one can accommodate
42 factors in 16 runs; for r < ¢, one can accommodate
34 factors in 20 runs. Provrded that these maximal cor-
relations are acceptable, this can lead to an efficient de-
sign. Supersaturated designs for n < 25, as well as the
computer codes, are all available from the author (e-mail:
lin @stat.bus.utk.edu).

Table 1. Maximal Number of Factors Found, ki, as a
Function of nand nr, for3 < n<25andr < 1/3: Evenn

Number Maximum absolute crossproduct, nr = |c/c;|
of runs
n 0 2 4 6 8
4 3
6 — 10
8 7 —
10 — 12
12 1 — 66
14 — 13 — 113
16 15 — 42 —
18 - 17 — 111
20 19 — 34
22 — 20 — 92 —
24 23 — 33 — 276

Table 2. Maximal Number of Factors Found, k,,,ax, asa
Function of nand nr, for3<n<25andr<1: Oddn

Number  Maximum absolute crossproduct, nr = |c|c;|
of runs
n 1 3 5 7
3 3
5 4
7 7 15
9 7 12
1 1 14
13 12 14
15 15 15 37
17 15 17 50
19 19 19 33
21 19 19 34 92
23 23 23 33 94
25 23 23 32 76

The cases (n, k) = (12, 66) and (24, 276) both have
r=s and deserve special mention. As pointed out by one
referee the (n, k) = (12, 66) design is indeed the 12-run
Plackett and Burman (1946) design with all 11 main-effect
columns plus all other (121) = 55 two-factor interaction
columns. This design was first given by Lin (1991). Fol-
lowing this observation, other Plackett-Burman designs
have been investigated. For n < 24, only these two cases
(n = 12, 24) have such a nice property (i.e., small r).
Any two-factor interaction, if prespecified, merely corre-
sponds to one more column in the design array, which can
be easily incorporated in the stepwise selection procedure.
Indeed, in many industries interactions are too common
to be ignored. It is a great benefit of the supersaturated
design to generally have plenty of room to examine the
many two-factor interactions.

A full display of the new designs found by the algorithm
for the case n = 12 is given in Table 3. A similar display
for the cases n = 18 and 24 is given in Tables 4 and 5, for
r=z and 7» respectively (to save space, only the first
54 columns for the case n = 18 were listed). The mean
squared correlation of r, , p2, can be easily evaluated. For
example, in the design given in Table 3 forn = 12 and k =
66, among () =2, 145 pairs of all possible correlauons 0
appears 660 tlmes, -3 appears 495 times, and + appears
990 times. Thus p? = [0 x 660 + (—1)? x 495 + (+1)?
% 990]/2,145 = .077. The p? measures the average loss
of precision in the estimation of parameters if only two
effects exist, and the average is taken over all possible
pairs of columns.

Apart from Box’s (1959, p. 180) illustrated example for
the case n = 3, Booth and Cox (1962) first constructed
such designs systematically. They provided seven super-
saturated designs obtained via computer search (n = 12
for k = 16,20, and 24; n = 18 for k = 24, 30, and 36;
n = 24 for k = 30). It is, thus, a natural class of de-
signs for comparison purposes. The results are given in
Tables 6, 7, and 8, pp. 219, 220. Whenever the num-
ber, k, of columns is less than the whole design, the first
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Table 3. Systematic Supersaturated Designs for n= 12

DENNIS K. J. LIN

Run 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
1T + + + + + + + + + + + + + + + o+ o+
2 4+ o+ o+ o+ o+ - - = = = -+ 4+ o+ o+ o+t
3+ - + - - + + + - - - 4+ 4+ 4+ = - -
4+ - -+ - -+ -+ o+ -+ - =+ o+ -
5 + - - - 4+ 4+ - - 4+ - 4+ - + - + - -
6 + + - - - - - 4+ - 4+ 4+ - - 4+ - + -
7 - 4+ 4+ - - 4+ - -+ + -+ - = = + +
8 - + - - 4+ - 4+ + + - - - - 4+ + - -
9 - + - + - + + - - - 4+ 4+ - - + +

07 - - - 4+ 4+ 4+ - 4+ - 4+ - - + - = - +

1M1 - - 4+ - 4+ - + - - 4+ 4+ - - + - = 4+

12 - - 4+ 4+ - - - 4+ 4+ - 4+ - + - - 4+ =

Run 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
1T+ 4+ 4+ 4+ 4+ o+ o+ 4+ o+ o+ o+ o+ o+ o+ o+
2 - - - -+ 4+ o+ o+ o+ o+ o+ o+ o+ = = -
3 4+ + + - - - -+ - = - - 4+ 4+ o+ o+ -
4+ + - + - o+ o+ = = = = -+ -+ o+
5 4+ - - - 4+ 4+ - 4+ 4+ - 4+ - - - 4+ - +
6 - + - - + - + - + - + - - + - + +
7+ - 4+ - + - -+ - - 4+ + - = = - +
8 - - 4+ + + - + + - o+ - 4+ - - 4+ = -
9 - + + - - - - - 4+ 4+ - - - 4+ - - +

0 - 4+ - 4+ 4+ - 4+ + - - + + - + - -

"M + - - 4+ - 4+ - - - 4+ 4+ - 4+ - - 4+ -

12 - - 4+ 4+ - 4+ - - - 4+ - 4+ - 4+ - + =

Run 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51
1T 4+ 4+ 4+ 4+ 4+ 4+ 4+ o+ o+ o+ o+ o+ o+ o+ o+ o+ o+
2 - -+ + o+ o+ = = = = = = === ==
3 - - + -+ - o+ o+ - - 4+ 4+ = - 4+ 4+ -
4 - - - - -+ o+ - - = = = 4 - 4+ -
5 4+ - - 4+ 4+ - - 4+ 4+ - 4+ - + - 4+ - 4+
6 - + + + - - - + - 4+ o+ - - 4+ - o+ -
7+ - + - - + + - - 4+ - 4+ - + - + +
8 - + - + - 4+ - - + + + + - - - + +
9 - + - - 4+ - - - + - + - 4+ + + - +

0 + 4+ 4+ - - - 4+ 4+ 4+ - - 4+ + 4+ - - -

"m o+ + - - o+ 4+ - o+ - 4 + o+ - - -+

12 + - - 4+ - - 4+ - 4+ 4+ - - - 4+ 4+ - -

Run 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66
1T+ 4+ 4+ 4+ 4+ o+ 4+ o+ 4+ o+ o+ o+ o+ o+ 4
T T e T
3 - -+ 4+ -+ - - -+ o+ -+ = =
4+ + - - o+ - 4+ - 4+ - 4+ - - 44
5 + - - 4+ - - - - 4+ 4+ - 4+ - 4 -

6 + - + - + - - + - 4+ - - - 4+ 4
7 -+ + - - - 4+ - + 4+ - 4+ - = -
8 + + - + + + - - - - 4+ - - - -
9 - + + - + 4+ 4+ - - - - o+ o+ - ¥

0" - 4+ - - - 4+ - 4+ 4+ - - -+ 4+ -

"mM o+ - 4+ 4+ - - 4+ 4+ - - - -+ -4

12 - - - 4+ 4+ - 4+ 4+ - 4+ 4+ o+ o+ 4+ -
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Table 4. Systematic Supersaturated Designs for n = 18 (the first 54 columns)

Run 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
1T+ + + + + + + + 4+ 4+ 4+ 4+ o+ o+ o+ o+ o+ 4
2+ - o+ o+ 4+ o+ o+ - - - - -+ = =+ =+
I T e T e S S S T T
4 + - 4+ 4+ - - -+ -+ - = - 4+ = = 4 4+
5 + 4+ - - 4+ - - - - 4+ + + 4+ - 4+ - 4+ +
6 + - - - - - 4+ - 4+ - - - - + + + - +
7+ + - - - + 4+ 4+ - - - - 4+ - - + + -
8 + + + - - 4+ 4+ - 4+ + + - - - - - -
9 + - - + - - - 4+ 4+ - 4+ + - - + - - =

0 - - 4+ - 4+ - + + - + + - + 4+ - - - -

"M - - - 4+ 4+ + - - + - + - - 4+ 4+ - 4+ -

12 - 4+ 4+ 4+ - 4+ - - - o+ - - - 4+ 4+ 4+ = =

1B - - - 4+ - 4+ + + - + + + - - - 4+ - -

1M - + + - - - -+ o+ -+ - 4+ - 4+ o+ = -

B - 4+ - 4+ 4+ - - - - - 4+ 4+ 4+ 4+ - o+ o+ 4+

% - + - 4+ + - + + + 4+ - 4+ 4+ 4+ o+ - - 4+

7 - - - - - 4+ - - 4+ 4+ - 4+ 4+ - - - 4+ +

18 - - 4+ - 4+ - + - - - - 4+ - + - o+ -

Run 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
T 4+ + + + + + + + + + 4+ 4+ o+ o+ o+ o+ o+ o+
2+ + o+ + + - - -+ o+ - -+ o+ o+ o+ o+ -
3+ - - - 4+ 4+ 4+ o+ - -+ - - -+ o+ - o+
4+ + - + - 4+ o+ -+ 4+ o+ o+ = = =+ = =
5 4+ 4+ 4+ - + + + - + - - - - 4+ - - -
6 + - - - 4+ - 4+ + - + + + + + - - - =
7 - - - - - 4+ - 4+ - 4+ - - - -+ - o+ -
8 - - 4+ 4+ - - - 4+ + - + - - + - - - 4+
9 - - + + + + - - - 4+ - + - + + - - +

M+ - 4+ - 4+ 4+ - - - -+ - 4+ - = = 4 =

M+ 4+ - 4+ - 4+ - 4+ o+ - - - - 4+ - 4+ 4+ -

12 - + 4+ - - 4+ - - - - - 4+ o+ 4+ 4+ - o+ +

1B+ - - - - - o+ + - 4+ + - o+ - o+ o+ o+

1“4 - 4+ -+ - -+ - - 4+ o+ -+ - 4+ o+ o+ o+

B - - 4+ + - - -+ - 4+ o+ - 4+ - - 4 - -

% - - - - - - 4+ 4+ + 4+ - 4+ - - 4+ - 4+ -

17 - 4+ - 4+ 4+ - - - - - -+ 4+ - - - - 4

18 - + 4+ - 4+ - + + + - - + + - 4+ o+ - o+

Run 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54
T 4+ + + 4+ 4+ + o+ o+ o+ o+ o+ 4+ 4+ o+ o+ o+ o+ 4
2 - - - 4+ - - 4+ o+ o+ o+ -+ o+ - - 4+
3 - 4+ - - 4+ 4+ + -+ - o+ - - - o+ 4 4+ 4
4 - 4+ + -+ - -+ -+ -+ 4+ - - - -
5 4+ - 4+ 4+ - - 4+ - + + + - 4+ - - 4+ - 4
6 - - 4+ 4+ 4+ - 4+ - -+ o+ o+ - o+ 4+ o+ o+ -
7T+ - - 4+ 4+ + - 4+ - + - 4+ 4+ - o+ 4+ - -
8 + 4+ 4+ - 4+ - - 4+ - - 4+ - o+ o+ o+ o+ - o+
9 - 4+ - + - 4+ + + - - - - - - 4 - 3+ -

0 - + 4+ 4+ - 4+ - - + - + 4+ - 4+ 4+ - - —

n + - + - - 4+ - - - - - - - 4+ - 1 4 -

12+ - - - 4+ - + - + - - 4+ - - 4+ - 1 4

B+ - - 4+ - - - 4+ + o+ - - - 4+ - 4+ - -

M - -+ - - - - - - -+ 4+ o+ -+ o+ -

B+ 4+ - 4+ 4+ -+ -+ - - - 4+ - - - -

% - + - - - + + + - - 4+ 4+ - - - - - 4

7 - - - - 4+ 4+ -+ o+ o+ - - - 4+ - - - 4

18+ + + - - 4+ - - - 4+ - 4+ 4+ - 4 - -
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Table 5. Symmetric Supersaturated Designs for n = 24, (r = é)
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k columns are selected. Overall, designs found here are
better than designs given by Booth and Cox (1962) in
the sense of p? criterion, and therefore E(s2) as given by
Booth and Cox. For cases (n = 12, k = 24) and (n = 24,
k = 30), the larger r = 8/12 and r = 8/24, respectively,
should be compared to our designs, for which r = 4/12
and 4/24, respectively. Tables 6, 7, and 8 also give addi-
tional details for designs for the cases n = 12, 18, and 24.
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The designs given by Lin (1993), based on half fractions of
Hadamard matrices, have a very nice mathematical struc-
ture but can only examine N — 2 factors in N/2 runs,
where N is the order of Hadamard matrix used. It is thus
recommended to use such designs when the number of
factors is moderate. Moreover, these designs do not con-
trol the value of r, and, in fact, large values of r occur in
some cases (see Lin 1993, table 2).
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Table 6. Comparison With Supersaturated Designs Given by Booth and Cox (1962):

n= 12 Runs
Frequency of r Number of
pairs of

n k Design -2/3 -1/3 0 1/3 2/3 columns p? x 100
12 16 B&C 30 67 23 120 4.90

Lin 15 73 32 4.35
12 20 B&C 51 75 64 190 6.72

Lin 27 103 60 5.09
12 24 B&C 68 105 101 2 276 7.13

Lin 46 135 95 5.67
12 66 Lin 495 660 990 2145 7.69

For random balance designs, p? is equal to 1/(n — 1)—
that is, .091, .059, and .043 for n = 12, 18, and 24, re-
spectively. Note that p? in this case is independent of the
number of factors, k. Judged by this criterion, we see that
the systematic designs are substantially better thanrandom
balance designs. Indeed, these differences get smaller (at
afairly slow pace) when k increases. If we restrictr < % (r
can be any number between O and 1 in random balance de-
signs) and when the maximum numbers of & found, kpay,
are used, Tables 9 and 10 show that p? is .077 (k = 66),
.052 (k = 111), and .04 (k = 276), for n = 12, 18, and
24, respectively. These values are still superior to those
of random balance designs. Moreover, as pointed out by
Booth and Cox (1962), because the distribution of r for
random balance design is nearly normal, the frequency of
occurrence of large values of r would be even more in favor
of the systematic designs. Tables 9 and 10 show p? values
for all designs listed in Tables 1 and 2, leading to the same
conclusion. In Section 3, we discuss strategies for analyz-
ing data from such systematic supersaturated designs.

3. DATA-ANALYSIS METHODS

Supersaturated designs are particularly useful at the pre-
liminary stage of process understanding at which the num-
ber of factors is large and only a few factors are believed to
have real effects. Because only a few factors are believed
to be active, the basic idea here is to allow a slight bias

among all estimated effects (controlled by the value r as
will be explained) while the active factors remain identifi-
able. Thus to be identified any active factor must have an
effect too large to be masked by the experimental error and
the combined effects of unimportant factors. Confirma-
tory experiments, in general, are recommended to resolve
ambiguity. An independent estimate of experimental er-
ror, if possible, would be very useful.

Several methods have been proposed to analyze the &
effects, given only the n(<k) observations from the ran-
dom balance design contents, such as plots of responses
y versus levels of each factor (e.g., see Anscombe 1959;
Budne 1959; Satterthwaite 1959). These methods can
also be applied here. Such quick methods provide an ap-
pealing straightforward comparison among factors, but it
is questionable how much available information can be
extracted using them. Thus it is useful to combine sev-
eral of these methods to have a more satisfying effect. In
what follows, three methods will be discussed—normal
plotting, stepwise regression, and ridge regression. When
the distribution of the size of effects follows a Pareto dis-
tribution (only 10-20% of the variables are important), as
many practitioners believe, we note that all three methods
are able to identify the important factors.

When supersaturated designs are used for screening
purposes and the data analyst believes that only a few
effects are important, the analysis strategy becomes an
outlier-identification problem. The basic problem is to

Table 7. Comparison With Supersaturated Designs Given by Booth and Cox (1962):

n= 18 Runs
Frequency of r Number of
pairs of

n k Design -1/3 -1/9 1/9 1/3 columns 0% x 100
18 24 B&C 22 102 96 56 276 4.02

Lin 17 100 123 36 3.13
18 30 B&C 41 137 144 113 435 4.73

Lin 33 151 182 69 3.55
18 36 B&C 64 182 203 181 630 5.07

Lin 55 205 259 11 3.84
18 M Lin 712 1522 1883 1554 5671 5.32
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Table 8. Comparison with Supersaturated Designs Given by Booth and Cox (1962):

n= 24 Runs
Frequency of r Number of
pairs of

n k Design -1/3 -1/6 0 1/6 1/3 columns p? x 100
24 30 B&C 27 53 284 39 32 435 2.09

Lin 90 111 234 2.06
24 31 Lin 98 116 251 465 2.09
24 276 Lin 1885 4,838 7,413 6,974 4,541 25,651 4.00

distinguish between apparent effects that are due to noise
and effects that are real. Plotting estimated effects on nor-
mal probability paper often provides an effective way of
identifying real effects. The estimated effect for each fac-
tor x; can be obtained via B; = X;y;(xji — X;)/ Z;(xj;
— X;)2. If an effect is at least three times larger than the
overall random-error standard deviation, such an effect
can, in practice, virtually always be identified (see Sec. 5).
By subtracting these significant effects from the responses,
we can identify significant effects sequentially (until the
normal plot shows no significant effects). If there are three
or more active factors with similar magnitudes, however,
the conclusion based on normal plotting can sometimes
be misleading. This is mainly due to the fact that they are
biased estimates and the correlations among estimated ef-
fects play an important role. Note that, for even n, assum-
ing first-order model, we have E(B;) = B; + Zjxiri;j B;.
To reduce the bias for fixed n, one would like to keep the
ri; as small as possible. (This is another justification of
the design criterion p2.) It becomes obvious that, when
there are more than n active factors, supersaturated designs
will only allow one to identify relatively large effects—a
well-known phenomenon in using normal plot technique
to identify significant factors.

Suppose that the response y depends on k candidate fac-
tors xi, X2, ..., X, with the first-order relationship E(y)
= Bo + Bix1 + Paxz + - - - + Brxi. Employing the usual
linear model notation, E(y) = X3, where yisann x 1
vector of observation, X is an n x (k + 1) matrix whose

Table 9. The p? Values for Systematic Supersaturated
Designs: p? x 100 for Designs in Table 1 (even n)

Number Maximum crossproduct (nr) Random
of runs balance
n 0 2 4 6 8 design
4 0 33.33
6 — 11.11 20.00
8 0 14.29
10 — 4.00 11.11
12 0 — 7.69 9.09
14 — 2.05 — — 7.69
16 0 — 5.09 — 6.67
18 — 1.23 — 5.33 5.88
20 0 —_ 4.00 —_ —_ 5.26
22 — .83 — 3.97 — 476
24 0 — 2.1 — 4.00 4.35

Jjth row is of the form (1, x;;, x2j, ..., Xj), and 3 is the
(k + 1) x 1 vector of coefficients to be estimated. Note
that for supersaturated designs n is less than k; thus X’X
is not of full rank. Moreover, the major interest here is to
detect those B;’s that are indeed different from 0. One nat-
ural way to identify important variables would then be the
forward selection procedure. This procedure starts with
no variable in the model and first selects the x; that has
the highest correlation with y. Subsequent selections are
based on partial correlations, given the variables already
selected.

The stepwise selection procedure provides an important
modification of forward selection; namely, after each vari-
able is entered through the partial F test, every variable al-
ready in the model is examined to check whether it should
be removed (e.g., see Draper and Smith 1981, p. 307).
The stepwise selection procedure is available in most sta-
tistical software packages. This is indeed a powerful and
convenient method to identify active factors, provided that
the interaction effects are, as assumed, relatively small.
Most programs allow the analyst to select the criterion to
enter a new variable and also the criterion to remove one.
Of course, as with standard stepwise regression, one may
reach a “false positive” identification (i.e., misclassify a
null factor, and with many candidates to choose from, this
risk can be substantial). Conservative significance levels
may be called for (see also Westfall, Young, and Lin 1994).
Note that screening experiments are usually conducted in

Table 10. The p? Values for Systematic Supersaturated
Designs: p? x 100 for Designs in Table 2 (odd n)

Number Maximum crossproduct (nr) Random
of runs balance
n 1 3 5 7 design
3 11.11 50.00
5 4.00 25.00
7 2.04 16.67
9 1.23 4.11 12.50
1 .83 4.10 8.45 10.00
13 .59 2.62 7.49 8.33
15 .44 .44 5.16 6.91 7.14
17 .35 1.41 6.34 5.45 6.25
19 .28 .28 3.16 5.32 5.56
21 .27 .27 4.66 4.12 5.00
23 .19 .19 1.96 4.15 4.55
25 .16 .16 2.29 3.14 4.17
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the early stages of a study. In this case, “false negatives”
(i.e., missing real active factors) are much more serious
than false positives. The latter can generally be resolved
by subsequent confirmatory runs. The typical significance
level @ = 5% has been used in our data analysis.

Ridge regression is another popular method of handling
singular X'X matrices. Estimated effects are given by
(Z'Z + M)~'Z'y, where L s the k x k identity matrix and
Z represents the “scaled” X matrix in correlation form
(e.g., see Draper and Smith 1981, pp. 313-323). I have
examined many possible situations with simulations, us-
ing the A value suggested by Hoerl, Kennard, and Baldwin
(1975), to identify large B;’s. The simulation results show
that identification of large-effects-based ridge regression
performs well when XX is nearly singular; namely, the
rank of X'X is close to the size of X'X. But for cases in
which k is much larger than n, ridge regression does not
seem to work well.

4. EXAMPLES

As mentioned, a supersaturated design is particularly
useful to identify the few (p, say) dominant active fac-
tors. For given k and n, the smaller the number of active
factors, the easier they can be identified. For example,
when only one factor is active, most methods mentioned
previously are capable of identifying that effect, as long
as the effect is at least three times the overall “pooled”
standard deviation (but see Ex. 3 for identifying smaller
effects). The extreme case in which there are no active
factors (meaning all apparent effects are due to random
error) is also studied. It is found, based on the simula-
tion results, that most methods work well in reaching the
correct conclusion in such a situation. Alternatively, if
the number of active factors is more than the number of
runs (i.e., p > n), only a few relatively large effects will
be identified. Three examples are given to illustrate the
usefulness of supersaturated designs.

Example 1. Consider the differential-equation AIDS
model discussed in the introduction as a typical screen-
ing problem in computer experiments. When the AIDS-
prediction computer-model program was used by Curry,
Tomick, and Yost, it was in its fledgling state. It contained
little more than a basic heterosexual transmission compo-
nent. It subsequently grew by adding dynamic routines to
account for more transmission vectors and modifications
of the earlier transmission vectors via new parameters.
The mature version of the program had literally hundreds
of differential equations and factors. Seitz (1992) incor-
porated the Curry, Tomick, and Yost experiences and used
the updated equations governing those processes known to
contribute to the HIV/AIDS pandemics to develop a con-
crete AIDS computer model called iwgAIDS (the State
Department Interagency Working Group AIDS). The final
(1994) release version of iwgAIDS focuses more than in
earlier versions on the known nonlinear age-distribution
effects rather than AIDS prevalence and incidence. The

program now includes all processes known to account for
5% of observed cases in the world. The inputs to the pro-
gram presently consist of 138 variables with the output
response y = AIDS incidence rate of 100,000 population.
(For more details, see Seitz 1992.) Curry et al. generated
large numbers of factors (150 as opposed to 138 here) by
categorizing ages so that variables might have an instan-
tiation for ages 15-29, 3045, 45+, and so forth. Each of
these counted as a different factor, but the core equations
are the same now as they were earlier.

To investigate which factors are most critical, Seitz used
the first 138 columns of the design (n, k) = (24, 276)
mentioned in Table 1 and obtained the following 24 re-
sponses (in order, read as row by row):

22.61 1426 5842 2459 10.28 188.46 22.68 22.90
52.04 381.61 1622 108.59 98.05 53.13 83.41 13.59
24296 66393 5795 17749 40.22 5223 53.50 2,463.24

A stepwise selection procedure was then employed, and
the results are summarized in Table 11. We see that 11
factors were identified as “active” factors with R? = 99%.
The first eight factors (with R? = 91%) were selected for
further study in Phase II. These eight active factors are as
follows:

Factor #118 = Contact rates for low-risk heterosexual
males, age 15-36.67

Factor #25 = Degree to which HIV-infected urban
males introduce infections to their sexual contacts

Factor #129 = Proportion of high-risk single heterosex-
ual males, age 15-36.67

Factor #13 = Circumcision HIV infectivity cofactor,
males

Factor #91 = Concurrent-partner rate for high-risk
paired heterosexual males, age 15-36.67

Factor #93 = Concurrent-partner rate for high-risk sin-
gle females, age 15-36.67

Factor #86 = Casual-partner-turnover rate for low-risk
single heterosexual males, age 15-36.67

Factor #76 = Casual-partner-turnover rate for high-risk
paired females, age 15-36.67

The overall conclusion from this study indicates that
the key variables for a generic rural area are (a) contact
rate (#118), (b) proportion of single males (#129), and (c)
concurrent-partner rate for paired and single males (#91
and#93). The key variables for a generic urban area are (a)
dry sex for males (#25), (b) circumcision HIV infectivity
for males (#13), and (c) casual-partner-turnover rate for
single males and for paired females (#86 and #76). Note
also that the test environment is strictly heterosexual, so
being an infectious male means passing on the infection to
a female. The expert judgment of those working with this
model is that these sets of variables are quite reasonable.

Recall that the five most important variables identified
by Curry et al. in their program are (1) risk of infection,
males; (2) risk of infection, females; (3) contact rates,
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Table 11. Stepwise Selection for the iwgAIDS Simulation Data
Entering variables
Step 118 25 129 13 91 93 86 76 1 101 54 o R?
1 161.78 485.8 .108
(1.63)
2 227.53 197.26 455.8 .251
(2.31) (2.00)
3 308.24 224.16 215.23 411.7 .418
(3.23) (2.50) (2.40)
4 336.19 298.69 22455 —195.64 369.1 .655
(3.90) (3.47) (2.78) (—2.43)
5 422,39 331.01 253.28 -—-206.42 197.53 315.2 .693
(5.30) (4.44) (3.64) (—2.99) (2.84)
6 456.96 411.67 264.80 —233.30 209.05 180.52 256.9 .807
(6.94) (6.25) (4.66) (—4.10)  (3.68) (3.18)
7 509.99 434.19 282.31 -240.81 176.53 188.03 150.10 206.7 .883
(9.19) (8.13) (6.13) (—5.26) (3.77) (4.11) (3.20)
8 509.49 434.19 282.31 -—-240.81 176.53 188.03 150.10 80.71 187.5 .909
(10.13)  (8.96) (6.76) (-5.80) (4.15) (4.53) (3.53) (2.11)
9 492,92 427.09 276.79 -—-238.44 129.19 185.66 160.36 119.11 —-115.19 143.4 951
(12.71) (11.50) (8.65) (—-7.50) (3.66) (5.84) (4.91) (3.80) (-3.41)
10 473.45 37153 270.30 -219.86 89.34 167.08 204.01 13791 -171.60 110.59 1009 .977
(17.08) (12.48) (11.97) (-9.62) (3.33) (7.31) (7.99) (6.11) (-6.18) (3.91)
1 465.12 346.03 267.52 -182.90 129.85 158.64 166.61 135.63 —164.74 132,80 85.58 64.81 .991
(25.97) (17.34) (18.43) (-10.82) (6.64) (10.71) (9.03) (9.34) (-9.20) (7.05) (4.42)

NOTE: The numbers given in the table are estimated effects and their t ratios.

females; (4) contact rates, males; and (5) increased risk
of infection due to cocirculating sexually transmitted dis-
eases, females. The conclusion here has some similarity
with that of Curry et al. (to be compared with factors
#118, #25, and #13), but we use only 24 runs. Of course,
these are only preliminary results from a very complicated
computer experiment. The high R?(= 91%) is somehow
dubious. Confirmatory runs are strongly recommended.
In Phase II, a 16-run (2§;*) confirmatory design is con-
ducted as shown in Table 12 [while all factors except those

Table 12. Design and Results of the Confirmatory Runs

Design .
Response
Run #118 #25 #129 #13 #91 #93 #86 #76 y
1 -1 -1 -1 1 1 1 -1 1 171.77
2 1T -1 -1 -1 1 1 -1 118.88
3 -1 1 -1 - 1 -1 1 -1 110.98
4 1 1 -1 T -1 -1 -1 1 187.59
5 -1 -1 1 1 -1 -1 1 -1 321.85
6 1 1 1 -1 1 -1 -1 1 254.58
7 -1 1 1 -1 -1 17 -1 -1 257.05
8 1 1 1 1 1 1 1 -1 337.99
9 -1 -1 -1 -1 -1 -1 1 1 267.35
10 1 -1 1 1 1T -1 1 323.63
1 -1 1 -1 1 -1 1 -1 1 332.84
12 1 1 -1 1 1 1 1 1 263.61
13 -1 -1 1 -1 1 1 -1 1 120.36
14 1 -1 1 1 -1 1 1 1 185.58
15 -1 1 1 1 1 -1 1 1 190.69
16 1 1 1T -1 -1 -1 1 106.20

identified as active in Phase I were set at their low levels
(=),

Analysis based on these 16 confirmatory runs shows
that factors #129, #13, #118, and #86 are indeed the ac-
tive factors with R? = 99.8% (see Tables 13 and 14), but
factors #25, #93, and #76 are moderately active and #91
is not important at all. It seems that factor #129 dominates
(how much of the population falls toward the “greater
sexual activity” end of the continuum), and the same
holds for factor #118 (the number of contacts per per-
son at the “general sexual activity” end of continuum).
The casual-partner-turnover rate, factor #86, is important
because of variation in viral load. That is, it appears that
subjects are more infectious right after contracting the
virus and more infectious as their immune systems break
down and frank AIDS ensues. Thus the casual-partner-
turnover rate is a measure of how many different peo-
ple a carrier might be in contact with during infectious
phases (whose time duration is short, vis-a-vis the HIV
period itself). If most of the sexually active people were
not circumcised and if the lack of circumcision greatly

Table 13. Analysis of Variance for the

Confirmatory Runs
Source  df Sum square Mean square Fratio p value
Regression 4 104,622 26,156 1391.43 .000
Error 11 207 19
Total 15 104,829
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Table 14. The Fitted Model in Table 13

Predictor Coefficient Standard deviation tratio p value

Const. 221.934 1.084 204.75 .000
X129 72.928 1.084 67.28 .000
X13 34.558 1.084 31.88 .000
X118 4.351 1.084 4.01  .002
Xgs 2.682 1.084 2.47 .031

NOTE: s = 4.336 and R? = 99.8%.

magnified HIV transmission by making infectious males
more infectious, this would explain why factor #13 is
dominant. The biology here is that a low-grade infec-
tion in uncircumcised males concentrates the immune sys-
tem response, which might also increase the viral load of
HIV in sexual body fluids. The data also suggest some
potential interaction effects (e.g., between factors #129
and #76 and between factors #118 and #76) and possi-
ble transformation. This needs further investigation. The
subject-matter conclusions given previously, mainly due
to Mr. Seitz, are believed to be useful and previously
unknown.

The next two simulation examples show the typical per-
formances of stepwise selection in the analysis of data
from supersaturated designs. Because the “true” effects
are known, one can be reassured that the conclusion from
the procedure is correct. Research on analysis of supersat-
urated designs is encouraged. Example 2 shows that large
effects (three times or more of the overall standard devia-
tion) can be easily identified. Supersaturated designs are

indeed reliable and economical. On the other hand, Ex-
ample 3 shows some results for identifying active factors
with only small effects (in the range of 2-3¢'), which are
known to be difficult in general.

Example 2. Suppose that we want to examine 60 fac-
tors using only 12 runs. The first-order model y; = By +
Bixii + Baxai + -+ + PBeoXeoi + &, & ~ N(0,0?),
i = 1,2,...,12, is assumed, where the 60 columns
X1, Xa2, . .., Xgo are chosen to be the first 60 columns from
Table 3. Without loss of generality, we assume that
Bo = 30 and 62 = 1. In all cases, 12 ¢;’s were gen-
erated from the standard normal distribution and added to
Bo + Bix1; + Baxai + - - - + Bsoxeoi for the specific values
of B;’s to create the responses y;. Based on these y;’s,
we would like to identify the relatively large B;’s (i.e.,
“large” effects). The examples given here have (n, k) =
(12, 60). Certainly, the closer k is to n, the easier will be
the identification of the active factors.

In this example, we simulate the case of five active fac-
tors, three with large magnitudes and two with moderate
magnitudes. Apart from the five (randomly) selected §;’s,
all other B;’s are set to 0. Figure 2(a) shows the five ac-
tive factors to be identified. Factors 3, 7, and 42 are the
three dominating factors, with effects 170, 240, and 150,
respectively. Factors 10 and 23 are designated to be mod-
erate and are less likely to be identified (both have effects
of 30). All other B;’s are assumed to be O (i.e., all other
factors have no effects). When the 12 ¢;’s are added to
Bo + Bix1i + Baxai + - -+ + Beoxeoi, the resulting y;’s are
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Figure 2. Simulated Example With (n, k)= (12, 60): (a) True Effects to be Identified: (b) Estimated Effects via Stepwise Regression.
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Table 15. Successful Identification Rates From Simulation
(n = 12 case)

Number of correctly

Number of Number of identified factors
active* factors under

factors (p) study (k) 0 1 2 3 4

1 15 0 1.000
20 0 1.000
25 0 1.000
30 0 1.000
2 15 0 0 1.000
20 0 0 1.000
25 .034 .003 .963
30 .068 .005 .927
3 15 .027 .020 .004 .949
20 .071  .029 .001 .899
25 .084 .140 .015 .761
30 .138 197 .014 .651
4 15 .016 .132 .076 .008 .768
20 .062 .256 .134 .006 .542
25 .115  .293 .218 .024 .350
30 122 319 .213 .027 .319

*All active factors are with the size in the range of 2-30-.

92.88,9.17, 79.24, 29.19, 4.19, 4.07, 7.31, 15.01, 14.48,
4.20, 93.66, and 7.18.

By applying the stepwise procedure, these five active ef-
fects are correctly identified with R?> = 99.9%. Factors 20
and 24 are also listed but with only a small effect to make
the R? near 100%. These effects are plotted in Figure 2(b)
to be compared with Figure 2(a), a very satisfactory result.
Really large effects should not be difficult to identify, in
general. From this example, we see that supersaturated de-
sign can also identify factors with moderate effects. Simi-
lar examples with nonnormally distributed errors [specifi-
cally, exponential, uniform, and Cauchy distributions; see
Lin (1991)] were also simulated, and supersaturated de-
sign and stepwise regression methods work successfully.

Example 3. To identify the few “active” factors with
absolute effects in the range of 2-3¢ from many factors
is, in general, difficult. In this example, the typical perfor-
mance of the stepwise selection procedure is shown. Take
the 12-run case (Table 3) as a typical example. Consider
once again the first-order model y; = By + B1x1; + Baxy
+"'+,kaki + &, & "’N(O,G = 1),l= 1,2,...,12.
Given k and p, sizes of effect in the range 2-3¢ were uni-
formly generated and assigned to the p randomly selected
Bi’s, while all other B;’s were set to 0. The ¢;’s were
generated to create y;’s as in Example 2. The stepwise
selection procedure was then performed. For each spe-
cific value of k and p, 2,000 cases were simulated. The
successful identification rates (= percentages of cases that
correctly identify those active factors) were tabulated in
Table 15 for p =1, 2, 3,4 and k = 15, 20, 25, 30.

For the cases p = 1,2, and 3, the stepwise selection
procedure works reasonably well, even in such difficult
cases as these. For p = 4, the successful identification
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rates are only moderate and get worse as k increases. This
seems to suggest that besides those large effects that can
be easily identified, as in Example 2, a stepwise selection
procedure is only capable of detecting a few effects in the
range 2-3o0. Thus, if a process has many factors with ef-
fects of size 2-30, the effect sparsity assumption that there
are a few dominant active factors is no longer valid. A su-
persaturated design may not be an adequate experimental
design in such a situation. Most saturated main-effect de-
signs will also fail to work and higher experimental costs
seem inevitable.

5. CONCLUDING REMARKS

Consider a two-level k-factor design in n observations
with maximum correlation r. Given any two of the quan-
tities (n, k, or r), this article discusses what value can be
achieved for the third quantity. Apart from the property
that nr;; + n = 0 (mod 4), no other theoretical implication
is currently available. The related theoretical implications
need more investigation, in particular for n < k, whose de-
signs as given here are apparently new. Furthermore, the
largest k found here are not guaranteed to be maximum, but
they, nevertheless, are sufficiently large for practical use.

Booth and Cox (1962) showed that if k effects are in-
cluded for analysis with design vectors selected from the
design matrix, then the average variance of an estimated
effect (B) is approximately o2[1 + (k — 1)p?]/n, where
a? is the error variance. They also pointed out that this
quantity is likely to be seriously underestimated unless the
nonzero true effects are all very large. The power curves
for various k (k = 11, 15, 20, 30, 40, 50, 60) and n = 12
when the true model is E(y) = By + Bi1x; are given in
Figure 3. Note that the curve for k = 11 is a saturated
orthogonal case. When the ratio 8/o is larger than 2,
the power is close to 1 for all k. In other words, when
the largest effect is significantly different from O and the
amount of this effect is three times (or more) larger than
the overall standard deviation obtained by treating all other
factors as null, such an effect can always be identified.

We see that average variance increases as k increases;
namely, certain true effects that can be identified for a
moderate k may no longer be recognized as the number
of factors, k, increases. The obvious conclusion from this
is that (for given n) the larger the number of factors under
investigation, the larger an effect must be to be identified.
On the other hand, when n and k are specified, this average
variance only depends on p2. An optimal design in this
sense will seek to minimize p?, as I have done by sorting
my design columns.

Designs given here are constructed for the degree of
nonorthogonality that the experimenter is willing to ac-
cept (the criterion of r). For two designs with the same
r, I prefer the one in which the number of r is a mini-
mum (the criterion of p2). Such an idea was originated by
Booth and Cox (1962). Tukey (1959), however, suggested
the concept of elongation as an indicator of quality of
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Figure 3. Power Curves for Various k, N = 12 Case With One
Significant Factor: k=11 ---., k= 15;----, k = 20;
= k=30;——- k=40; — - — k=50;—-— -~ , k = 60.

confounding. Specifically, for any two columns of signs,
the elongation depends on the sum of fourth powers of
cosines of angles, and this is another possible criterion
to use to construct a supersaturated design. For equal-
occurrence classes (the occurrences of high and low levels
are differed by at most 1), the difference between p? and
elongation is not substantial.

If the assumption of Pareto distribution for the size of
effects is true, the supersaturated design can easily identify
those few largest effects. In general, large effects should
not be difficult to identify using any data-analysis meth-
ods. In this case, a supersaturated design can save con-
siderable costs. To detect effects with magnitudes in the
range of 2-30 in the presence of many factors, however,
is a very difficult task. Moreover, to study many factors
in a relatively few runs, the data-analysis methods are
very sensitive to outlying observations—a difficulty that
the practitioner should bear in mind. Common advice to
practitioners for such an outlier problem is to replicate the
experiment with the factors combination that yields the
maximal (or minimal) response. Such an “outlier confir-
matory” run, if possible, is reccommended.
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