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Abstract. Data from field operations of a system is often used to estimate the reliability of components. Under ideal
circumstances, this system field data contains the time to failure along with information on the exact component
responsible for the system failure. However, in many cases, the exact component causing the failure of the system
cannot be identified, and is considered to be masked. Previously developed models for estimation of component
reliability from masked system life data have been based upon the assumption that masking occurs independently
of the true cause of system failure. In this paper we develop a Bayesian methodology for estimating component
reliabilities from masked system life data when the probability of masking is dependent upon the true cause of

system failure. The Bayesian approach is illustrated for the case of a two-component system of exponentially
distributed components.
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1. Imtroduction

Reliability assessments for components are often based upon the collection of field data
from the actual operation of systems. Under ideal circumstances, this system field data
contains the time to failure along with information on the exact component responsible for
the system failure. However, in many cases, the exact component causing the failure of
system cannot be identificd. Instead, it may only be known that the failing component is one
of a subset of components that are considered potentially responsible for the failure. When
this occurs, the cause of failure is masked. Masking can occur in field data for a variety of
reasons such as lack of proper diagnostic equipment, cost and time constraints associated
with failure analysis, recording errors, and the destructive nature of certain ¢
failures that make exact diagnosis impossible.

A varicty of papers have been written that address the problem of estimating the reliability
of components from masked system life data. Under the simplifying assumption that com-
ponents have exponentially distributed life, Miyakawa (1984) considers a two-component
series system where he derives closed-form expressions for the MLEs when some of the
sample observations are masked. Under the same exponential assumption, Usher and Hodg-
son (1988) extend Miyakawa’s resulis to a three-component system. Doganaksoy (1991)
presents various means of finding confidence intervals for the three-component, exponen-

tial life case. For biologically related examples of masked data analysis, see Dinse (1982,
1986) and Gross (1970).

omponent
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These previously developed models are based upon the assumption that masking occurs
independently of the true cause of system failure. That is, the probability of observing a
particular masked set does not depend upon which component failed in the system. However,
in some cases, this assumption may not hold. For instance, consider the case of a circuit

card with two components where, under certain environmental conditions, the failure of

cither component can result in a fire and complete destruction of the circuit card. If the card
is destroyed, then the cause of failure cannot be identified. Dependence occurs when the
probability of the card’s destruction differs based upon which component fails. Moreover
this probability of destruction given that a particular component failed may depend on time
but it seems reasonable to assume that the ratio of these masking probabilities will not be
a function of time.

Guess, Usher, and Hodgson (1991) first described the relevance of the independence
assumption and its effect on the development of the likelihood function. Lin and Guess
(1994) investigate the effect of dependency between the masking set and the true cause of
failure. They suggest a simple means of checking for this independence or dependence via
subsampling for the case of exponentially distributed components.

In this paper we develop a Bayesian methodology for estimating component reliability
from masked system life data when the probability of masking is dependent upon the true
" cause of failure. The Bayesian approach is preferable here because in most engineering
settings there is considerable prior knowledge and expertise regarding the reliability of the
components that are under study. Thus, this approach allows for the explicit consideration
of this prior knowledge in the estimation process. Here we use noninformative priors to
deal with the case that only weak prior information is available. This will provide a bascline
to look at the effect of more informative priors. Our procedure is illustrated for the case of

a two-component system where component lives are exponentially distributed. We assume
that nonmasked failures are correctly classified.

2. The Effect of Dependent Masking

Let T; be the random life for the ith system where i = 1, ..., n in a sample of n systems

each consisting of J components in series. Let T;; be the random life of the jth component
in the ith system where j = 1, ..., J. Note that

Ti = min(Tjy, ..., Tiy)

fori = 1,...,n. We assume that the T;;’s are mdependenl (The dependency among the
lifetimes of the components could be modeled using a dependent multivariate distribution
and a competing risk model. See, for example, Barlow and Proschan, 1981; Basu and
Klein, 1982.) For each fixed j, the T, j»-++» Tnj would represent a sample of size n from
component j’s life distribution F;.

We require the very mild condition that F; has a density f, indexed by a parameter
vector ¢;. For each j, a different number of parameters in 6; is allowed if needed. Let
F (t) = 1 — Fj(t) be the reliability of component j at time ¢. Let K; be the index of

component causing the failure of system i. Due to the life distribution being continuous,
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the cause of failure K; is unique. Note that K; is a random variable and that K; may or may
not be observed, i.e., the component causing system failure may be masked. Before the
sample is taken there is the minimum random subset, M;, of components known to contain
the true cause of failure of system 7. In short, K; € M; and the set M; is minimum.

After the sample data is obtained, we have M; = §; C {1,2,..., J} and T; = 1; wherc
i =1,...,n. Note that as 1; is the realized sample value of T;, so is S; the realized sample
sct of M;. I S; = {j} then we know that K; = j, and hence, the causc of failure is not
masked. If, for cxample, S; = (1,2}, we have that K; € §;, but the true valuc of K; is
masked. The obscrved data here is (f;. Sy), ..., (t,, S,). The full likelihood for this data is

n J
Lp= n Z |:fj({i) n Foti) - P(M; =8 | Ty = i, Ki = j{“ : M

i=1 \jes; s=ls#j

Note that the term f;(;) ﬂs:,.#j F.(1;) is from system i failing at time #; due to the cause
J (component j).

The expression P(M; = S; | T; = t;, K; = j) represents the conditional probability that
the observed minimum random subset is S; given that system i failed at time ¢; and the
true cause was component j. For S; = {j}, this expression is the conditional probability
that the cause of failure is known. For S; containing more than j, it yields the conditional
probability of masking with the set S;. For the observation (f;, 5;), we sum over all possible
failure causes j in S;. The product is then over each of the observations to yield the full
likelihood L .

For industrial problems, masking typically occurs due to constraints of time and the ex-
pense of failure analysis. Schedules often dictate that compete failure analysis (to determine
the true cause of failure) be curtailed. In such settings it seems reasonable to assume, for
fixed j' € §; that

PMi=8|T,=t,Ki=j)=PM; =8 | Ty =t;,K; = j)forallj € S;. (2)

We call these masking probabilities independent over the causes j € S;. Furthermore, if

PM; = S; | T; = t;, K; = j) does not dcpend on the life distribution parameters, the
reduced partial likelihood is

n J
LR=H Z(f;(l,-) [1 F}(t.-))l. )

jes; s=1.5#]

Maximizing L g with respect to the life parameters is now equivalent to using L. This is
similar to the usual derivation of a time censored (and not masked) data partial likelihood.
For further discussion of this situation, see Reiser et al. (1995).

In this paper, we replace the assumption (2) by, forany j € §;,
PM; =S8 |T; =t;,Ki = j) £ P(M; = S; | T; = 1;, K; = j') for some j' € §;. 4)

and provide a Bayesian approach to analyze such a situation. These masking probabilities
are, of course, dependent on S;. If we think of the circuit card example discussed in the
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Introduction, it seems entirely natural to assume proportional probabilities for J.Jj €S
and j # j' or more formally that

PMi=S8|Ti=t;,Ki=j)=cxPM; =8 |T,=t;,K; = j') (5)

where ¢ > 0 is implicitly a function of j and j’, but not of 1;. Note that for ¢ # 1 there is
dependent masking over S;, while for ¢ = 1, the special case of independent masking over

Siof (2) holds. Forc =0and P(M; = S; | T, =1;,K; = j) > 0a very extreme form of

dependent masking would occur.

3. Component Reliability

Consider a two-component system, J = 2 with n systems put on test. Let n; and n; be the
number of system failures for which the failure cause is known to be component 1 and 2
respectively, while 1, denotes the number of failed systems where the cause is not directly
known. We shall illustrate the general Bayesian approach using the exponential distribution
for component lifetimes. The method can be extended to other distributions, although the
computation will often be complicated.

Set

PMM; =} | Ti=1,Ki=1) = pi(t;
PM; =12}ITi =4, Ki =2) = pa(ti)
PM; ={1L2}|Ti =1, Ki = 1) = p3(t})
PMi = (L) T;=1,K;=2) = pa(ti).

Following the discussion in Section 2, we denote ¢ = pa(ti)/ pa(t;). Note that ¢ is not a
function of t;. Then (1) reduces to

Lgr(c) = A'A3 (A + Agc)Mze=RitAT | ©

where T = U, #; isthe total lifetime. Using the standard noninformative priorw (A, Ay)
1/A14; results in the posterior

PO, Ay | e data) = ke TOHm=tzm=ly gy
nyy

= ke TOrHm=lym-i {Z ( "J‘,Z ) A{(kzc)""'j}

j=0

k e~ Thi+i) {i ( nl'Z ) A';|+i—|A;ﬂ-mz-]’-—lcnnz*i} 0)
J

=0

- - n - . N ,
where k™! = 7" ;go ( ]'.2 ) "Iy 4+ IC (g + 0y — ])} is obtained through
integration.
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Remark. If strong prior information on the A; is available it will frequently be possible
to model this by use of a gamma prior. In this situation the results of this paper need to
be slightly modified and more complex notation needs to be introduced. For simplicity we
work with the noninformative prior.

For ¢ given, we can assume that 0 < ¢ < 1, for otherwise we simply relabel components
1 and 2 as 2 and | respectively. The marginal posteriors can be derived by integration in
(7), to be

p(Ay | ¢, data)

§oNT :‘i ( n}z ) el Ty +nip—j)

T!l;+"|1-j
=0
A n ma—jymatma—j—t L0+ j)
pry | e, data) = ke ™' Z;( ]‘.2 D VR e 8

Figure 1 plots such marginal posteriors for some selected values of the data (1, ny, nyp, T) =
(3,3,9,1),(9,9,3.1),(1,9,3, Dand (9, 1,3, 1) as given in Lin and Guess (1994). Note
from Figure | that the posteriors can be seriously affected by changes in c.

The posterior means can be evaluated as

E(\ | ¢, data)

ki‘i i o Fing+np—jHrm+j+1)
: j B Tn2+n|2-j T'l|+j+|
j=

I

A2\ o T +nip— Hrng+j+1)
k Z ( H ) " ! Tn+l
j=0 ]

E(), | ¢, data)

ki‘i(m.z)Cn,,_,-r("er"lz*j*FI)F("H-j) ©)
i J

n+1
j=0 . T

Figure 2 plots these posterior means for the cases in Figure 1. The results obtained here are
consistent with the MLE approach given in Lin and Guess (1994) and indicate that although
in certain cases the posterior ineans can be robust with respect to ¢ (see the lower graphs
in Figure 2), there are other cases where the choice of ¢ is very influential (see the upper
graphs in Figure 2). It appears difficult to characterize these different situations which are
highly data dependent.

For known ¢, inference on the A; follows from (8) as we have shown. In general, however,
¢ will be an unknown value (0 < ¢ < 00). This situation is not discussed by Lin and Guess
(1994). Inmany cases, based on our knowledge of the components, we should know whether
¢ < 1(ie., pa(t) > pa(t)) or ¢ > 1 (i.e., p3(t;) < pa(t;)). Consider the case where prior
information includes the knowledge that ¢ < 1. In the absence of further knowledge on
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¢ one general approach would be to assume a uniform prior, U (0, 1), for ¢. The resulting
posterior is then

Xy, g | d;zta)

I

nyy 1
B n . i .
k*e (M+kz)T§ :( 12 A';’” lkgzﬁ'u j—1 i de
" J
j=0

0

2

= k*e~ 2T E : ("12 }Lll'l'H"")\lziz-wnz“f“l I
£ J
j=0

—_— 10
Niy — / -+ | ( )
where
T - ('112) Cn + PLon +mp = j)
™ =0 J np—j+1
Therefore, the marginal posteriors can be shown (o be
J) ny+j~—1 .
— praMT m2\ A F(nz +n13 — j)
]7(}~l ldata) = k*e ;( _] )"‘2 ———_’+] Tratnn—j ,
ny2 A")‘*‘"Iz"j“] r(" +J)
A ldata) = kte Ty (M) 22 ik Y
p(Ay | data) e j;(} PSS R TR, (i

Figure 3 plots these marginal posteriors for the cases in Figure 1. Note that for the first two
graphs, the posteriors indicate that 15 is less than A, even though the data are symmeltrical
_with respect to the components. This is a consequence of the prior assumption that c<|
which means that a masked case is more likely to be a result of a failure in Component 1.
Results paralleling (10) and (11) can be obtained for pa(t;) > pa(ty), ie, ¢ > 1, by
switching the labels on the components.
From (11), the posterior means can be obtained as:

iy n|2) r("2+"12“j)r("l+j+])
E(\ | data) = k* :
(M1 | data) ,2,_;( j (mz — j + DT+
nyy M —1
EQ., | data) = k*Z(m-2) T(n +J)F(n.2 +ny ‘J +1) (12)
=\ (i — j+ DT+

Furthermore, posterior probability bounds on the A; can be obtained from (11). We are

generally interested in an upper bound on A;. Consequently, an upper | — « bound can be
obtained by solving for u in

/ pi | dataydr; = | - a.
0

This equation can be solved numerically by iteration.
For the more general case where it is unknown whether pa(t;) is greater or less than ps(t;),
it seems reasonable to give a prior weight of 1/2 to both these cases resulting in a posterior
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which is proportional to

N2
e~ +anT Z ( ’l|.2 ) A'|H+i“|)"2’z+"|2—j"" I
j=0 J

H|2—-j+|
A+A)T"n 2 mtng—j~1y nytj-i !
+ et i YA WL (13)
J_;o(j )' 2 ma—j+1

The first expression in (13) comes directly from (10), while the second one is due to
switching component labels in (10). After some algebra, we can rewrite (13) as

K & nyp+2 . .
P Ay | data) = 7‘;;[( i g Tm+j)

83 Tiny+nip— j)U(ny + Hng +nyp — j)] (14)

where g(x | a; b) = (a"/ ' (b))xP—'e0x,
It follows immediately that

LAy +2
K- = Tz( i )r(n, + )My + nyy — )
noj=0

and that the marginal posteriors are

fi

K +2 . . .
p(Ay | data) T > ( "}2+ 1 )g()»l I Tin+ DUy + DUy +nip = j) - (15)

j=0

]

K % (n,42 . . .
p(A, | data) T }:;( 1[2+ | )g(}tz [ Ting+npp — oy + Dy +nyp — )
]:

which have posterior means

K& /p +2\n +j . :
LS ( _;2+l )_Lf_fr(n,+])l‘(rlz+n|z—1)

I

E(A, | data)

1
_ nyy+ 2 . .
o i=o( J+1 )r("l +j+ Dl 4np— )

and

K & (ny+2 .
E(X, | data) = Tarl Z e Py + Py +npp —j+1).
=0\

Figure 4 plots these marginal posteriors and means for the cases on Figure 1. Probability
bounds can be computed numerically as discussed previously. For the first two ¢
posteriors for A; and A, coincide due to the symmetry of the data. This contrasts
corresponding results in Figure 3 discussed above.

ases, the
with the
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4. System Reliability

For any specific system G, the failure time of component j, as mentioned above, is T6;.
The reliability of system G at time 1 is

P(Tg > t) = P(Tg; > 1t,

— e—(M +Aa)

forall j=1,...,J)
= e = RS0, where § = A + A,. (16)

It is desirable to do inference on 8, for we can then carry out inference on the system
reliability very easily. Now the posterior distribution for & can also be derived from (6) as
follows. Consider the transformation

§ = M +A

Yy =X
in Equation (6), which results in

PG,y | c,data) = ke (5 — y)"~'y" 7 5 — y(1 - )" )
Thus,

E
p(8|c,data) = / p@, v | c,data)dy
0
—_ ke—5T6n|+nz+n|1—-l(] *-C)””

LT w

By replacing v = y /48, we have

1 "y
p@ | c, data) = ke~Tgm+mtnu-t(q _ c)"”/ (1 — yym—tym-! (——l——) dv.
0
Now, expand

I —c¢
1 ny ¢ np
(l — - v) [(l—:) + (1 - v)] , we obtain

n
p(a ‘ c, data) — ke—6T5n|+ng+n|2-—l i ni2 ) (l _ C)fcnxz-l
1=0 f

I

i
x/ v =yl gy
0

= ke—5T6n|+n2+n|2-I "i np!
prs f!(ll[z — f)!
(g =Dy 41 = 1)

X (1 —¢)'¢c"™
(g +ny+1 -1
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The summation is o known quantitics, so that 287 follows a )(22("H ny-tnyyy distribution.
Note that the marginal posterior distribution for § is independent of ¢. In fact, it immedi-

ately follows that E(8 | data) = (ny+ny+ny3)/T = n/ T, and atwo-sided 1 — o posterior
probability interval for § is given by

1 1
{-2—7-_)(22";0/2' ”2‘77)(22n;|—a/2] . (19)

It is intuitively clear that for inference on the system reliability, both the type (dependent
or independent) and amount of masking are irrelevant.

5. Concluding Remarks

This paper illustrates the use of a Bayesian approach for inference on masked system
lifetime data. In many situations, the system life data is right censored. It can readily be
seen that under censoring the results of Sections 3 and 4 still hold with the change that
n = ny + ny + nyy is now the total number of observed systems which are not censored
rather than the total number on test, and T is the total time on test.

Other possible extensions are currently under investigation. These include more compli-
cated: (1)systems with J (> 3) components, (2) life distributions and (3) prior distributions.
Although a purely numerical approach is always in principle possible, it can be difficult to
implement while the feasibility of an analytical solution is unclear. For example, consider
a three-component system in general as follows:

PM; = {1,2,3)|Ti =t;, Ki = 1) = p(t)
PM; = (1,23} T =1, Ki =2) = c;pi(t)
PM; = {LL23)|Ti =1, Ki=3)=cp1(1)
PM; = (1,2} T, =1;, Ki = 1) = pa(ty)
PM; = (1,2J1 T =1, K; =2) =dp,(1;)
P(M; = (1,3} Ti =1, Ki = 1) = ps(t;)
P(M; = (1,3}| T, = t;, Ki = 3) = epa(t;)
P(M; = {2,3) | Ti = t;, K; =2) = pa(t;)
P(M; = (2,3} | T =t;, Ki =3) = fpa(t;)
PMi = (1} Ti =1, Ki = 1) = ps(t;)
PM; = (I T =1, K =2) = pg(t,)

P(Mi = B3} Ti = ti, Ki = 3) = pa(t;).

Unless additional prior knowledge is available, the straightforward extension presents ob-
vious difficulties.



