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Vining and Myers adapted the dual response approach to achieve the goals of Taguchi's philosophy. This
excellent approach contains some deficiencies that will be highlighted in this paper. A more satisfactory
and substantially simpler optimization procedure on a dual response approach is proposed that allows more
general response models to be entertained in reality. The new method is demonstrated using the example
given in Vining and Myers in which it leads to a solution with 25% smailer mean square error.

Introduction

ESPONSE Surface Methodology, first introduced

by Box and Wilson (1951), is designed to find

the optimal settings for a set of input or design vari-

ables that maximize (or minimize) the response Y.

Such a problem is typically focused on the mean value

of Y. As a result, it works well when the variance of

Y is relatively small and stable (i.e., variance is as-
sumed at a known or unknown constant value).

Indeed, when the variance is not a constant, clas-
sical response surface methodology can be mislead-
ing. Vining and Myers (1990) made use of the dual-
response approach (see Myers and Carter (1973)),
and proposed an ingenious method to tackle such a
problem. They first fit second-order models to both
primary- and secondary-response surfaces and then
applied the dual-response surface approach to opti-
mize the primary response subject to an appropriate
constraint on the value of the secondary response.
(Henceforth, we will refer to Vining and Myers (1990)
as VM.)

The basic idea behind VM’s approach is excellent.
However, we believe that their optimization proce-
dure can be further improved. Specifically: (1) the
optimization procedure via Lagrangian multipliers is
somehow misleading. This may very well rule out
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better conditions due to the restriction that the “es-
timate” of secondary-response is forced to a fixed
value. As we shall see later, a better procedure based
on mean square error (MSE) criterion should be used;
and (2) the restriction on the full second-order mod-
els for both primary- and secondary-response sur-
faces is unrealistic. Rather, the best subset models
should be considered. In fact, the MSE procedure
given here works well even for nonlinear (not poly-
nomial type) response surfaces.

In the next section, we will briefly review the VM
approach, and highlight its deficiencies. Following
our critique, a more satisfactory formulation is de-
scribed. We illustrate our method using the example
from VM for a fair comparison.

Review of the Vining and
Myers’ Approach

Following VM notations, the primary and sec-
ondary (respectively) responses can be written as

k k k
Mo=Po+ Y Bixi+ Y Buri+d > Biyxiz;+ep
=1 i=1 1<J
(1)
k k k
Ns =Y + Z’h’ﬂ?i + Z'm:v? + Z Z’)’ijximj +é&s
i=1 =1

i<j
(2)
and the resulting fitted response surfaces may be rep-

resented by
Wp = bp +x'b + x'Bx

(3)
(4)

Ws =co +xc+x'Cx
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where by, cg, b, ¢, B, and C are the appropriate vec-
tors and matrices of the estimates for the coeflicients.

Using Lagrangian multipliers, VM proposed a
method of finding x that optimizes @, subject to
@, = T, where T is some desirable target value of
the constraint response and a spherical region of in-
terest is assumed. That is, find x that satisfies

oL

where

L=by+b'x+x'Bx+ Acg+c'x+x'Cx—T). (6)

Denote @, as the fitted response surface for the
mean and &, as the fitted response surface for the
standard deviation. The following three cases were
discussed in VM:

Case 1: “Target value is best”, which means keep-
ing u at a specified target value pp, while minimizing
o2. Namely:

minimize &y

subject to &, = po.

Case 2: “The larger, the better” which means
making u as large as possible, while controlling 2.
Namely:

maximize @,

subject to &y = ag.

Case 3: “The smaller, the better”, which means
making p as small as possible, while controlling o2.
Namely:

minimize @,
subject to &, = oy.

We see that the determination of the primary and
the secondary responses is determined by the goal of
the experiment. One major concern here is the lack
of realism of the equality constraints. Note that both
W, and &, are only approximations to the “true”
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responses (subject to certain random errors). Re-
stricting the optimization to equality constraints will
inevitably exclude globally preferred values. This is
more obvious for Cases 2 and 3, where ¢g is normally
unknown (and in fact, the smaller the better).

Proposed Optimization Procedure

The proposed optimization procedure is best illus-
trated by the following example. We shall focus on
the case “target value is best” to illustrate the basic
idea and discuss other cases in a later section. Con-
sider Figure 1 where the estimated mean response
curve is denoted by &, and the estimated standard
deviation response curve is denoted by &,. Our pur-
pose is to find an optimal set of conditions such that
W, will be close to the target value T', while the stan-
dard deviation &, is kept small. Suppose the target
for the mean is T as indicated. In this case, the VM
approach will first restrict &, = T. Four points (A,
B, C, and D) satisfy this restriction. Among them,
point A has the minimum variance and thus is the
“optimal” setting.

Studying the behavior of &, and W,, it is easy to
see that point E is a better choice than point A. By
introducing a little bias, we may reduce the variance
a great deal. In fact, Point E minimizes the mean
square error (MSE = (@, — T)? + &2).

The MSE criterion consists of two major terms:
the bias and the variance. Since we must work with
an estimate of both response functions, the MSE

X
FIGURE 1. An lllustrative Example.
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criterion allows some disparity around the target,
meanwhile keeping the variance small. This is con-
sidered to be a better approach than the equality
constraints in VM.

Thus, a more satisfactory formulation of the prob-
lem would be accomplished by the following steps:
1. Find a model for w, and w, (both are functions

of x).

2. Find x such that MSE = (&, — T')? + &2 is min-
imized. Note that we have made no specific as-

sumption about the models in Step 1.

Example

To provide a fair basis of comparison with the op-
timization in VM, we analyze the same data set they
used, which is given in Table 1. The experiment, de-
scribed in Box and Draper (1987), was conducted to
determine the effect of the three variables z; (speed),
x2 (pressure), and z3 (distance), on the quality of a

TABLE 1. The Printing Process Study Data

U T T2 T3 Yul Yu2 Yu3 Yu Sy

1-1-1-1 34 10 28 240 1249
2 0-1-1 115 116 130 1203 8.39
3 1-1-1 192 18 263 213.7 42.80
4-1 0-1 82 88 88 86.0 3.46
5 0 0-1 44 178 188 136.7 8041
6 1 0-1 322 350 350 340.7 16.17
7-1 1-1 141 110 86 1123 27.57
8 0 1-1 259 251 259 256.3 4.62
9 1 1-1 290 280 245 271.7 23.63
10-1-1 0 81 81 81 81.0 0.00
11 06-1 ¢ 90 122 93 101.7 17.67
12 1 -1 0 319 376 376 357.0 3291
13 -1 0 0 180 180 154 171.3 15.01
14 0 0 0 372 372 372 3720 0.00
15 1 0 0 541 568 396 501.7 92.5
16 -1 1 0 288 192 312 2640 63.50
17 0 1 0 432 336 513 4270 88.61
18 1 1 0 713 725 754 730.7 21.08
19 -1 -1 1 364 99 199 220.7 133.80
20 0-1 1 232 221 266 239.7 23.46
21 1 -1 1 408 415 443 4220 18.52
22 -1 0 1 182 233 182 199.0 29.45
23 0 0 1 507 515 434 4853 44.64
24 1 0 1 846 5835 640 673.7 158.20
25 -1 1 1 236 126 168 176.7 55.51
26 0 1 1 660 440 403 501.0 138.90
27 1 1 1 878 991 1161 1010.0 142.50
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printing process, that is, on the machine’s ability to
apply colored inks to package labels. The experiment
is a 3% factorial design with 3 replicates at each point.

Since the optimization method VM proposed is
based on the quadratic form of the model, a full
second-order model is required, regardless of the sig-
nificance levels of the model fittings. Assuming the
quadratic models were adequate {see next section),
they fit a response surface for the mean of the char-
acteristic of interest:

W, = 327.6 + 177.0z; + 109.425 + 131.5z3
+ 32.02% — 22.422 — 29.123
4+ 66.0x,25 + 75.5x123 + 43.6x213 (7N

and a response surface for the standard deviation:

Dy = 34.9 + 11.5z; + 15.3x5 + 29.2x3
+ 4.22% — 1322 + 16.8x2
+ 771202 + 5. 1123 + 14. 12523, (8)

Recall that VM sought (z1,x2,x3) that would min-
imize @y, subject to &, = 500, while our approach
seeks (x1, T2, x3) to minimize MSE = (&, —T')? +&2.

Based on such models, Table 2 summarizes the
results of the two approaches. We assume that a
cuboidal region is of interest, that is, —1 < z; < 1 for
i=1, 2 and 3. The VM approach based on a spheri-
cal region constraint leads to the setting (z1,z2,z3)
= (0.614, 0.228, 0.1) which results in an expected
mean of 500 and a variance of 2679.698 (MSE =
2679.698). If we use the MSE criterion, the best
setting is (z1, T2, z3) = (1, 0.07, —0.25) with a slight
bias on the expected mean but a much smaller vari-
ance (MSE = 2005.145, a 25.17% smaller MSE). Note
that such a bias in the mean response is nonsignifi-
cant (at « = 0.05) in the sense that one cannot reject
the hypothesis Hy: © = 500, based on the variability
associated with Equation (7).

We note the following:

1. When extrapolation beyond the original region of
interest is inhibited, a solution for the VM ap-
proach may not exist in general. This is because
the equation &, = ug may not contain a solution
in-1<a; <1l

2. Since the VM solution, if it exists, is always on
target, the expected variance is always equal to
MSE.

3. Using the VM approach, we have found a “bet-
ter” solution in a cuboidal region, (z,,z2,z3) =
(1,0.119, —0.26), which results in a mean of 500
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TABLE 2. Comparison of the Optimal Settings for the Quadratic Model

Method Optimal Setting Wy @2 MSE
Vining & Myers (0.614, 0.228, 0.1) 500 2679.70 2679.70
MSE Method (1.0, 0.07, —0.25) 494.44 1974.02 2005.14

and a variance of 2034.012, (MSE = 2034.012).
Such an “optimal setting” is very close to our
MSE-optimal setting.

The optimization algorithm used here is a stan-
dard subroutine in a nonlinear programming proce-
dure. We used the subroutine BCPOL provided by
IMSL MATH/LIBRARY (1987) on a VAX Cluster
system. Such a subroutine is very flexible concern-
ing the shape of the region. The result given in Table
2, for example, is based on a cuboidal region. Thus,
a constraint —1 < x; < 1 was added to the program.
Likewise, if a spherical region is of interest, then a
constraint x'x < p can be added, for any specific
value of p.

There are several packages available for large/
small scale, linear/nonlinear optimization problems.
In principle, any algorithm can be used here. For
example, Del Castillo and Montgomery (1993) use
a generalized reduced gradient (GRG) algorithm to
optimize VM’s problem with inequality constraints.
Table 3 compares the results taken from Del Castillo
and Montgomery (1993, Table 1). Our results are
based upon the assumptions that extrapolation is al-

lowed, and a spherical region is assumed. Recall that
the dual response surfaces were built based upon the
cuboidal region of (z;,z2,x3). As shown in Table 3,
by allowing a small bias on the estimated mean re-
sponse, the variance can be reduced a great deal.
In the case of p = 3, for example, a more than
25% reduction in MSE was found. In particular,
the setting (z,z2,z3) = (6.4347,—4.2938,1.0371)
for p? = 7.88, if acceptable under operating con-
ditions, will have 500 as its expected value and a
minimum possible variance (expected standard devi-
ation = 0). Of course, the experimenter must remem-
ber that extrapolation is not always reliable. The
GRG algorithm is a classical tool to solve a large
scale optimization problem. Here, we also used a
recent algorithm LANCELOT (Conn, Gould, and
Toint (1992)).

Optimization on the
Best Subset Model

As suggested by VM, the fitness or the prediction
ability of the model is an extremely important con-
sideration when optimizing a dual response problem.

TABLE 3. Comparison with Results in Del Castillo and Montgomery (1993)
(D&M = Del Castillo and Montgomery; L&T = Method Proposed Here)

x'x < p  Method Optimal Setting Dy o2 MSE
1.0 D&M (0.9839, 0.0265, —0.1760) 500 2053.75 2053.75
L&T (0.9831, 0.0036, —0.1829) 494.54 1992.73 2022.78
1.5 D&M (1.1897, —0.2237, —0.1857) 500 1901.41 1901.41
L&T (1.1856, —0.2454, —0.1847) 495.20 1854.79 1877.84
2.0 D&M (1.3395, —0.4261, —0.1544) 500 1802.41 1802.41
L&T (1.3347, —0.4421, —0.1547) 495.51 1761.06 1781.25
3.0 D&M (0.9525, 1.2461, —0.7348) 500 2207.58 2207.58
L&T (1.5651, —.7373, 0.0883) 495.68 1615.88 1634.57
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For models (7) and (8), the R? values are 0.8741 and
0.4542, respectively, which are not very satisfactory
for this purpose. In addition, notice that many terms
are nonsignificant in the full second-order model (see
VM, Tables 2 and 3). However, the limitation of the
MURSAC software (as described in VM) forces the
use of the full second-order model.

To fit the best models for the mean and stan-
dard deviation, we start with the “full” cubic model
(namely, with the terms z1z2z3, z2x;’s, 2’s, z;2,’s,
x;’s, etc.). Several different model selection proce-
dures (stepwise regression, all possible subset regres-
sion, Cp, PRESS, etc.) were employed to ensure the
best subset models

Wy = 314.667 + 177.0x1 + 109.42622 + 131.463z3
+ 66.028x1x4 + 75.472x 23 + 43.583x223
+ 82.792111213 (9)

and

Wy = 47.994 + 11.527x; + 15.323z3 + 29.190x3
+ 29.56611$2$3. (10)

The analysis of variance tables for the mean and
the standard deviation are given in Table 4 and Ta-
ble 5, respectively. Here, the R? values are 0.9570
and 0.4839, respectively (as compared to 0.8741 and
0.4542 in the full second-order models). Conse-
quently, the adjusted-R?, R2, are 0.9416 and 0.3901,
respectively (as compared to 0.8074 and 0.1652).

Under these models and a cuboidal region, the
optimal setting is found to be (z),z2,z3) =

TABLE 4. Analysis of Variance for the Mean Response

TABLE 5. Analysis of Variance for the Standard Deviation

Sum of Mean
Source df Squares Squares F-Ratio R?
Model 4 28948.527 7237.1318 5.157 0.4839
Error 22 30871.972 1403.2715

Variable Partialf p value

T 1.305 0.2052
T2 1.735 0.0967
T3 3.306 0.0032
T1X2Xx3 2.232 0.0361

Sum of Mean
Source df Squares  Squares F-Ratio R2
Model 7 1288838.2 184119.7 60.441 0.957
Error 19 57878.87  3042.26

Variable Partial t p value

T 13.606 0.0001
To 8.411 0.0001
T3 10.105 0.0001
T1To 4.144 0.0006
xix3 4.737 0.0001
T3 2.735 0.0131
T1T2T3 4.243 0.0004
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(1,1,-0.525) with the mean equal to 492.285 and
a standard deviation of 44.01 (consequently, MSE =
1996.6). Such a setting is close to the MSE optimal
setting for a full second-order model, but is far from
VM’s choice.

Concluding Remarks

The concept of a dual response approach is ex-
tremely important in industrial problems. Such an
approach will become increasingly used in the future.
However, we believe that the optimization procedure
given by VM can be further improved. Specifically:
1. The MSE approach is not necessarily restricted in

a full second-order model. In fact, it can handle

more realistic models and much more complicated

models than polynomial models; and
2. Forcing the estimated secondary-response to equal

a specific value as a constraint can be mislead-
ing. One referee pointed out that certain com-
puter packages can set inequality constraints on
the mean response so that some disparity around
the target can be taken into account. This is, in
fact, our basic idea to implement dual response
surface optimization.

Of course, there may be situations where tight ad-
herence to the target is essential. The MSE approach
can be modified to

MSE* = A, (@, — T)% + A2

where A; and A, are pre-specified positive constants.

The user may, as in the case of ridge analysis, eval-

uate various operation settings based on values of

(A1, Ag) that are of interest. Two special cases pre-

viously mentioned are:

1. Ay = Ag = 1, this is the objective function that
was proposed in this paper; and
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2. A1 = oo and Ag = 1, this is the objective function
given in VM and Del Castillo and Montgomery
(1993).

The optimization based upon the criteria of MSE
gives a fairly general method to solve the dual re-
sponse surface problem. It is a natural and ap-
pealing approach. This principle is not only ap-
plied to Case 1 (target is the best), but also to
Case 3 (the smaller the better). Since the physi-
cal measurement of the response is normally non-
negative, it is naturally used to minimize MSE =
@2 + @2. For example, using the full second-order
model, the setting (z1,z2,23) = (—0.524,—-1,-1)
results in an expected mean of 68.99 and a stan-
dard deviation of 21.84. This is apparently better
than VM’s assumption that &, = 60, 75 and 90
(correspondingly, W, = 494.8,585.0,671.7). While
using the best subset model, the optimal setting is
(z1,22,23) = (=1,—1,-0.3602) which has an ex-
pected mean of 60 and an expected standard devi-
ation of 0. On the other hand, VM’s approach will
tend to minimize &,, and fix &, at a wild guess value.
This is certainly not recommended.

The dual response approach will only work well
when the responses are independent (i.e., the mean
and variance are independent). For situations where
such an assumption is violated, it is first necessary to
understand their relationships. Consequently, a dual
response approach seems inappropriate. This needs
further investigation, however.
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