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Abstract 

The Kalman filter is probably the most popular recursive estimation method. It is, however, known to be non-robust 
to spuriously generated observations. Much attention has been focused on finding the so-called robust recursive 
estimation under the assumption that the observations are independent. In this paper, we show that Lin and Guttman's 
robust recursive estimation scheme can be easily applied to the correlated observations. Examples when the noise follows 
an AR(2) process with/without outliers are given for illustration. 
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1. Introduction 

The Kalman filter is a recursive procedure to estimate the state parameters of the system at the current 
time, to predict the next observation, and to update the value of the parameter  state vector when the next 
measurement is observed. The goal here is to make inference about  0,, called the state of nature. The observed 
values of the variable of interest Yt depend on the unobservable 0, at time t. The relationship between y, and 
Or, 

y, = A,O, + et, et,-~N(0, C,), (1) 

is known as the observation equation, whereas the dynamic feature between 0, and 0t-1, 

0 t ~-- ~'~lOt_l + Ut, ut,,~N(O, Rt), (2) 

is known as the system equation. The matrices At in the observation equation, f~t in the system equation, as 
well as the covariance matrices Ct and Rt are assumed to be known. Often, the variation for the observation 
equation is larger than that of the system equation, i.e., C, > Rt in some sense. 

Kalman's  (1960) result, popular  with control engineers and other physical scientists, is essentially a least- 
squares procedure. One well-recognized concern for this least-squares procedure is its non-robustness to 
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spuriously generated observations that give rise to outlying observations, rendering the Kalman filter 
unstable, with devastating consequences in some situations. Much evidence exists that data almost always 
contain a small proportion of spuriously generated observations, and, indeed, one wild observation can make 
the Kalman filter unstable. 

Several authors have suggested procedures to deal with this problem (see, e.g., Harrison and Stevens, 1976; 
Box and Tiao, 1968; Abraham and Box, 1979; Pefia and Guttman, 1989; Meinhold and Singpurwalla, 1989). 
Recently, Lin and Guttman (1993) have discussed the use of a mixture of normals as a model for the 
distributions of the noise in the observation and/or the state space equations. The use of a mixture of two 
normals in the observation equation leads to sensible results that are easy to implement in the resulting 
recursive scheme, which enjoys a certain optimal property (see Guttman and Pefia, 1985). When indepen- 
dence is assumed in the observation system (i.e., among y{s), the scaled-contaminated model is successfully 
used to handle the spuriosity in the Kalman filter. On the other hand, if the independence is not assumed in 
the observation system, we need to know the function of such relationships among y;'s in order to employ any 
estimation scheme. In this paper, we discuss how to extend the Lin and Guttman (1993) results for the cases 
that y{s are correlated, using Box-Jenkins models as examples of the relationships among y,'s for illustration. 

2. Lin and Guttman filter 

Lin and Guttman's (1993) scheme proceeds as follows. Initially, a preliminary "estimate" of the prior 
behavior of 0 is made, say 0o,--N(~to, Vo). Now suppose that instead of e{s of (1), we have that 
et~cqN(0, C,, 1) + a2N(0, Ct,2), for ai (i = 1, 2), cq + ct2 = 1. At each stage, after observing Y,, we compute the 
updated estimates of the cq's, say ~. {s, and then update the estimation of ~t. 

Starting from time t = 1, we first compute the posterior probabilities, labelled ~1,1 and ~1,2, where ~x, 1 is 
the posterior probability that y i has been generated from N(A 101, C1,1) and • 1,2 is the posterior probability 
that Yl has been generated from N(AI01, C1,2). These are given by 

I 1 ~2(tlMLlll~l/2exp{½(yl A1//11o)(MI,I -1 
= - -  ' - - -  M 1 , 2 ) ( Y l  - -  A d ~ l l o ) }  ~1,1 1 -[- 0~1 \llMi,2llfl 

oq,2 = 1 - 0~1,1, (3) 

where 

and 

/2110 ~--" ~r~l~O,  V l l o  : R 1  q-  ~r~lVo~'~l 

MI,i=CI,I+AIVlloAI ( i=  1,2). 

Then, a collapsing to a single normal of the estimated mixture noise distribution 
+ ~1,2N(0, C1,2) is employed by using moments. This turns out to be, as is easily verified, 

N(0, ~1,1Ca,1 + ~1,2C1.2). 

The likelihood function is then taken to be 

Yl I01~N(AI01, ~1,1C1,1 + cq, 2Cl. 2), 

while the prior for 0a is given by 

01 .-~N(po, R1 + b~l Vo~r~i). 

(4) 

(5) 

al, IN(0, C1,1) 
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Table 1 
The Lin and Guttman robust recursive estimation scheme 

Model  

y, = A,Ot + et, et ~ ~I N( 0 ,  Ct . l )  + ~2N(0,  Ct.2) 

Of = f2tO t_ l + ut, uf ~ N(O, Rt) 

Initial settino 

0o ~ N ( g 0 ,  Vo) and specified cq (c¢2 = 1 - cq) 

Prediction 

#tit-  t = f2f#,_ 1, Vtlf- i = R, + f2 ,V t - 1~¢'2~, Yt = At#,I , -  1 

M, . ,  = C,. 1 + A t ~ l , _ l  A'` and  Mr. 2 = C,. 2 + AtVrlf_IAI 

Compute posterior probabilities 

c¢t, 1 = [ 1 +  c x 2 ( l l M t ' t l [ ~ I / 2 e x p { ½ ( y , - a d ~ t , , _ , ) ' ( M ~ : - M ] [ ~ ) ( y t - A , # , , , _ , ) } ]  - t  

cq \ I I M , . 2 [ I /  

(Xt, 2 = 1 -- at. 1 

M t = ~Xt, lMt ,  1 + o~t, 2 M t .  2 = o~t. lCt. 1 + o~t.2Cf, 2 + AtVtl t_lA'  t 

Updating of  the parameters 

la,=li , l t  1 +  V tit I A ' t M t X ( Y t -  At#,I, 1) 

Vt= Vm_ 1 -- Vt l ,_ ,A' fM[- 'AtVt , ,_  , 

Filter = V,I , ~A',M[ -1 = V,t , ~A',(oe,,IM,,~ + % 2 M , . 2 )  -~ 

It is now easy to see that the posterior of 01, given Yl, is 

(01 lYl) "~N(#I, VI), 

where #t = lqlo + VlloA'IM(I(Yl - A1/ l l lO)  and I:1 = I:11o - VlloA'IM(1AIVtlo, with •11o = ~¢'21/.IO, 

Vllo = R1 + f21Vol21 and M1 = oq,lCl,t  + ~1,2C~,2 + A1VlloA'I. The matrix VlloA'IM( 1 is often referred 
to as the Kalman gain filter (matrix). 

The posterior of 0n I Yl is our prior for the next stage. We continue in this way, and the resulting algorithm 
for proceeding in this manner at time t to (t + 1) is described in Table 1. We next show how such a robust 
recursive estimation can be applied to the cases where the observations are correlated. 

3. Correlated observations 

The assumption that yt's are independent is much too strong in practice. The model in this paper discusses 
cases for which the y:s are not independent. Indeed, we assume that observations y:s are generated from an 
ARMA(p,  q) process in the sense of Box and Jenkins (1976). Note  that our approach can be applied to any 
process, provided the covariance matrix, 2;,, is available. The ARMA (p, q) process is simply a special case for 
illustration. Also, we discuss here only the univariate case. The extension to multivariate cases is straightfor- 
ward. Specifically, the model  we consider can be specified as follows (where we assume that ~bt. i's and qJf.i's are 
within the unit circle). 
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Observat ion equation: 

y~ = atOt + 4t, 

where 

(6) 

p q 

4, - ~ 49,4t-, = e, - ~ ~b,et-,, e t~N(0 ,  a~), et's independent.  (7) 
i=1 i=1 

Sys t em equation: 

Ot ~- (-otOt-1 + ut, u,,-~N(0, aut),2 (8) 

0t-1 = / ~ - 1  + zt-1, z t - l ~ N ( 0 ,  v t - 0 .  (9) 

Eqs. (6) and (7) determine the joint  likelihood function for Yt = (Y, Y,- 1 . . . . .  Yl)', which is that of N(0*, Z,) 
where O* = (at 0,, a t - 10 t -1  . . . . .  a101)'. The var iance-covar iance  matrix of Yt, say 2;t = C o v  (Yt 10,) = Cov(~), 
has a complicated form and is discussed in Box and Jenkins (1976). F rom (8) and (9), we m a y d e d u c e  that  the 
prior for the state of nature at time t, 0t, is N(/~tlt-1 = ogt#t-1, vt,t-~ = a~t + ~tZvt-1). 

We note that the yt's are not  independent  and, for further simplicity, we now consider the case ogt = 1, i.e., 
we make the assumption that 0t = 0 so that 0t = 0 + u ,  Then the posterior for 0t, at time t, can be shown to 
be normal  with mean. #t and variance v ,  with 

a' ,SF 1 
I~, = I~t-  1 + a;Z;-  la~t + v,l,~-~- (Yt~ - I~t- 1at) (10) 

and 

v, = [a;-,S7 la~ + v~,l_ 1] -1 = v,i,_ 1 - v,i ,_l[v,p,_ 1 + ( a ; S 7 1 a , ) ] - l v ,  i , _ l ,  (11) 

and the Kalman  gain filter here is given by 

a; S,- 1 
a;St-  la, + v~, 1_ l '  (12) 

where /~,lt-1 = ~ o , / ~ t - l = P t - 1  and v t l , - i  = a 2 , + v t - 1 .  Note  that 2;, is a t x t  matrix, Yt and a t =  
(at, a , - i  . . . . .  a l ) '  are t x 1 vectors, and all other  quantities are scalars. 

Note :  Eqs. (6), (7) together with (8) imply that y, = (at~, )Ot-1 + a,u, + ~t, so that  we have two random 
components:  4t is an ARMA (p, q) process and ut is normal  with mean 0 and variance a~. This is exactly the 
model  considered by Tiao and Ali (1971), with the interest of that paper focusing on making inference about  
the q~t's, and ~kt's, if at = fl for all t, but  when both y,'s and 0t's are observed. Our  concern here, however, is to 
make inference about  the unobservable Or, when Yt is observed (~,bt's and ~t's are given). 

4. The ARMA (1,1) process 

As a special case of(7), take p = 1 and q = 1, namely, an ARMA (1,1) process, and also assume a~ = a 2, for 
all t. Then, the observat ion equat ion is 

Yt = atOt + 4t, 

with 

C t -  C, b4 t -1  = / 3 t -  Ifiet-1,  / 3 t ~ N ( 0 ,  o2). 
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It then turns out that  (see, e.g., Box and Jenkins, 1976) St = Cov(y,  10) = o ' 2 H ,  where H has (i,j)-element, 
h 0 say, 

(1 - ~2)-1(1 + @2 _ 2{b@) for i = j ,  

hq = (1 ~b2) -'(~b - @)(1 - (h@)~b ' - j ' - l '  for i ytj. 

For  example, when q~ = 0 (i.e., dealing with an MA (1) process), we would then have 

[ 1 + @  2 --@ 0 ... 0 ! ] 

--@ 1 + @  2 --@ 0 

• ~ t  = 0.2 . . . .  ' 

0 0 1 + @  2 @ 

0 0 --I// 1 + @  2 

When @ = 0 (i.e., dealing with an autoregressive AR (1) process), we have 

1 

0-2 ~ 1 

Z', - 1 -- ~2 

From (15), we see that  

1 

~ . t  - 1  ~ .  0 - - 2  

0 

0 

. . .  (~ t - -  1 

. . .  (~t 2 

. . .  1 

Thus, 

and 

- ¢  o . . .  o- 

l + q ~  2 --q5 ... 0 

o ... 1 + ~  ~ - 4 ,  

o ... - 4 ,  1 

a'~,Y,, -1 = 0 - -2 (a t -  4mr- l ,  - c~at + (1 + q~2)a,_l - chat-2 . . . . .  - ~ba3 + (1 + ~b2)a2 

- ~bal, - ~ba2 + aD,  

a , S ; l a  o - 2  ~ t = [ a t ( a t  - -  c ~ a , -  l )  + 

t - 1  

aj[--  ~baj+l + (1 + ~b2)a ] - ~baj- a] + a , ( -  thaz + a , ) ] .  
j = 2  

The above can be substituted in (10-12) to obtain updated parameters. 
In particular, when at -= 1, for all t, we find 

- {P)Yi=2Yi + Yl 
] + ( t - 2 - 5 ~ i - ~ 7 - T  - ~ ' - ~  ' . , = . , _ ,  + ( 1 _   -v,T1 

0-2Vt I t -  1 

v, (1 -- ~b) It(1 - q~) + 2q~]v,i,_ x + a 2' 

(13) 

(14) 

(15) 

(16) 

(17) 

(18) 
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and  have that  the K a l m a n  gain filter is 

v , i , _ , ( 1 - ~ ) [ 1 , 1 -  ~ . . . . .  1 - ~ ,  1] 

(1 - ~b) [ t ( l  - ~b) + 2~b]v,i,_~ + a 2 " 
(19) 

2 is bounded ,  as t becomes  large, the upda ted  As we can see, because  if2 is given and  vii,-1 = a~, + v,_ 
var iance  (18) tends to zero, and  the upda t ed  m e a n  (17) goes to 37 = Y.I= lY i / t .  N o t e  that  the s t anda rd  K a l m a n  
filter set t ing is in t imate ly  related to  the AR (1) process  cons idered  above.  S o m e  s imula t ion  results show that  
similar es t imat ion  will be ob ta ined  via the s t anda rd  K a l m a n  filter a p p r o a c h  and  via (17), (18). 

5.  T h e  A R  ( 2 )  p r o c e s s  

We now cons ider  ano the r  special case of  (2), when  p = 2 and  q = 0, i.e., an AR (2) process  with a 2 - a 2, for 
all t; namely,  

~, ~--- ~ l ~ t - 1  "+ ¢#2~t -2  "+" ~,, e t ' N ( O ,  a2) . 

It follows that  (see, for example,  Box and  Jenkins,  1976) St = C o v ( y t  I 0) = a E K ,  where  K has its ( i , j ) th  
element,  k~j, say, 

1 
a nd  p(.) follows the Y u l e - W a l k e r  equa t ion  of  o rde r  2, namely ,  

p( t )  = C~xp(t - 1) + ¢%p( t  - 2) for all t ~> 2,  

with p(0) = 1 and  p(1) = q~x/(1 - ~b2). It  turns  ou t  that ,  for t ~> 5, 

z~t - 1  ~ 0 . - 2  

1 - ~1 - 62  0 

- ~ ,  1 + ~ - ~1 + ~ - ~ 

- ~ 2  - ~ 1  + ~ 1 ~ 2  l + ~ + ~  - - ~ 1  + ~ 1 ~ 2  

0 - ~2 - ~ ,  + ~ 1 ~ 2  1 + ~ + ~ 

0 0 - -  ~ 2  - -  ~1  + ~ 1 ~ 2  

0 0 0 - ~2 

0 ... 0 0 0 

0 ... 0 0 0 

- ~2 0 0 0 

- ~ + ~  - ~ 2  ... 

. . . .  ¢~ 0 

0 0 . . . . . .  1 ~- ~2 _~_ ~2 -- ~1 ~- ~1~2 -- ~2 

0 o . . . . . .  - ~ 1  + ~1~2 1 + ~ - ~ 1  

0 0 . . . . . .  - ~2 - gq 1 

Hence  

a'tX; -1 = a - a ( a t  - c k l a , - i  - -  rkEa , -2 ,  - -  ~) lat  + (1 + t#2)at_ 1 + (--  q91 + ~bl~z)at -2  - ~b2a,-3 . . . . .  

- (b2as+2 + ( -  dpl + ( 0 1 ~ 2 ) a s + l  + (1 + qg~ + q922)aj + ( -  ~bl + ~tq~2)aj-  1 - ~ 2 a i - 2  . . . . .  

- ~bEa, + ( -  q~l + q~l~b2)a3 + (1 + q92)a2 - gblal, - -  ~b2as - q~la2 + a l ) ,  
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from which we may easily find the explicit form of a ' ,S? la,. In particular, when at - 1, for all t, 

I ' Z /  1 = 0 . -2 (1  --  ¢1  --  ¢ z ) ( 1 ,  (1 --  ¢~) ,  ( l  --  ¢~  --  ¢2 )  . . . . .  (1 --  ¢~  --  ¢2) ,  (1 --  ¢ ,  --  ¢z ) ,  1 --  ¢ , ,  l ) ,  

and 

l t z ~ t - 1 1  = 0 . - 2 (  1 - -  ¢ 1  - -  ¢2)['(t - -  4)(1 - ¢1 - ¢2) + 2(1 - ¢1) + 2]. 

Therefore, we obtain the updated estimates as 

I 2 + 2(1 - -  ¢ 1 )  + ( t -  4) (1  - ¢ ,  - ¢ z )  1 
#, = #,-1 + 2 + 2(1 - ¢O-+-it---  ~ ( 1 ~  ~ [ ~ 5 ~ +  a~-vr~51~--~ ¢ 1  - -  ¢ 2 ) - 1  

[- -- - -¢2)Zj=3Y. i  + ( 1 - ¢ , ) Y 2 +  Yl I x y' + (1 ¢1)Y,- 1 + (1 ¢1 , -2 

L 1 + (1 - -  ¢ 1 )  + (t - -  4 ) (1  - -  Cx --  ¢ 2 )  + (1 - ¢1 )  + 1 - ~/1'-- I J ' 
(21) 

v, = [ [ ( t -  4)(1 - ¢1 - ¢2) + 2(1 - ¢1) + 23(1 - ¢1 - ¢2) °.-2 + v,~,L1] -1 .  (22) 

By taking ¢2 = 0 and e l  = ¢ (an AR(1) process), of course, (21) becomes (17), and (22) becomes (18). In 
non-stationary cases (i.e., the roots of m 2 - ¢1m - ¢2 = 0 are not inside the unit circle), the values of yt's are 
unstable, rendering wild behavior for the Kalman filter estimate as time increases. But some examples carried 
out by the authors based on simulated data show that this approach yields stable estimation for the 
unobservable 0. 

6. I l lus tra t ive  e x a m p l e s  

In this section, we provide two simulated examples with an AR (2) process. The data are simulated so that 
an outlier can be easily inserted. 

E x a m p l e  1. Consider the following stationary AR (2) process with 0 .2 = 3 2, ¢ 1  = 1 ,  ¢ 2  = - -  3 .  

Observation equation." 

y, = Ot + ~,, 

~ , = ¼ ~ t - I  - - , ~ , - 2  + e , ,  e , '~N(0,32).  

System equation: 

0, = 0 + u,, ut,-,N(0, 1). 

The unobservable in this simulation is assigned as 0 = 10. The initial (prior) setting is taken to be 
00~N(12,  12). Table 2 summarizes the performance of the updated mean and variance for the standard 
Kalman filter and the new approach discussed above. Figs. 1 and 2 provide a visual comparison of the 
updated mean and variance, respectively. 

In Fig. 1, where the Yt values and the updated means are plotted, a typical AR (2) pattern in the yt's is shown 
as expected. The standard Kalman filter, however, is influenced by these observations and has a similar 
behavior to the yt's, but closer to the goal 0 = 10. In contrast, by knowing the AR (2) structure beforehand, we 
see that the new filter for the AR (2) process is consistently forecasting in a better fashion. 

In Fig. 2, where the updated variances are plotted, we see that the updated variance for the standard 
Kalman filter soon converges to the value 2.54 which is the root of x = ( 1  + x ) - ( 1  + x )  
(1 + 9 + x)-  1 (1 + x), as discussed in Section 4. The updated variance for the new filter is much smaller than 
that of the standard Kalman filter except the very beginning one which depends heavily on the initial setting; 
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Table 2 
Comparison of two filters (Example 1) 

Mean (#,) Variance (V t) 

t yt #,td P.ew V~ta Vew 

1 8.74 10.07 10.75 5.32 8.03 
2 6.11 8.44 9.33 3.71 0.08 
3 10.04 8.99 9.34 3.09 0.26 
4 11.52 9.78 9.30 2.81 0.40 
5 14.07 11.06 9.80 2.68 0.53 
6 15.12 12.24 10.53 2.61 0.63 
7 6.35 10.55 10.55 2.58 0.73 
8 4.66 8.88 10.45 2.56 0.83 
9 15.88 10.86 10.69 2.55 0.92 

10 20.01 13.45 10.96 2.55 1.00 
11 7.07 11.65 10.87 2.54 1.08 
12 - 2.69 7.59 10.54 2.54 1.15 
13 11.26 8.63 10.56 2.54 1.22 
14 20.66 12.03 10.57 2.54 1.29 
15 6.46 10.46 10.30 2.54 1.36 
16 1.12 7.82 10.25 2.54 1.42 
17 12.02 9.01 10.29 2.54 1.48 
18 24.72 13.44 10.56 2.54 1.55 
19 10.41 12.59 10.49 2.54 1.60 
20 - 5.28 7.54 10.32 2.54 1.66 
21 - 1.59 4.96 10.05 2.54 1.72 
22 17.83 8.60 10.01 2.54 1.77 
23 23.56 12.82 10.09 2.54 1.82 
24 4.68 10.52 10.01 2.54 1.88 
25 - 1.50 7.13 10.00 2.54 1.93 
26 11.29 8.30 10.01 2.54 1.98 
27 17.24 10.82 9.97 2.54 2.03 
28 6.10 9.49 9.85 2.54 2.07 
29 6.42 8.62 9.92 2.54 2.12 
30 18.76 11.49 10.07 2.54 2.17 

The unobservable 0 = 10. 

howeve r ,  it is inc reas ing  as the  t ime  t increases.  Th is  is s imply  because  the  St  m a t r i x  is e x p a n d i n g  at each  s tage  

resu l t ing  in a la rger  u p d a t e d  va r i ance  a t  each  stage. If  we c o n s t r a i n  the  Zt  m a t r i x  to be the  s a m e  size for  all t, 

say 3 x 3 for  the  A R  (2) case  (see the  nex t  example) ,  the  u p d a t e d  va r i ances  tu rn  o u t  to  be cons i s t en t ly  small .  

Th is  p r o c e d u r e  gives rise to  a fil ter tha t  is r o b u s t  to out l ie rs  in genera l ,  as is to  be d iscussed  below.  

I f  we are  c o n c e r n e d  wi th  the  poss ib i l i ty  o f  spur iousness  tha t  m a y  cause  out l iers ,  we rep lace  the  a s s u m p t i o n  

~ t ~ N ( 0 ,  a 2) in (7) by 

e t ' ~ l N ( 0 ,  a,,1)2 + ~2N(0,  a22) 

Then ,  af ter  e v a l u a t i n g  the  p o s t e r i o r  p robab i l i t i e s  "t. ~ and  ~t,2 = 1 - ~,, ~, we co l lapse  

~t, 1N(0, 0.21) .3i_ ~xt,2N(0 ' 2 0"t, 2) t, 
to  

N(0 ,  ~t,l(rt21 + ~t,2tr~2), 
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Fig. 1. Comparison plot for Example 1 
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Fig. 2. Comparison of variance in Example 1 
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and then set ctt, xat21 + ctt, 2 at 22 = tr2, and apply the methodology of the previous section to the processes 
(10)-(11). For the AR (2) process, this becomes 

m , . ,  L1  + q92A(1 - ~ 2 )  2 - qgl 2 + Vttt 1,  

= O't, 2 

L 1  + ,¢,2 I (1 - - ,¢4 + z,,,, 1.  
(23) 

The updated scheme in (10)-(12) involves all observations up to time t. Thus, when an outlying 
observation arises, this updated method can be unstable as in the standard Kalman filter. To handle this, we 
reconstruct (10)-(12), using only the last (p + 1) observations, rather than all t, for we are involved with an 
AR(p) process, so that Yt is only associated with Yt-1 . . . . .  Yt-p. As an example, we do the above for an AR(2) 
process. The S* matrix is 3 x3  and is equal to A*Cov(~,)A *-1 where .4* now is the 3 13  left-upper 
submatrix of the A matrix used previously. Also, y* = (Yt-2,  Y t - l ,  Yt)', and ~ta*= (a,-2,  a t -1 ,  at)'. The 
formulae (10)-(12) are then applied. When such a modified scheme was used in Example 1, we obtain 
a similar result for the updated mean but with consistently smaller updated variance. 

Example 2. We now reconsider Example 1 (where yt's are not independent and are generated via an AR(2) 
process) by replacing Yl 1 by 65, clearly an outlier. Table 3 summarizes the performance of the updated mean 
and variance for the standard Kalman filter and the new (modified) approach. Figs. 3 and 4 provide a visual 
comparison of the updated mean and variance, respectively. 

The Yt values and the updated means are plotted in Fig. 3. We see that the standard Kalman filter shows 
that for this AR (2) pattern, the outlier yl 1 influences this standard filter unduly. The new filter, however, 
smooths out both effects, and consistently close to the target 0 = 10. The value ]213 from the new approach 
shows that the outlier Yll also influences the new approach but with much smaller effect and not 
immediately. 

The updated variances, plotted in Fig. 4, confirm our discussion that the updated variance of the new 
approach is not increasing but consistently small, except, of course, at the very beginning, t = 1, which 
depends heavily upon the initial setting Vo. The updated variance for the standard Kalman filter is, of course, 
identical to Fig. 2 (Example 1) because it is independent of the y:s. 

The last column of Table 3 shows the posterior probability, ~t, 1, for Yt being generated from the "good 
run". Note that apart from ~11.1 = 0 (as expected), there are some other observations that are classified as 
outlying observations (e.g., Y2o), using ~t, 2 = 1 - ctt, 1. 

Note." In general, the likelihood function for the new observation Yt is determined as follows. We have that 
Yt atOt + ~t, and ¢t ~,~=l(~i~t-i •t ~q=l~Jil~t_i where ,~t~ott, lN(0 ,  o "2 t. 1) + ~Xt. 2 N ( 0 ,  2 . . . .  at, E). Then the 
likelihood based on Yt is 

N(0,, ¢o 1~) with probability ct,, 1, 

N(0 ,  ¢02)) with probability ~,,2 (=  1 - ~t.2), 

where y~) = C o v  ( Yt, Y,- o) = Var (Y,) evaluated via the assumption of stationarity. Thus, we have 

Mt.i  = 7t~ ) + vt,,_ 1. (24) 
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Table 3 
Comparison of two filters (Example 2) 

Mean (/~,) Variance (V,) 

t Yt ~sld #new Vtd Few Ctt, 1 

1 8.74 10.07 10.32 5.32 6.31 0.985 
2 6.11 8.44 9.43 3.71 0.06 0.984 
3 10.04 8.99 9.43 3.09 0.21 0.989 
4 11.52 9.78 9.29 2.81 0.21 0.988 
5 14.07 11.06 9.91 2.68 0.20 0.983 
6 15.12 12.24 10.65 2.61 0.20 0.981 
7 6.35 10.55 10.54 2.58 0.20 0.984 
8 4.66 8.88 10.40 2.56 0.19 0.978 
9 15.88 10.86 10.55 2.55 0.19 0.980 

10 20.01 13.45 10.77 2.55 0.13 0.931 
11 65.00 28.02 11.48 2.54 0.05 0.000 
12 - 2.69 19.34 11.43 2.54 0.04 0.542 
13 11.26 17.06 16.40 2.54 0.17 0.989 
14 20.66 18.08 15.26 2.54 0.18 0.984 
15 6.46 14.80 14.36 2.54 0.15 0.946 
16 1.12 10.93 14.29 2.54 0.07 0.677 
17 12.02 11.24 13.55 2.54 0.18 0.988 
18 24.72 15.05 13.58 2.54 0.08 0.862 
19 10.41 13.74 12.85 2.54 0.19 0.987 
20 - 5.28 8.37 12.78 2.54 0.05 0.071 
21 - 1.59 5.56 12.51 2.54 0.05 0.511 
22 17.83 9.02 11.99 2.54 0.15 0.980 
23 23.56 13.13 12.17 2.54 0.07 0.837 
24 4.68 10.74 11.92 2.54 0.15 0.965 
25 - 1.50 7.28 11.77 2.54 0.05 0.654 
26 11.29 8.42 11.29 2.54 0.19 0.989 
27 17.24 10.91 10.90 2.54 0.17 0.977 
28 6.10 9.55 10.42 2.54 0.20 0.983 
29 6.42 8.67 10.72 2.54 0.20 0.985 
30 18.76 11.52 10.92 2.54 0.16 0.958 

The unobservable 0 = 10. 

In  the  A R  (1) p roce s s ,  for  e x a m p l e ,  th is  is 

0.2 2 
,, 1 at, 2 ( 2 5 )  

M t , , - l _ ~ b + V t l , _ ,  a n d  M t , 2 - 1 - Z ~ + V t l t _  1 . 

O n c e  we co l l ap se  the  m i x t u r e  l i k e l i h o o d  func t i on ,  the  a s s u m p t i o n  o f  h o m o g e n e i t y  o f  v a r i a n c e  is lost ,  

c a u s i n g  n o n - s t a t i o n a r i t y .  T h e  exac t  f o r m  o f  St is c o m p l i c a t e d .  H o w e v e r ,  c o m p u t a t i o n a l l y ,  for  a n y  

A R M A  (p, q) p roces s ,  wr i t e  

w i th  a p p r o p r i a t e  va lues  in the  s q u a r e  m a t r i c e s  A a n d  B. T h e n  ~t = A -  1B~, leads  to  

s, = C o v  (3', I 0,) = C o v  (~,) = B-  *a Cov (~,) (B- *,4)- *. 
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For the AR (2) case, we have B = L and 

A = 

cl 0 0 0 ... 0 0 O" 

¢2 C3 0 0 ... 0 0 0 

-gb2 -qS1 1 0 ... 0 0 0 

0 -gb2 --~bl 1 

0 0 0 0 -~bl  1 0 

0 0 0 0 - ~ 2  - ¢ 1  1 

where the choice of c~'s depends upon the initial assumption. One popular approach is to take cl = c3 = 1, 
and c2 = - qgt; namely, assuming ~_ 1 = 4o = 0. Here, however, to be consistent with the previous example, 
we take 

[ 1 + gb2 [(1 2 -11/2 
~1 L ~  - ' ~ )~ -  

= ~ ] J  , 

.~ [1+~b271/2 
c 2 = - ~ , 1 L ~  j , 

(73 = r l  _ ( / ~ 2 ] 1 / 2  

as used in Example 1. This is derived via solving the inverse matrix of St in (20), assuming stationarity. Also, 
note that Cov (£,) is a diagonal matrix with its diagonal elements tr2's (these tr2's are not necessarily the same). 

7. Remarks 

In this paper, we apply the Lin and Guttman robust filter to the correlated observations when the 
correlation structure is known. We use the popular ARMA(p, q) structure to illustrate our core idea. By 
taking the advantage of the given correlation structure, it is shown that such a scheme is robust to outliers. 
Recently, there have been several articles on Kalman filtering with correlated data, most of these Signal 
Processing, where the phenomenon is referred to as "colored noise". See, for example, Balakrishnan (1984), 
Anderson and Moore (1979), and Gibson et al. (1991). These methods mainly deal with the correlation 
structure, but not with outliers. Thus, as expected, they do not perform well when the outliers are present. 

When the correlation structure is not precisely known, the outlier problem is very difficult. The perfor- 
mance of the Lin and Gut tman filter will depend on the "distance" between the correlation matrix used and 
the "true" correlation matrix. The former is generally calculated from some reference signal, while the later is 
unknown. 
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