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Taguchi's product-array design consists of two portions: an inner array containing the design factors
and an outer array containing noise factors. The function of the outer array is very different from that
of the inner array, however. The outer array is most likely to sample or simulate the distribution of the
noise factors, while the inner array is designated to facilitate the optimization. Since performance for each
inner point is evaluated via its corresponding outer array points, the outer array plays an important role
in robust design. We show here that the optimal representative point method via quantizer is superior to
using other methods (including orthogonal array) to design outer array points. All optimal representative
points are tabulated for practical use. The usage of these tables is demonstrated by examples.

Introduction

HEN a designed product or manufacturing pro-
W cess is put to mass production, there are in-
evitably some uncontrollable or hard-to-control vari-
ables which affect the quality of the product. These
variables are called noise variables. Taguchi (1987)
emphasizes that statistical testing of a product or
process should be carried out at the design stage. He
advocates moving the investigation of the impact of
noise variables upstream in the design stage, instead
of downstream in the production stage. One novel
idea of Taguchi is the product-array design.

A product-array design consists of two parts: the
inner array for controllable design variables and the
outer array for uncontrollable noise variables. All
the product configurations being experimented on
are subject to combinations of noise variables which
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degrade or deviate the product performance. Data
analysis of the experiment reveals the nominal set-
tings for the design variables at which the impact
of noise variables is minimized. For the inner array
design, an orthogonal array (essentially a fractional
factorial) is commonly prescribed because of its econ-
omy and efficiency. Fractional factorials have been
used for many years, certainly since Yates (1935).

The objective of the outer array is to efficiently
draw information about the joint distribution of noise
variables, rather than to compare levels of the vari-
ables as in an inner array. For examples, to assess
the polysilicon deposition process for silicon wafers,
as in Phadke (1989), the location factor as top, bot-
tom and center within a wafer, are selected as the
outer array factors. In a case study for the Ina Tile
company (Taguchi (1986)) to aid uniform expansion
of tile clay, the outer array factors are at different
locations inside the baking kiln. To assess the uni-
formity of thickness in a protective paint coating over
the back of a glass mirror, an outer array factor con-
sists of different spots scattered over the back of the
glass. Box and Jones (1992) found the best recipe
for a new cake mix that would make the taste of the
baked cake insensitive to the outer array factors of
baking temperature and baking time. In Taguchi’s
(1987, p. 98) Wheatstone bridge example, the outer
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array factors represent the component variation (see
Example 4). In all of the above situations, the noise
variables are either impractical to identify or impos-
sible to control in the production stage.

If the goal of robust design is to estimate the re-
sponse distribution in terms of the inner array vari-
ables, the performance measure for each inner ar-
ray point is critical. Such a performance measure
is mostly evaluated through the outer array points.
Thus the outer array design plays an important role
in robust design. With an orthogonal array (OA)
it is useful to investigate and compare relatively few
levels of the factors. But as a sampling plan an or-
thogonal array is not efficient, particularly in design-
ing outer array points. The outer array design that
is based on an orthogonal array does not take ad-
vantage of the information available from the noise
distribution. Such distribution information is very
likely available from the supplier because this infor-
mation is typically used to rate and classify compo-
nents. The outer array design should take into ac-
count the distribution of the noise factors to achieve
a better estimate of variation.

Recently, Wang, Fang, and Lin (1992) introduce
the concept of a quantizer to design representative
points for the given distribution in which optimal
representative points partition the noise space ac-
cording to the variability of the noise variables using
a sample that can reproduce the underlying distri-
bution with little loss of fidelity. They demonstrate
that the use of the optimal representative point to
design the outer array points has certain advantages
over other approaches. In this paper, we will ilius-
trate how to apply this new approach to real prob-
lems through the use of examples. A brief description
of the optimality criterion and construction method
are given below. The reader is referred to Wang,
Fang, and Lin (1992) for its detailed derivation and
theoretical implications.

Optimality Criterion and
Construction Algorithm

Let E be the s-dimensional domain of a random
variable N, and F(N) be the cumulative distribution
function (cdf) of N over E. A k-run quantizer @ =
(N®),U) of N consists of
1. aset of k output vectors N¥) = (N, No, ..., Ni);
2. a partition U = (51,8.,...,5) of the s-

dimensional region = with k disjoint and exhaus-

tive regions; and
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3. a mapping @ : £ — U defined by Q(N) = N, if
N € S;.

A quantizer defines a discrete random variable in
= and approximates F(N) by its empirical cdf. The
output vector {N;,1 < i < k} is called the repre-
sentative points. Note that to design representative
points is equivalent to finding an “optimal” quantizer
when k is prespecified.

The I -discrepancy of @, relative to F, is defined
as

1/p
DB(k) = DB(k;Q) = [ [ 1Rt - Pt n”dt}

where t = (t1,ta,...,t5)7, Fo(t) = n(t; Q)/k is the
empirical cdf of @, and n(t, ) denotes the num-
ber of points N; = (Nji,...,N;s)T in Q satisfying
Ny <ty for I = 1,...,s. The discrepancy is the
Kolmogrov-Smirnov distance between the empirical
distribution of @} and the uniform distribution over
C*. The l-discrepancy is shortened to “discrep-
ancy”, and for the case F with uniform cdf on the
s-dimensional unit hypercube = = C* = [0,1]" is de-
noted by D(k; Q). A discrepancy optimal quantizer
Q* satisfies

D(k; Q") = inf D(k; Q).

Discrepancy optimal representative points are useful
for approximating performance measure of integral
type (such as variance).

Construction Algorithm

For s = 1 dimension, it can be shown that the
discrepancy optimal quantizer in [0,1], Q*, is

. (21 .
Q —{ ok ,2—1,2,...,k}.

In this case, D(k; Q") = (2k)~'. The discrepancy of
the optimal quantizer relative to any cdf F(N) is

Q= {F‘l (222;1>, z:1,2,...,k}.

The case of the univariate normal cdf has been ex-
tensively used in the Princeton study for robustness
(see Andrews, Bickel, Hampel, Huber, Rogers, and
Tukey (1972)).

For a higher dimension (s > 2), we adapt the good
lattice points (GLP) method proposed by Wang and
Fang (1981). Let (k; h1,...,hs) be an integer vector
satisfying 1 = hy < he < --- < hg. Let
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qi; — {Zh] -1 (modk)} +1
and
Tij = (2(],‘]‘ — 1)(2k)_1

fori=1,...,kand j=1,...,s. Theset P = {x; =
(mil,...,mis)T, i=1,...,s} is called lattice points
of the generating vector (k; h1, ..., h,) and is used to
design the representative points in C*.

A large-sample justification of GLP and its ex-
istence was given in Korobov (1959). It is also
proved that the GLP has the discrepancy D(k) =
O(k~(log k)* log log k) which is very close to the the-
oretical bounds (see Wang, Fang, and Lin (1992)).
The GLP method is available for most practical val-
ues of k. However, theoretical limitation results in
some missing entries in certain combinations of n and
k, as will be shown later in Table 2.

One-Dimension Cases

Table 1 shows the optimal representative points
in [0, 1] for uniform, normal, and exponential dis-
tributions. In practice, one should choose the rep-
resentative points according to the specific value of
n (the number of runs) and the prior distribution,
and then convert these points by proper scale. If no
prior knowledge about the distribution is available,
a uniform distribution is most likely to be assumed.
We illustrate the procedure using the polysilicon de-
position example as follows.

Example 1: Polysilicon Deposition Process

The process to deposit polysilicon on a silicon
wafer described in Phadke (1989, p.68) involved
mounting wafers on two quartz carriers and placing
them in a hot-wall, reduced-pressure reactor. Silane
and nitrogen gases were introduced at one end and
pumped out at the other end of the reactor. The
silane gas pyrolizes, and a polysilicon layer is de-
posited on top of the oxide layer on the wafers. Each
quartz carrier accommodated twenty-five wafers, and
each occupied half of the reactor. A total of fifty
wafers were deposited simultaneously along the flow
of the silane gas from the gas inlet to the gas outlet.
Gas flow patterns caused different silane gas concen-
trations along the length of the reactor. The sam-
pling locations were selected to approximate the dis-
tribution of the gas flow pattern.

In the original experiment described in Phadke
(1989), three measurements were taken along the
quartz carrier at locations 3, 23, and 48. However, an
optimal one-dimensional quantizer provides a better

Journal of Quality Technology

TABLE 1. The One-Dimensional Optimal
Representative Points in [0,1]

n Uniform Normal Exponential
2 0.2500 0.3876 0.0575
0.7500 0.6124 0.2773
3 0.1667 0.3388 0.0365
0.5000 0.5000 0.1386
0.8333 0.6612 0.3584
4 0.1250 0.3083 0.0267
0.3750 0.4470 0.0940
0.6250 0.5530 0.1962
0.8750 0.6917 0.4159
5 0.1000 0.2864 0.0211
0.3000 0.4127 0.0713
0.5000 0.5000 0.1386
0.7000 0.5873 0.2408
0.9000 0.7136 0.4605
6 0.0833 0.2695 0.0174
0.2500 0.3876 0.0575
0.4167 0.4650 0.1078
0.5833 0.5350 0.1751
0.7500 0.6124 0.2773
0.9167 0.7305 0.4970
7 0.0714 0.2557 0.0148
0.2143 0.3681 0.0482
0.3571 0.4391 0.0884
0.5000 0.5000 0.1386
0.6429 0.5609 0.2059
0.7857 0.6319 0.3081
0.9286 0.7443 0.5278
8 0.0625 0.2443 0.0129
0.1875 0.3522 0.0415
0.3125 0.4186 - 0.0749
0.4375 0.4738 0.1151
0.5625 0.5262 0.1653
0.6875 0.5814 0.2326
0.8125 0.6478 0.3348
0.9375 0.7557 0.5545
9 0.0556 0.2344 0.0114
0.1667 0.3388 0.0365
0.2778 0.4018 0.0651
0.3889 0.4530 0.0985
0.5000 0.5000 0.1386
0.6111 0.5470 0.1889
0.7222 0.5982 0.2562
0.8333 0.6612 0.3584
0.9444 0.7656 0.5781

way to select the representative points. If the uni-
form distribution is assumed as in Phadke, then Ta-
ble 1 shows that the set {1/6,1/2,5/6} is the optimal
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choice on [0, 1]. Accordingly, locations 8 (= 50x1/6},
25 (= 50 x 3/6), and 42 (= 50 x 5/6) should be mea-
sured. See Figure 1(a) for a graphical comparison.
Note that in Figure 1, we see that the optimal repre-
sentative points will minimize the maximum distance
from the “true” cdf. The design given here is better
than Phadke’s original choice.

The evidence is even more striking when the un-
derlying distribution is normal or exponential (see
Figure 1(b} and 1(c), respectively). If a normal dis-
tribution is assumed, the locations 17 (= 50x0.3388),
25 (= 50 x 0.5), and 33 (= 50 x 0.6612) should be
measured. If gas flow decays exponentially, then the
noise distribution is a truncated exponential, and lo-
cations 2 (= 50 x 0.0365), 7 (= 50 x 0.1386), and 18
(= 50 x 0.3584) are recommended.

Two- and Higher- Dimension Cases

Table 2 lists the optimal representative points in
a hypercube as n = 4,...,15 — assuming that the

©

FIGURE 1. Empirical cdf's for k = 3 Representative
Points: (a) Uniform, (b) Normal, and (c) Exponential. The
Solid Line is the True Curve; the Dotted Line is Phadke’s
Design; and the Dashed Line is the Optimal Design.

Vol. 27, No. 3, July 1995

noise factors are uniformly distributed, which is the
most common assumption when the true distribution
is unknown. The cases for n = 16,...,25 are given
in the Appendix. Given the values of n and k (the
number of runs and the number of factors, respec-
tively), one can easily obtain the optimal representa-
tive points directly from the table. For example, the
four-run optimal representative points in [0, 1]2 (ie.,
(n,k) = (4,2)) are {(0.125, 0.375), (0.375, 0.875),
(0.625, 0.125), (0.875, 0.625)}; and the five optimal
representative points for a three-factor outer array
in [0, 1]3 are {(0.1, 0.3, 0.7), (0.3, 0.7, 0.5), (0.5, 0.1,
0.3), (0.7, 0.5, 0.1), (0.9, 0.9, 0.9)}. For k = 2 di-
mensions, Figure 2(a) plots these four points as well
as the 22 factorial design points for a visual com-
parison. Figure 2(b) shows the five point case: five
optimal representative points versus 22 plus a center
point. Note that the representative point is avail-
able for any number of n, unlike an orthogonal array
whose run size is usually limited (e.g., a multiple of
four in two-level cases).

Example 2: Cake Mix

Consider Box and Jones’s {1992) example of the
search for the best recipe for a cake mix. The inner
array points were run with three design factors, flour,
shortening, and egg powder, in a 23 factorial design.
A 2? factorial was used to design the outer array
points, mainly considering the variation that results
from two noise factors: the baking temperature and
the baking time. As mentioned, a better way to de-
sign the four-run outer array in this case would be
{(0.125, 0.375), (0.375, 0.875), (0.625, 0.125), (0.875,
0.625)}. Table 2 can be used for designing any num-
ber of outer array points. For example, if six runs
are considered, the six points should be {(0.0833,
0.4167), (0.25, 0.9167), (0.4167, 0.25), (0.5833, 0.75),
(0.75, 0.0833), (0.9167, 0.5833)}.

Example 3: Computer Experiments

In this example, we choose a simple {(but typical)
problem in computer experiments where the response
y is a known deterministic function of the design fac-
tors. The goal here is to find the nominal settings for
the design factors such that the response is ¢nsensi-
tive to component variation. The Wheatstone bridge
described in Taguchi (1987) is a well-known problem
of this general type.

Consider the distance traveled by an object ejected
from a cannon. Elementary physics gives us

y = 5[%] " in(2a)
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TABLE 2. The Optimal Representative Points in [0,1]k Assuming a Uniform Distribution for n = 4, ..., 15
(a!l values need to be multiplied by 10'4)
Number Number of Factors, k
of Runs,

n 1 2 3 4 5 6 7 8 9 10 11 12

4 1250 3750 8750 6250
3750 8750 6250 1250
6250 1250 3750 8750
8750 6250 1250 3750

5 1000 3000 7000 5000
3000 7000 5000 1000
5000 1000 3000 7000
7000 5000 1000 3000
9000 9000 9000 9000

6 833 4167 2500 9167 5833 7500
2500 9167 5833 7500 833 4167
4167 2500 9167 5833 7500 833
5833 7500 833 4167 2500 9167
7500 833 4167 2500 9167 5833
9167 5833 7500 833 4167 2500

7 714 3571 2143 7857 5000 6429
2143 7837 5000 6429 714 3571
3571 2143 7857 5000 6429 714
5000 6429 714 3571 2143 7857
6429 714 3571 2143 7857 5000
7857 5000 6429 714 3571 2143
9286 9286 9286 9286 9286 9286

8 625 4375 8125 1875 9375 5625
1875 9375 5625 4375 8125 625
3125 3125 3125 6875 6875 6875
4375 8125 625 9375 5625 1875
5625 1875 9375 625 4375 8125
6875 6875 6875 3125 3125 3125
8125 625 4375 5625 1875 9375
9375 5625 1875 8125 625 4375

9 556 3889 7222 1667 8333 5000
1667 8333 5000 3889 7222 556
2778 2778 2778 6111 6111 6111
3889 7222 556 8333 5000 1667
5000 1667 8333 556 3889 7222
6111 6111 6111 2778 2778 2778
7222 556 3889 5000 1667 8333
8333 5000 1667 7222 556 3889
9444 9444 9444 9444 9444 9444

10 500 6500 4500 1500 2500 9500 3500 7500 8500 5500
1500 2500 9500 3500 5500 800 7500 4500 6500 500
2500 9500 3500 5500 8500 7500 500 1500 4500 6500
3500 5500 8500 7500 500 6500 4500 9500 2500 1500
4500 1500 2500 9500 3500 550C 8500 6500 500 7500
5500 8500 7500 500 6500 4500 1500 3500 9500 2500
6500 4500 1500 2500 9500 3500 5500 500 7500 8500
7500 500 6500 4500 1500 2500 9500 8500 5500 3500
8500 7500 500 6500 4500 1500 2500 5500 3500 9500
9500 3500 5500 8500 7500 500 6500 2500 1500 4500
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TABLE 2. — Continued

231

Number Number of Factors, k
of Runs,
n 1 2 3 4 5 6 7 8 9 10 11 12
11 455 5909 4091 1364 2273 8636 3182 6818 7727 5000
1364 2273 8636 3182 5000 7727 6818 4091 5909 455
2273 8636 3182 5000 7727 6818 455 1364 4091 5909
3182 5000 7727 6818 455 5909 4091 8636 2273 1364
4091 1364 2273 8636 3182 5000 7727 5909 455 6818
5000 7727 6818 455 5909 4091 1364 3182 8636 2273
5909 4091 1364 2273 8636 3182 5000 455 6818 7727
6818 455 5909 4091 1364 2273 8636 7727 5000 3182
7727 6818 455 5909 4091 1364 2273 5000 3182 8636
8636 3182 5000 7727 6818 455 5909 2273 1364 4091
9545 9545 9545 9545 9545 9545 9545 9545 9545 9545
12 417 4583 6250 7917 7083 1250 9583 3750 2083 2917 8750 5417
1250 9583 2083 5417 3750 2917 8750 7917 4583 6250 7083 417
2083 3750 8750 2917 417 4583 7917 1250 7083 9583 5417 6250
2917 8750 4583 417 7917 6250 7083 5417 9583 2083 3750 1250
3750 2917 417 8750 4583 7917 6250 9583 1250 5417 2083 7083
4583 7917 7083 6250 1250 9583 5417 2917 3750 8750 417 2083
5417 2083 2917 3750 8750 417 4583 7083 6250 1250 9583 7917
6250 7083 9583 1250 5417 2083 3750 417 8750 4583 7917 2917
7083 1250 5417 9583 2083 3750 2917 4583 417 7917 6250 8750
7917 6250 1250 7083 9583 5417 2083 8750 2917 417 4583 3750
8750 417 7917 4583 6250 7083 1250 2083 5417 3750 2917 9583
9583 5417 3750 2083 2917 8750 417 6250 7917 7083 1250 4583
13 385 4231 5769 7308 6538 1154 - 8846 3462 1923 2692 8077 5000
1154 8846 1923 5000 3462 2692 8077 7308 4231 5769 6538 385
1923 3462 8077 2692 385 4231 7308 1154 6538 8846 5000 5769
2692 8077 4231 385 7308 5769 6538 5000 8846 1923 3462 1154
3462 2692 385 8077 4231 7308 5769 8846 1154 5000 1923 6538
4231 7308 6538 5769 1154 8846 5000 2692 3462 8077 385 1923
5000 1923 2692 3462 8077 385 4231 6538 5769 1154 8846 7308
5769 6538 8846 1154 5000 1923 3462 385 8077 4231 7308 2692
6538 1154 5000 8846 1923 3462 2692 4231 385 7308 5769 8077
7308 5769 1154 6538 8846 5000 1923 8077 2692 385 4231 3462
8077 385 7308 4231 5769 6538 1154 1923 5000 3462 2692 8846
8846 5000 3462 1923 2692 8077 385 5769 7308 6538 1154 4231
9615 9615 9615 9615 9615 9615 9615 9615 9615 9615 9615 9615
14 357 2500 4643 1071 7500 5357 8929 9643
1071 5357 9643 2500 4643 357 7500 8929
1786 8214 3929 3929 1786 6071 6071 8214
2500 357 8929 5357 9643 1071 4643 7500
3214 3214 3214 6786 6786 6786 3214 6786
3929 6071 8214 8214 3929 1786 1786 6071
4643 8929 2500 9643 1071 7500 357 5357
5357 1071 7500 357 8929 2500 9643 4643
6071 3929 1786 1786 6071 8214 8214 3929
6786 6786 6786 3214 3214 3214 6786 3214
7500 9643 1071 4643 357 8929 5357 2500
8214 1786 6071 6071 8214 3929 3929 1786
8929 4643 357 7500 5357 9643 2500 1071
9643 7500 5357 8929 2500 4643 1071 357
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TABLE 2. — Continued

Number Number of Factors, k
of Runs,
n 1 2 3 4 5 6 7 8 9 10 11 12
15 333 2333 4333 1000 7000 5000 8333 9000
1000 5000 9000 2333 4333 333 7000 8333
1667 7667 3667 3667 1667 5667 5667 7667
2333 333 8333 5000 9000 1000 4333 7000
3000 3000 3000 6333 6333 6333 3000 6333
3667 5667 7667 7667 3667 1667 1667 5667
4333 8333 2333 9000 1000 7000 333 5000
5000 1000 7000 333 8333 2333 9000 4333
5667 3667 1667 1667 5667 7667 7667 3667
6333 6333 6333 3000 3000 3000 6333 3000
7000 9000 1000 4333 333 8333 5000 2333
7667 1667 5667 5667 7667 3667 3667 1667
8333 4333 333 7000 5000 9000 2333 1000
9000 7000 5000 8333 2333 4333 1000 333
9667 9667 9667 9667 9667 9667 9667

9667

where y is the distance, ¢ is the gravity constant, G
is the momentum, m is the fixed mass (0.2 kg in this
study), and a is the angle. The goal is to seek the
best combination of G and « so that the the distance
y is close to a given target value (2000 meters in this
study) with the least variation transmitted from each
component. The inner array factors are, of course, G
and a. Suppose that the tolerance for each compo-
nent is Am, AG, and Aa. These are the outer array
factors. Now, if we take three levels for all inner array
factors, a 32 full factorial design is appropriate. For
the outer array, if each factor is at three levels (e.g.,
m—Am, m, m+ Am), the current orthogonal array
leads to a 33~ fractional factorial design. After con-
verting into [0, 1] these nine orthogonal array points
are {(0,0,0.5), (0.5, 0,1), (1,0,0), (0,0.5,1), (0.5,0.5,0),
(1,0.5,0.5), (0,1,0), (0.5,1,0.5), (1,1,1)}. However,
if nine points are to be run, a better choice would
be {(0.0566, 0.4375, 0.8125), (0.1667, 0.8333, 0.5),
(0.2778, 0.2778, 0.2778), (0.3889, 0.7222, 0.0566),
(0.5, 0.1667, 0.8333), (0.6111, 0.6111, 0.6111),
(0.7222, 0.0556, 0.3889), (0.8333, 0.5, 0.1667),
(0.9444, 0.9444, 0.9444)}as shown in Table 2. The
benefit of using optimal representative points is even
more significant for larger values of k. We next il-
lustrate the advantages of our approach using the
well-known Wheatstone bridge as an example.

Example 4: Wheatstone Bridge

The circuit layout is displayed in Figure 3 (see also
Taguchi (1987, p. 98)). The goal here is to select the
nominal values of the parameters A, C, D, E, and F
so that the unknown resistance y can be measured
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precisely (i.e., with least variability). The sources of
variation are the bridge components A, B, C, D, E,
F, and the reading of the galvanometer X. Taguchi
proposed to use the L3¢ design as the inner array to
accommodate the five 3-level design factors (A, C,
D, E, and F). By assuming the tolerance for resistors
A, B, C, D, and F to be £0.3% and the current X
to be £0.2 milliamperes, the same OA (L3g) is used
for the outer array. The three levels for each noise
factor in the OA (Ljg) are selected at a value below or
above a fixed portion from the nominal value and at
the nominal value itself, where the nominal value is
specified by the inner array point. If the distributions
for all bridge components (factors A - F) are assumed
to be distributed independently uniform, Table 2 can
be used to choose the best representative points in
the noise space. Likewise, if independent normality
is assumed, a different set of representative points
will be selected (as will be shown below).

Since small size for the outer array is desirable,
the GLP quantizer is sufficient. The GLP quan-
tizer has the additional benefit of fixing levels at
{(25 — 1)(2k)™, 1 < j < k} for all noise factors.
Operationally, this is much more convenient. We
adapted a GLP quantizer recommended by Shaw
(1988) with (s,k) = (7,29) and p = 4. These 29
representative points were then mapped into the ap-
propriate space to form the representative points un-
der multivariate normal or uniform distribution.

For each inner array point, Table 3 shows the
mean and standard deviations which are computed
corresponding with the outer array points. Mean
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FIGURE 2. A Visual Comparison of Four and Five Point
Designs in a Square.

and standard deviations are given in Table 3 as the
typical performance measures of interest for illus-
tration. In principle, any other performance mea-
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FIGURE 3. The Wheatstone Bridge.

sures (such as signal-to-noise ratio) can be included.
Three columns are listed. The values in the first
column are obtained by Taguchi’s original 36 points
(OA (Lg3s)), the values in the second column are ob-
tained by the optimal representative points with only
n = 29 points, and the values in the third column
are obtained by 15,019 GLP representative points as
a benchmark for the comparison. These 15,019 rep-
resentative points, given in Hua and Wang (1981),
have a very small discrepancy, D(k) = 5 x 1072,
namely, very precise integral approximation to the
“true” values.

In all cases, the n = 29 optimal representative
points provide a consistently accurate approximation
to the benchmark values for mean and standard de-
viation for all inner points. For the normal noise,
Taguchi’s OA-approach provides a fairly good esti-
mate for the mean but not for the standard deviation.
Therefore, the signal-to-noise ratios can be far from
the true values. For example, in runs 27, 28, and
36, the OA-approach gives the signal-to-noise ratio
of -4.17, 21.99 and 1.82 while the correct value is -
7.20, 17.07 and -1.72 respectively. (Note also that the
n = 29 representative points approach gives -7.20,
18.26, and -1.79.) When the noise factors are uni-
formly distributed, the OA-approach leads to poor
estimation for both mean and standard deviation
(consequently signal-to-noise ratio would be poorly
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TABLE 3. Means and Standard Deviations for All 36 Inner Array Points in the Wheatstone Bridge Example
Inner Normal Noise Uniform Noise
Array Mean Std. Dev. Mean Std. Dev.

1 2.00° 2.00° 2.00° 0.050 0.092 0.104 2.00 203 203 0.263 0.183 0.196

2 2.00 200 2.00 0.094 0.179 0.192 2.00 206 2.06 0.483 0.385 0.365

3 2.00 200 2.00 0.326 0.640 0.657 2.00 219 220 1.648 1.256 1.250

4 2.00 200 2.00 0.031 0.056 0.068 2.00 202 2.02 0.173 0.112 0.127

5 2.00 2.00 2.00 0.076 0.142 0.155 200 204 205 0.390 0.283 0.294

6 2.00 200 2.00 0.885 1.754 1.780 201 252 253 4466 3.434 3.390

7 10.00 10.00 10.00 0.600 1.149 1.214 10.01 10.34 10.36 3.059 2.269 2311

8 0.08 0.08 0.08 0.158 0.316 0.319 0.08 0.17 0.18 0.800 0.618 0.608

9 10.00 10.00 10.00 0.271 0.502 0.565 10.01 10.15 10.16 1431 1.004 1.070
10 040 040 0.40 0.259 0.514 0.521 0.40 0.55 0.56 1.305 1.006 0.991
11 50.00 49.98 50.00 4.192 8.109 8.464 50.07 52.36 52.34 21.342 15.992 16.132
12 0.40 0.40 0.40 0.048 0.094 0.097 0.40 043 043 0.243 0.184 0.184
13 0.08 0.08 0.08 0.002 0.003 0.003 0.08 0.08 0.08 0.009 0.006 0.007
14 10.00 9.99 10.00 9.608 19.094 19.329 10.07 15.51 15.80 48.305 37.339 36.818
15 10.00 9.99 10.00 1.220 2.382 2.459 10.02 10.70 10.74 6.1890 4.685 4.686
16 0.40 0.40 0.40 0.021 0.041 0.043 040 041 041 0.109 0.081 0.082
17 50.00 49.98 50.00 5.386 10.483 10.354 50.08 53.05 53.26 27.347 20.631 20.696
18 0.40 0.40 0.40 0.208 0.412 0.418 0.40 0.52 0.53 1.049 0.808 0.797
19 50.00 50.00 50.00 0.566 1.063 1.360 50.03 50.31 50.33 3.456 2.133 2.507
20 040 040 0.40 0.081 0.160 0.164 040 0.45 045 0.410 0.314 0.311
21 0.40 040 0.40 0.216 0.429 0435 040 0.53 0.53 1.090 0.840 0.828
22 10.00 10.00 10.00 0.045 0.145 0.175 10.01 10.01 10.01 0.441 0.268 0.305
23 0.08 0.08 0.08 0.183 0.365 0.368 0.08 0.11 0.19 0.923 0.714 0.701
24 10.00 9.99 10.00 9.360 18.600 18.830 10.06 15.37 15.65 47.255 36.374 35.869
25 040 040 0.40 0.046 0.089 0.092 0.40 043 0.43 0.230 0.175 0.175
26 040 040 0.40 0.004 0.007 0.009 040 0.40 040 0.024 0.014 0.087
27 50.00 49.53 49.99 130.505 259.650 262.611 51.21 123.64 128.71 659.798 508.011 500.521
28 2.00 2.00 2.00 0.013 0.030 0.039 2.00 201 201 0.100 0.057 0.070
29 2.00 2.00 2.00 0.022 0.041 0.053 200 201 201 0.135 0.083 0.098
30 2.00 203 2.00 14.447 28.791 29.060 2.07 1041 10.71 72.868 56.267 55.339
31 2.00 2.00 2.00 0.143 0.275 0.289 2.00 208 2.09 0.726 0.543 0.549
32 2.00 2.00 2.00 0.013 0.030 0.039 2.00 201 201 0.099 0.057 0.069
33 2.00 201 2.00 2.240 4.456 4.506 201 331 3.35 11.300 8.714 8.580
34 10.00 10.00 10.00 0.050 0.144 0.180 10.01 10.02 10.02 0.454 0.269 0.315
35 10.00 10.00 10.00 6.575 13.051 13.227 10.04 13.79 13.97 33.188 25.530 25.189
36 0.08 0.08 0.08 0.060 0.119 0.121 0.08 0.12 0.12 0.303 0.234 0.230

a: First Columns = OA(Lsg)
b: Second Columns = Optimal Representing Points
¢: Third Columns = True Values

estimated as well). This is partially because the uni-
form distribution has more dispersion than the nor-
mal distribution.

Concern has been raised by one referee that ...

ble 3. Consequently, such an ordering effect to the
choice of factor level is in general irrelevant.

Remarks

the ordering of the runs is not consistent. For ex-
ample, runs 9 and 10 with values 0.502 and 0.514
reverse the true orderings whose corresponding val-
ues are 0.565 and 0.521 for the normal case. ...”
Note that the design given here ensures a small dis-
crepancy (i.e., a precise approximation to the true
performance in each inner array point). Even when
the ordering is not consistent, the difference is in-
significant. Indeed, this can be easily seen from Ta-
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If the underlying distribution is believed to be
other than uniform distribution, a simple trans-
formation of x;’s is needed to obtain the opti-
mal representative points. Suppose each of the
noise variables is independent of each other, and
that the joint distribution of noise variables N =
(Ny,...,Ng) is known to be F(N) = Hf:l F;(N;),
where F;(N;) is the marginal distribution for N;.
Also suppose that {x; = (zj1,...,z;k), 1 <j<n}
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are the optimal representative points relative to the
k-dimensional unform distribution in [0,1]*. Then
{yi = (FT '(zn),..., F H(z)), 1< j <n} will be
the optimal representative points relative to F(N).
See Wang, Fang, and Lin (1992).

Designing Outer Array Points on a
Disk, Ball or Spherical Surface

The optimal representative points over a hyper-
cube can be easily transformed in order to be readily
used for other shapes of experimental regions. In
this section, three specific types of experimental re-
gions are discussed: a two-dimensional disk, a three-
dimensional ball and a three-dimensional spherical
surface. These transformations are motivated to pre-
serve their minimal discrepancy as previously de-
scribed. The distribution on the disk, ball or spheri-
cal surface is assumed to be uniform. For mathemat-
ical details, see Wang and Fang (1981).

Designing Outer Array Points Over a Disk

A set of two-dimensional (kK = 2) optimal outer
array points in a square can be obtained from Table
2, denoted by (c1,cg)’ here. The transformation

o] - [Vt

will transfer all representative points in a square
into a disk, with its optimality retained. For ex-
ample, the four optimal outer array points in a disk
can be obtained by applying the above transforma-
tion to the four points: {(0.125,0.375), (0.375,0.875),
(0.625,0.125), (0.875,0.625)}. The resulting outer
array points in the disk are: {(—0.2500,0.2500),
(0.4330, —0.4330), (0.5590, 0.5590), (—0.6614,
—0.6614)}. These four points are displayed in Fig-
ure 4(a). The optimal five-run outer array points are
plotted in Figure 4(b) as another example.

The results given here can be applied to, for ex-
ample, the EPI problem (see Kackar and Shoemaker
(1986)). If five points are sampled, Figure 4(b) will
serve as a better than original design in accurately
approximating the distribution in each layer.

Designing OQuter Array Points Over a Ball

Given n, the optimal outer array points in a cube
can be obtained from Table 2, denoted by (¢1, ¢2,¢3)’
here. The transformation
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FIGURE 4. Four and Five Optimal Representative Points
in a Disk.

Journal of Qudlity Technology



236 YUCHUNG WANG, DENNIS K. J. LIN, AND KAI-TAI FANG

e 01/3(1 — 2¢2)
c | — 01/3 cos(2mez) 2+/c2(1 — ¢2)
c3 ci/s sin(2me3) 24/ca(1 — c2)

is recommended. Such a transformation is proven
to retain its optimality in a 3-dimensional ball. A
seven-run outer array of points, for example, can be
obtained as follows:

(1) Write down the seven points, (n, k) = (7,3),
from Table 2.

(2) Transform these seven points into a ball,

[0.0714 0.2143 0.35711
0.2143 0.5000 0.7857
0.3571 0.7857 0.2143
0.5000 0.0714 0.6429 1 —
0.6429 0.3571 0.0714
0.7857 0.6429 0.5000
[ 0.9286 0.9286 0.9286

r 0.2371 -0.2123  0.26621
0.0000 0.1332 —0.5834
—0.4054  0.1296  0.5676
0.6803 —0.2549 —0.3196
0.2466  0.7452 0.3589
—0.2636 —0.8843  0.0000

| —-0.8362  0.4527 -—0.2180

Similarly, the nine-run optimal outer array points in
a ball are:

r0.0556 0.3889 0.72227
0.1667 0.8333 0.5000
0.2778 0.2778 0.2778
0.3889 0.7222 0.0556
0.5000 0.1667 0.8333 | —
0.6111 0.6111 0.6111
0.7222 0.0556 0.3889
0.8333 0.5000 0.1667
10.9444 0.9444 0.9444

[ 0.0848 —0.0646 —0.36641

—0.3669 —0.4102  0.0000
0.2900 -0.1015  0.5756
—0.3244  0.6144  0.2236
0.5291  0.2958 —0.5123

—0.1886 —0.6338 —0.5318

0.7975 —0.3149  0.2642
0.0000 0.4705  0.8150
0.4224 —0.1537

L —0.8721

Designing Outer Array Points Over a
Spherical Surface

The quality of a ball bearing is sometimes judged
by the uniformity and evenness of hardness over
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the spherical surface of the bearing. Outer array
points over the sphere can be obtained from the
following transformation from [0, 1]2 to the sphere

{(x,y,z) VT + 22 = 1}:

[cl] _ (1—2¢y)
c2

2¢1(1 — ¢;) cos(2mez)
2¢1(1 — ¢1) sin(2mwcg)
Comparison with Alternative Methods

Grid Mapping

A k-dimensional grid is the Cartesian product of
k one-dimensional grids. It has been shown that
the product of two optimal one-dimensional grids
is no longer optimal in the 2-dimensional space.
A full factorial design is a grid, and an orthogo-
nal array is simply a subset of the full factorial
design. For integral approximation, optimal rep-
resentative points are more accurate than points
selected by an orthogonal array of the same size.
Shaw (1988) showed that the 2-dimensional grid
{((2¢ — 1)/32,(25 — 1)/32); 4,7 =1,...,16} has an
error size of five times the size of the 256 optimal
representative points. Moreover, the optimal repre-
sentative points are much more flexible with respect
to the run size selection.

Latin Hypercube Sampling

Another possibility for designing outer array
points is by using Latin hypercube sampling (see,
for example, McKay, Beckman, and Conover (1979)).
Latin hypercube sampling takes a random subset of
size n from the product of k stratified random sam-
ples, where each stratified sample of size n is taken
for every univariate component of the noise variable.
Latin hypercube sampling has the desirable “space-
filling” property. Because the one-dimensional ran-
dom sample is drawn from an equal-distance parti-
tion for every univariate component, Latin hyper-
cube sampling points have n different values for each
coordinate. These properties are also shared by the
optimal representative points method.

Note that optimal representative points are deter-
ministic, but Latin hypercube sampling points are
random. In other words, the optimal representative
point method is much easier to use in planning and
execution. Also, no optimal property can be proven
for a given Latin hypercube sampling because it is
a realization of the random process. The optimal
representative points are known to be optimal in in-
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tegral approximation. Although some asymptotical
results have been derived for Latin hypercube sam-
pling, finite sample situations are more likely to be
found in practice.

Concluding Remarks

The choice of design mainly depends upon the ob-
jective of the experiment. Classical designs such as
fractional factorials will continue to be used in many

237

circumstances. However, if the purpose of experi-
ments is to evaluate the overall performance, as in
the case of outer array designs, the optimal repre-
sentative points approach is shown to be superior
to other plans. This is simply because the empiri-
cal cumulative density function (cdf) is closer to the
the true cdf in the optimal representative points ap-
proach, resulting in more efficient estimation for the
performance measurement.

Appendix. Table for Optimal Representative Points,
Uniform Distribution Assumed

TABLE Al. The Optimal Representative Points in [0,1]k Assuming a Uniform Distribution for n = 16, ..., 25
(all values need to be multiplied by 10™#)

Number Number of Factors, k&
of Runs,
n 1 2 3 4 5 6 7 8 9 10 11 12
16 313 5938 9063 8438 2188 3438 5313 2813 9688 1563 7813 6563
938 1563 7813 6563 4688 7188 313 5938 9063 3438 5313 2813
1563 7813 6563 4688 7188 313 5938 9063 8438 5313 2813 9688
2188 3438 5313 2813 9688 4063 938 1563 7813 7188 313 5938
2813 9688 4063 938 1563 7813 6563 4688 7188 9063 8438 2188
3438 5313 2813 9688 4063 938 1563 7813 6563 313 5938 9063
4063 938 1563 7813 6563 4688 7188 313 5938 2188 3438 5313
4688 7188 313 5938 9063 8438 2188 3438 5313 4063 938 1563
5313 2813 9688 4063 938 1563 7813 6563 4688 5938 9063 8438
5938 9063 8438 2188 3438 5313 2813 9688 4063 7813 6563 4688
6563 4688 7188 313 5938 9063 8438 2188 3438 9688 4063 938
7188 313 5938 9063 8438 2188 3438 5313 2813 938 1563 7813
7813 6563 4688 7188 313 5938 9063 8438 2188 2813 9688 4063
8438 2188 3438 5313 2813 9688 4063 938 1563 4688 7188 313
9063 8438 2188 3438 5313 2813 9688 4063 938 6563 4688 7188
9688 4063 938 1563 7813 6563 4688 T188 313 8438 2188 3438
17 294 5588 8529 7941 2059 3235 5000 2647 9118 1471 7353 6176
882 1471 7353 6176 4412 6765 294 5588 8529 3235 5000 2647
1471 7353 6176 4412 6765 294 5588 8529 7941 5000 2647 9118
2059 3235 5000 2647 9118 3824 882 1471 7353 6765 294 5588
2647 9118 3824 882 1471 7353 6176 4412 6765 8529 7941 2059
3235 5000 2647 9118 3824 882 1471 7353 6176 294 5588 8529
3824 882 1471 7353 6176 4412 6765 294 5588 2059 3235 5000
4412 6765 294 5588 8529 7941 2059 3235 5000 3824 882 1471
5000 2647 9118 3824 882 1471 7353 6176 4412 5588 8529 7941
5588 8529 7941 2059 3235 5000 2647 9118 3824 7353 6176 4412
6176 4412 6765 294 5588 8529 7941 2059 3235 9118 3824 882
6765 294 5588 8529 7941 2059 3235 5000 2647 882 1471 7353
7353 6176 4412 6765 204 5588 8529 7941 2059 2647 9118 3824
7941 2059 3235 5000 2647 9118 3824 882 1471 4412 6765 294
8529 7941 2059 3235 5000 2647 9118 3824 882 6176 4412 6765
9118 3824 882 1471 7353 6176 4412 6765 294 7941 2059 3235
9706 9706 9706 9706 9706 9706 9706 9706 9706 9706 9706 9706
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TABLE Al. — Continued
n 1 2 3 4 5 6 7 8 9 10 11 12

18 278 4167 3056 7500 9167 5278 3611 1389 1944 9722 833 8611
833 8611 6389 4722 8056 278 7500 3056 4167 9167 1944 6944
1389 2500 9722 1944 6944 5833 833 4722 6389 8611 3056 5278
1944 6944 2500 9722 5833 833 4722 6389 8611 8056 4167 3611
2500 833 5833 6944 4722 6389 8611 8056 278 7500 5278 1944
3056 5278 9167 4167 3611 1389 1944 9722 2500 6944 6389 278
3611 9722 1944 1389 2500 6944 5833 833 4722 6389 7500 9167
4167 3611 5278 9167 1389 1944 9722 2500 6944 5833 8611 7500
4722 8056 8611 6389 278 7500 3056 4167 9167 5278 9722 5833
5278 1944 1389 3611 9722 2500 6944 5833 833 4722 278 4167
5833 6389 4722 833 8611 8056 278 7500 3056 4167 1389 2500
6389 278 8056 8611 7500 3056 4167 9167 5278 3611 2500 833
6944 4722 833 5833 6389 8611 8056 278 7500 3056 3611 9722
7500 9167 4167 3056 5278 3611 1389 1944 9722 2500 4722 8056
8056 3056 7500 278 4167 9167 5278 3611 1389 1944 5833 6389
8611 7500 278 8056 3056 4167 9167 5278 3611 1389 6944 4722
9167 1389 3611 5278 1944 9722 2500 6944 5833 833 8056 3056
9722 5833 6944 2500 833 4722 6389 8611 8056 278 9167 1389

19 263 3947 2895 7105 8684 5000 3421 1316 1842 9211 789 8158
789 8158 6053 4474 7632 263 7105 2895 3947 8684 1842 6579
1316 2368 9211 1842 6579 5526 789 4474 6053 8158 2895 5000
1842 6579 2368 9211 5526 789 4474 6053 8158 7632 3947 3421
2368 789 5526 6579 4474 6053 8158 7632 263 7105 5000 1842
2895 5000 8684 3947 3421 1316 1842 9211 2368 6579 6053 263
3421 9211 1842 1316 2368 6579 - 5526 789 4474 6053 7105 8684
3947 3421 5000 8684 1316 1842 9211 2368 6579 5526 8158 7105
4474 7632 8158 6053 263 7105 2895 3947 8684 5000 9211 5526
5000 1842 1316 3421 9211 2368 6579 5526 789 4474 263 3947
5526 6053 4474 789 8158 7632 263 7105 2895 3947 1316 2368
6053 263 7632 8158 7105 2895 3947 8684 5000 3421 2368 789
6579 4474 789 5526 6053 8158 7632 263 7105 2895 3421 9211
7105 8684 3947 2895 5000 3421 1316 1842 9211 2368 4474 7632
7632 2895 7105 263 3947 8684 5000 3421 1316 1842 5526 6053
8158 7105 263 7632 2895 3947 8684 5000 3421 1316 6579 4474
8684 1316 3421 5000 1842 9211 2368 6579 5526 789 7632 2895
9211 5526 6579 2368 789 4474 6053 8158 7632 263 8684 1316
9737 9737 9737 9737 9737 9737 9737 9737 9737 9737 9737 9737

20 250 2250 8250 750 1750 3750 4750 5250 6250 7750 9250 9750
750 4750 6250 1750 3750 7750 9750 250 2250 5250 8250 9250
1250 7250 4250 2750 5750 1250 4250 5750 8750 2750 7250 8730
1750 9750 2250 3750 7750 5250 9250 750 4750 250 6250 8250
2250 1750 250 4750 9750 9250 3750 6250 750 8250 5250 7750
2750 4250 8750 5750 1250 2750 8750 1250 7250 5750 4250 7250
3250 6750 6750 6750 3250 6750 3250 6750 3250 3250 3250 6750
3750 9250 4750 7750 5250 250 8250 1750 9750 750 2250 6250
4250 1250 2750 8750 7250 4250 2750 7250 5750 8750 1250 5750
4750 3750 750 9750 9250 8250 7750 2250 1750 6250 250 5250
5250 6250 9250 250 750 1750 2250 7750 8250 3750 9750 4750
5750 8750 7250 1250 2750 5750 7250 2750 4250 1250 8750 4250
6250 750 5250 2250 4750 9750 1750 8250 250 9250 7750 3750
6750 3250 3250 32560 6750 3250 6750 3250 6750 6750 6750 3250
7250 5750 1250 4250 8750 7250 1250 8750 2750 4250 5750 2750
7750 8250 9750 5250 250 750 6250 3750 9250 1750 4750 2250
8250 260 7750 6250 2250 4750 750 9250 5250 9750 3750 1750
8750 2750 5750 7250 4250 8750 5750 4250 1250 7250 2750 1250
9250 5250 3750 8250 6250 2250 250 9750 7750 4750 1750 750
9750 7750 1750 9250 8250 6250 5250 4750 3750 2250 750 250

Journal of Quality Technology Vol. 27, No. 3, July 1995



DESIGNING OUTER ARRAY POINTS

TABLE Al. — Continued

239

n 1 2 3 4 5 6 7 8 9 10 11 12
21 238 2143 7857 714 1667 3571 4524 5000 5952 7381 8810 9286
714 4524 5952 1667 3571 7381 9286 238 2143 5000 7857 8810
1190 6905 4048 2619 5476 1190 4048 5476 8333 2619 6905 8333
1667 9286 2143 3571 7381 5000 8810 714 4524 238 5952 7857
2143 1667 238 4524 9286 8810 3571 5952 714 7857 5000 7381
2619 4048 8333 5476 1190 2619 8333 1190 6905 5476 4048 6905
3095 6429 6429 6429 3095 6429 3095 6429 3095 3095 3095 6429
3571 8810 4524 7381 5000 238 7857 1667 9286 714 2143 5952
4048 1190 2619 8333 6905 4048 2619 6905 5476 8333 1190 5476
4524 3571 714 9286 8810 7857 7381 2143 1667 5952 238 5000
5000 5952 8810 238 714 1667 2143 7381 7857 3571 9286 4524
5476 8333 6905 1190 2619 5476 6905 2619 4048 1190 8333 4048
5952 714 5000 2143 4524 9286 1667 7857 238 8810 7381 3571
6429 3095 3095 3095 6429 3095 6429 3095 6429 6429 6429 3095
6905 5476 1190 4048 8333 6905 1190 8333 2619 4048 5476 2619
7381 7857 9286 5000 238 714 5952 3571 8810 1667 4524 2143
7857 238 7381 5952 2143 4524 714 8810 5000 9286 3571 1667
8333 2619 5476 6905 4048 8333 5476 4048 1190 6905 2619 1190
8810 5000 3571 7857 5952 2143 238 9286 7381 4524 1667 714
9286 7381 1667 8810 7857 5952 5000 4524 3571 2143 714 238
9762 9762 9762 9762 9762 9762 9762 9762 9762 9762 9762 9762
22 227 7500 5682 6136 3409 9318 5227 6591 7500 1591 2955 1136
682 4773 1136 2045 7045 8409 227 2955 4773 3409 6136 2500
1136 2045 7045 8409 227 7500 5682 9773 2045 5227 9318 3864
1591 9773 2500 4318 3864 6591 682 6136 9773 7045 2045 5227
2045 7045 8409 227 7500 5682 6136 2500 7045 8864 5227 6591
2500 4318 3864 6591 682 4773 1136 9318 4318 227 8409 7955
2955 1591 © 9773 2500 4318 3864 6591 5682 1591 2045 1136 9318
3409 9318 5227 8864 7955 2955 1591 2045 9318 3864 4318 227
3864 6591 682 4773 1136 2045 7045 8864 6591 5682 7500 1591
4318 3864 6591 682 4773 1136 2045 5227 3864 7500 227 2955
4773 1136 2045 7045 8409 227 7500 1591 1136 9318 3409 4318
5227 8864 7956 2955 1591 9773 2500 8409 8864 682 6591 5682
5682 6136 3409 9318 5227 8864 7955 4773 6136 2500 9773 7045
6136 3409 9318 5227 8864 7955 2955 1136 3409 4318 2500 8409
6591 682 4773 1136 2045 7045 8409 7955 682 6136 5682 9773
7045 8409 227 7500 5682 6136 3409 4318 8409 7955 8864 682
7500 5682 6136 3409 9318 5227 8864 682 5682 9773 1591 2045
7955 2955 1591 9773 2500 4318 3864 7500 2955 1136 4773 3409
8409 227 7500 5682 6136 3409 9318 3864 227 2955 7955 4773
8864 7955 2955 1591 9773 2500 4318 227 7955 4773 682 6136
9318 5227 8864 7955 2955 1591 9773 7045 5227 6591 3864 7500
9773 2500 4318 3864 6591 682 4773 3409 2500 8409 7045 8864
23 217 7174 5435 5870 3261 8913 5000 6304 7174 = 1522 2826 1087
652 4565 1087 1957 6739 8043 217 2826 4565 3261 5870 2391
1087 1957 6739 8043 217 7174 5435 9348 1957 5000 8913 3696
1522 9348 2391 4130 3696 6304 652 5870 9348 6739 1957 5000
1957 6739 8043 217 7174 5435 5870 2391 6739 8478 5000 6304
2391 4130 3696 6304 652 4565 1087 8913 4130 217 8043 7609
2826 1522 9348 2391 4130 3696 6304 5435 1522 1957 1087 8913
3261 8913 5000 8478 7609 2826 1522 1957 8913 3696 4130 217
3696 6304 652 4565 1087 1957 6739 8478 6304 5435 7174 1522
4130 3696 6304 652 4565 1087 1957 5000 3696 7174 217 2826
4565 1087 1957 6739 8043 217 7174 1522 1087 8913 3261 4130
5000 8478 7609 2826 1522 9348 2391 8043 8478 652 6304 5435
5435 5870 3261 8913 5000 8478 7609 4565 5870 2391 9348 6739
5870 3261 8913 5000 8478 7609 2826 1087 3261 4130 2391 8043
6304 652 4565 1087 1957 6739 8043 7609 652 5870 5435 9348
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TABLE Al. — Continued
n 1 2 3 4 5 6 7 8 9 10 11 12

23 6739 8043 217 7174 5435 5870 3261 4130 8043 7609 8478 652
7174 5435 5870 3261 8913 5000 8478 652 5435 9348 1522 1957
7609 2826 1522 9348 2391 4130 3696 7174 2826 1087 4565 3261
8043 217 7174 5435 5870 3261 8913 3696 217 2826 7609 4565
8478 7609 2826 1522 9348 2391 4130 217 7609 4565 652 5870
8913 5000 8478 7609 2826 1522 9348 6739 5000 6304 3696 7174
9348 2391 4130 3696 6304 652 4565 3261 2391 8043 6739 8478
9783 9783 9783 9783 9783 9783 9783 9783 9783 9783 9783 9783

24 208 4375 8542 2292 6458 1458 9792 3542 625 4792 5625 7292
625 8958 6875 4792 2708 3125 9375 7292 1458 9792 1042 4375
1042 3125 5208 7292 9375 4792 8958 625 2292 4375 6875 1458
1458 7708 3542 9792 5625 6458 8542 . 4375 31256 9375 2292 8958
1875 1875 1875 1875 1875 8125 8125 8125 3958 3958 8125 6042
2292 6458 208 4375 8542 9792 7708 1458 4792 8958 3542 3125
2708 625 8958 6875 4792 1042 7292 5208 5625 3542 9375 208
3125 5208 7292 9375 1042 2708 6875 8958 6458 8542 4792 7708
3542 9792 5625 1458 7708 4375 6458 2292 7292 3125 208 4792
3958 3958 3958 3958 3958 6042 6042 6042 8125 8125 6042 1875
4375 8542 2292 6458 208 7708 5625 9792 8958 2708 1458 9375
4792 2708 625 8958 6875 9375 5208 3125 9792 7708 7292 6458
5208 7292 9375 1042 3125 625 4792 6875 208 2292 2708 3542
5625 1458 7708 3542 9792 2292 4375 208 1042 7292 8542 625
6042 6042 6042 6042 6042 3958 3958 3938 1875 1875 3958 8125
6458 208 4375 8342 2292 5625 3542 7708 2708 6875 9792 5208
6875 4792 2708 625 8958 7292 3125 1042 3542 1458 5208 2292
7292 9375 1042 3125 5208 8958 2708 4792 4375 6458 625 9792
7708 3542 9792 5625 1458 208 2292 8542 5208 1042 6458 6875
8125 8125 8125 8125 8125 1875 1875 1875 6042 6042 1875 3958
8542 2292 6458 208 4375 3542 1458 5625 6875 625 7708 1042
8958 6875 4792 2708 625 5208 1042 9375 7708 5625 3125 8542
9375 1042 3125 5208 7292 6875 625 2708 8542 208 8958 5625
9792 5625 1458 7708 3542 8542 208 6458 9375 5208 4375 2708

25 200 4200 8200 2200 6200 1400 9400 3400 600 4600 5400 7000
600 - 8600 6600 4600 2600 3000 9000 7000 1400 9400 1000 4200
1000 3000 5000 7000 9000 4600 8600 600 2200 4200 6600 1400
1400 7400 3400 9400 5400 6200 8200 4200 3000 9000 2200 8600
1800 1800 1800 1800 1800 7800 7800 7800 3800 3800 7800 5800
2200 6200 200 4200 8200 9400 7400 1400 4600 8600 3400 3000
2600 600 800 6600 4600 1000 7000 5000 5400 3400 9000 200
3000 5000 7000 9000 1000 2600 6600 8600 6200 8200 4600 7400
3400 9400 5400 1400 7400 4200 6200 2200 7000 3000 200 4600
3800 3800 3800 3800 3800 5800 5800 5800 7800 7800 5800 1800
4200 8200 2200 6200 200 7400 5400 9400 8600 2600 1400 9000
4600 2600 600 8600 6600 9000 5000 3000 9400 7400 7000 6200
5000 7000 9000 1000 3000 600 4600 6600 200 2200 2600 3400
5406 1400 7400 3400 9400 2200 4200 200 1000 7000 8200 600
5800 5800 5800 5800 5800 3800 3800 3800 1800 1800 3800 7800
6200 200 4200 8200 2200 5400 3400 7400 2600 6600 9400 5000
6600 4600 2600 600 800 7000 3000 1000 3400 1400 5000 2200
7000 9000 1000 3000 5000 8600 2600 4600 4200 6200 600 9400
7400 3400 9400 5400 1400 200 2200 8200 5000 1000 6200 6600
7800 7800 7800 7800 7800 1800 1800 1800 5800 5800 1800 3800
8200 2200 6200 200 4200 3400 1400 5400 6600 600 7400 1000
8600 6600 4600 2600 600 5000 1000 9000 7400 5400 3000 8200
9000 1000 3000 5000 7000 6600 600 2600 8200 200 8600 5400
9400 5400 1400 7400 3400 8200 200 6200 9000 ~ 5000 4200 2600
9800 9800 9800 9800 9800 9800 9800 9800 9800 9800 9800 9800
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