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ABSTRACT

Two-level designs are useful to examine a large number of factors in an
efficient manner. It is typically anticipated that only a few factors will be
identified as important ones. The results can then be reanélyzcd using a projec-
tion of the original design, projected into the space of the factors that matter.
An interestiné question is how many intrinsically different type of projections
are possible from an initial given design. We examine this question here for

the Plackett and Burman screening series with N = 412, 20 and 24 runs and pro-
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776 DRAPER AND LIN

jected dimensions k<5. As a characterization criterion, we look at the number
of repeat and mirror-image runs in the projections. The idea can be applied to

any two-level design projected into fewer dimensions.

1. INTRODUCTION

The purpose of screening designs is to examine a large number of factors
in relatively few runs. It is anticipated that only a few of the factors will be
important and that, once these factors are identified, the analysis can be

refocused and redone with a view to planning what to examine next.

Because screening experiments are conducted at an early stage of experi-
mentation, use of more than two levels of each factor would be unusual and
often wasteful. There is little point in &ying to assess quadratic effects of fac-
tors that may not even affect the response linearly. The two-level Plackett and
Burman (1946) designs form a general class of two-level onhpgonal arrays for
which N is a multiple of four, for all N < 100 (except 92). They are saturated
in the sense that they examine N-1 factors in N runs. For other values of N,
see Seberry (1978).

Whenever N is a power of two, the Plackett and Burman designs are
always 2}{‘” fractional factorials, wimiresolution R =1II (see Box and Hunter,
1961). The 2} series provides some extremely popular screening designs.
They permit estimation of the main effects of all the factors being explored,

assuming that all interactions between the factors can, at least tentatively, be



ignored. Moreover, once the factors of importance have been tentatively
identified, the initial design can then be projected into the dimensions of those
factors. This leads to another 2,’3‘_” design, usually of higher resolution than the
first, depending on specifically which factors have been eliminated. It is easy
to determine what type the reduced design is, merely by deletion of the ignored

factors in the defining relation.

When N is not a power of two (but only a multiple of four) the Plackett
and Burman designs are still useful screening designs, filling the gaps between
N =8, 16, 32, ... and again function as main effect designs if interactions are
ignored. Otherwise, their alias structures are very intricate, and their projected

designs are difficult to characterize.

2. SELECTING COLUMNS FROM PLACKETT AND BURMAN

DESIGNS

When k<N -1 columns are chosen, we might ask how many designs there
are for given k and N. We would like to be able to distinguish designs that are
intrinsically different and those that are obtainable from others via sign changes
in the columns, rearrangement of rows (points), and rearrangement of columns
(re-naming of variables). A complete tabulation of all such designs would be
very extensive, however. A more limited, but nevertheless useful display for
the experimenter, can be made by distinguishing subsets of designs through

their repear and mirror-image patterns, as will now be explained.
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Table 1. Repeat and mirror-image patterns for columns (1,2,34,5)
Sfrom the 24-run Plackett and Burman design

RunNo. 1 2 3 4 5 Repeat & Mirror
1 + + + + + Mirror of #24
2 + 4+ + + —  Mirror of #20
3 + + + - o+
4 + + — 4+ —  Mirror of #15
5 + — + — + Mirror of #16
6 — 4+ — 4+ +  Mirror of #17
7 + - 4+ o+ -
8 - + + — —  Mirror of #10 & identical to #12
9 + + — — + Mirror of #11 & identical to #13
10 + — — 4+ + Mirror of #8 & #12
11 - - 4+ + — Mirror of #9 & #13
12 -+ o+ —  Mirror of #10 & identical to #8
13 + + — — + Mirror of #11 & identical to #9
14 + - - o+ -
15 - — 4+ — + Mirrorof #4
16 — 4+ — + — Mirror of #5
17 + — 4+ — —  Mirror of #6
18 e
19 + — — — —  Mirror of #23
20 - - — — + Mirrorof #2
21 - - - 4+ +
22 — - + + +
23 - 4+ 4+ + +  Mirror of #19
24 - - — = — Mirror of #1

For a specific design, we can determine how many runs belong to mirror-

image pairs (i.e., all signs of one run opposite to the signs of the other run),

how many runs occur in repeat pairs, how many runs occur as mirror-images to

a repeat-pair, how many runs occur in triples, how many singles there are (i.e.,

neither repeats nor mirror-images involved), and so on. For example, if we

choose columns (1, 2, 3, 4, 5) from a 24-run Plackett and Burman design, we
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have (see Table 1) 6 mirror-image pairs (12 runs), 2 repeat pairs (4 runs) and
moreover those 2 repeat pairs are also mirror-images of two other runs, one per
pair (2 runs), no triples, and 6 singles (6 runs). Note that these numbers of
runs add to 24, as they should. A much simpler example is given in Draper
(1985); If we choose any 5 columns from a 12-run Plackett and Burman
design, we have only 2 possible repeat and mirror-image patterns; one with a
repeat pair and ten singles, and one with a mirror-image pair and ten singles.

We note that:

1. The repeat and mirror-image pattern characterization is invariant not
only under changes in column order, but also under the switching of signs in
any set of columns. Obviously, identical designs give the same pattern. How-

ever, it is not known whether or not the same pattern implies identical designs.

2. Mirror-image runs provide points at opposite extremes to each other in
the predictor variable space, each point being farther from its mirror image than

from the remaining points. This is the essential concept of foldover.

3. Repeat runs provide information on pure error. If we wanted to use a
projected design by itself as an investigating tool, and if reduction in the total
number of runs were critical for reasons of expense or time, however, some of
the repeat runs could be eliminated, particularly if it were known that the error
variation were small. (Conversely, if the error were large, repeat runs become
more desirable.} Note that when repeat runs are eliminated, the orthogonality

is lost, causing correlation among the estimates. (A reverse approach is dis-
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cussed by Taguchi (1987) who counts twice some runs performed only once!
This trick of partially supplementing designs can be used to ‘‘restore
orthogonality”’ for a quick, neat, but approximate analysis.)

4. If the projected design by itself were used to estimate main effects and
two factor interactions, the mirror-image runs would not provide mirror-image
levels in terms of the two factor interactions, but ‘‘repeat levels’” instead. This
further de-aliases the main effects from the two factor interactions, and so is

desirable.

3. RESULTS FOR N = 12, 20 AND 24

The three cases presented here cover about the practical range of factors
for screening designs. The 24 run design can handle 23, 22, 21 and 20 factors;
the 20 run design can handle 19, 18, 17 and 16; next in line comes the 16 run
2f7P design, and then the 12 run design, followed by the 8 and 4 run 2f57
designs, to cover the complete range. All through this range of factors, orthog-
onal columns are preserved for the main effect columns. (The details for the
28-run case have also been evaluated but occupy 18 pages of text. For that
reason, they are omitted.)

We first describe the specific way in which the designs we studied were
generated. Plackett and Burman (1946) provide the following rows of signs:
N=12++—-+ +4+—-— —+—

N=20++—— ++++ —+—4+ ———— ++—

N=24++++ +—-4+—- ++—— ++—— +—+—- ———
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Designs are generated by cyclic permutation, row by row, cycling to the
left; that is, we remove the leftmost sign, place it on the extreme right and
move all signs one place back to the left. (Thus, for example, the second row
of signs for the 12-run design is + —+ + + — — —+ — +.) If cycling is done in
any other manner, e.g., cycling right as in Plackett and Burman (1946), or writ-
ing Plackett and Burman columns in row as in Box, Hunter and Hunter (1978),
the columns would have to re-labeled. Apart from that, essentially identical
results would be obtained. Thus these three designs represent all the designs of

this type, without loss of generality.

Because of the cyclic structures of the base Plackett and Burman designs,
we always have (x, xo, ..., X)) = (0 +i, X0+, ..., x,+i) mod n, for any i.
This means that, for any combination of column numbers, we can always find

another combination with x ;=1 that gives the same design. Letting x; always
L N-=2 N-1
be the first column implies that there are only k-1 J° rather than k |» Pos-

sible choices for the remaining columns. This considerably reduces the amount

of computation needed.

We have examined various choices of k-1 columns from the N -2 possi-
ble, and have categorized the resulting designs by repeat and mirror-image pat-
terns and the frequencies with which the various patterns occurred. Tables 2,
3, and 4, show the various results for 2 < k £ 5 and N = 12, 20 and 24,
respectively. We restrict & < 5 on the basis that, in general, it would be

unusual to have more than five active factors when using these designs to
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Table 2. All possible repeat & mirror-image patterns for choosing k columns
from the 12-run Plackett and Burman design

Design Columns
k number chosen Pattern Frequency
2
I
2 4
3 3.1 12,3 [l] 45
2] 113 [1]4
oo wsa BTG 120
HAE 1
5 5.1 1,2,3,4,5 ] 0 80
2 1 10
5.2 123,58 HEH 20

screen factors. Extended tables for k <(N/2)—1 are, however, available from the
authors. Note that designs for ¥ and N—-k—1 are complementary and can be

derived one from the other.

Table 2 exhibits the patterns for the 12-run case. For k = 3, there is just
one pattern which could be obtained via the choice of columns 1, 2, and 3, and
which would produce four repeat pairs, each pair having a single run as
mirror-image. When the design is generated as described previously, runs 1
and 5 form a repeat pair, and run 8 is the mirror-image of both runs 1 and 5.
Three other such sets exist. For & = 4, the design formed by columns 1, 2, 3,
4 has a repeat pair (runs 2 and 10) and three mirror-image pairs (runs 1 and 8§,

3 and 6, 4 and 7) but the repeats and mirror-images are otherwise not intercon-
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nected. For k =5, there are two distinct patterns, one with a mirror-image pair

(design 5.1) and one with a repeat pair (design 5.2).
The pattern notation of Table 2 summarizes these connections. For exam-

4
ple, for k=3, 2 means that a pair of repeats is mirror-image to another run
1 P g

31 14
and this pattern occurs four times over. For k=4, [(2)][%] [(1)] means that

there is an otherwise unconnected pair of repeats, three mirror image pairs and
four singles (a single has no repeats and no mirror images). Design 5.1 has
one mirror image pair and 10 singles, while design 5.2 has a pair of repeats and
10 singles. As a check, note that the cross product Y (sum of elements within
square brackets) X (power of the bracket) = N, where the sum is taken over all
brackets. For example, for Design 4.1, we have

QRH)x1+(1+1)x3+(1+0)x4=12=N. The last column of Table 2 shows the fre-
. . . N-=2 .
quencies for the various patterns; these add up to k1) as already mentioned.

If for k£ = 12, one of the five factor designs were to be used as an experimental
design, the choice reduces to whether a repeat run is required or not. (For a
first order model both choices have the same D-criterion.) On the other hand,
if 11 design factors were assigned to the Plackett and Burman columns at ran-
dom, the frequencies show that the two specific five factor projected designs
will occur in a 180:30 or 6:1 ratio; in only one-seventh of the projections
would a projection with a repeat run occur. Tables 3 and 4 cover the 20-run

and 24-run cases respectively.
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Table 3. All possible repeat and mirror-image patterns for choosing k columns
from the 20-run Plackett and Burman design

Design Columns

k number chosen Pattern Frequency
<72
2 2.1 12 g 18
oer
3 3.1 1,2,3 5 144
414
32 136 ‘1‘ 9
HRILT
4 4.1 1,2.3,4 [1] ol 576
PEIRIE]
42 1,2,3,6 [0] el 192
213 3]'1 ]4
43 1,2,3,16 [2] 1o 48
1 51 10
5 5.1 12,3,4,5 [ ] [ ] 495
1] 1o
2 3[1]2-1]10
5.2 12,3,4,6 [o] 1] 1o 360
2 21 3-1]10
5.3 12,3,4,9 [0] [1] 0 810
211213 1]3[1]5
5.4 1,2,3,6,16 [1] 0] [1 0 270
2 1[1 141
55 12,3414 Hik 'l

]10 360
[

212 2[1]41]5
5.6 1,2,34,15 [1][0] 11 1o 0
. 23512 [2][2][1]5[1]5 405
. 1]lo]Jl1] lo
21[27° [1]5
5.8 1,2,3,6,9 [1][0] [1 0 ®
1]

]41 [ ]10
5.9 1,2,3,6,10 [O 11lo 135
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Table 4. All possible repeat and mirror-image patterns for choosing k columns
from the 24-run Plackert and Burman design

Design Columns
k number chosen Pattern Frequency
6 2
2 21 12 8 2
3 4
3 31 123 ] 132
4
32 13,6 [‘2‘] 99
4 4
4 4.1 1,2,3,4 B] [}] 132
2 8
42 1,2,3,5 . 528
3 2-2-2[2]2[1]2
43 123.6 [1] Ak 528
r 12 6
44 1238 (3) E ] 352
2 6 6
5 5.1 123.4,11 E] [}] [(1)] 495
2[4 72 4 6
52 12347 B] g [}] [(1)] 2310
2 6 8
53 123438 [g] [}] [(1)] 1,320
2[~ 14 2 6
5.4 12,349 E] g [}] [(1)] 1,100
118118
5.5 123414 [1] [0] 220
[~ 1471 141 18
5.6 123,5.15 3 } (1) 1,485
[~ 121 161 16
5.7 12,3,6,9 (3) } (1) 165
37212 121 4[1]6
5.8 124,510 [0]_1_[0] [1] : 110
[~ 761 7121 18
5.9 12,679 (2) } (1) 110
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Certain general statements can be made. For any Plackett and Burman
design projected into & = 2 dimensions, we obtain a 2% full factorial, N/4
times over. It follows that every run has N/4 repeats (including itself in the
count) and N/4 mirror-image runs. For all projections into k = 3 dimensions,
we can make the following general characterization. The N points that arise
after projection into the three-dimensional space of (x,, x,, x,,), where u#v#w

are any of 1, 2, ..., k, will always consist of a combination of
(2) a 2°7! design with x,x,x,, = 1, occurring f, times (say), and

(b) a 227! design with x,x,x, = ~1, occurring f _; times (say).
Although the values of f; and f_; will depend on the particular choice of
u,v, and w, they will always satisfy f,+f _;=N/4. Specifically, for N = 12;
20; and 24, the combinations (f ,f_1) = (2,1); (3,2) or (4,1); and (3,3) or (4,2)
can all arise, as the tables indicate. (These numbers are not affected by the
choice of the particular Plackett and Burman design selected.) For k 2 4,

further study is needed.

4. THE USEFULNESS OF THESE PROJECTION RESULTS

The Plackett and Burman screening designs are most frequently performed
in situations where only a few of the many factors investigated are expected to
be useful for future study. Such a situation has been called effect sparsity by
Box and Meyer (1986). Thus, once the response results have enabled us to find

the "large effects”, often via a normal plot, it becomes appropriate to project
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the design used into the smaller number of dimensions identified with these
large effects. Knowledge of the geometry of all possible projections is useful

in several ways.

1. If no prior knowledge of which predictor variables might be important
is available, the variables would typically be randomly assigned to the columns.
Tables 2-4 show the various frequencies of all the projections into k=2-5
dimensions that are possible, and how often they occur. We see, for example,
that a "desirable” five-factor projection like 5.5 in Table 4, which is a three-
quarters fraction of a 2° (John, 1962), will occur only rarely (probability

220/7315=0.0301), about 3% of the time, when a 24-run design is used.

2. If prior knowledge of which predictor variables might be important
does exist, however, we can use it to allocate variables to columns in an advan-
tageous way. Continuing the example in (1), if five variables were thought
likely to have real effects, they could be allocated to columns 1, 2, 3, 4, and 14
(see 5.5 in table 4) and the desirable projection would then be attained if the
prior information was substantiated by the data. Similarly, suppose we decide
to screen up to 23 variables in 24 runs, but believe that four specific variables
are likely to be important. Entering Table 4 with k=4 shows that the projection
4.2, obtained from columns 1, 2, 3, and 5, consists of a full 24 plus a 24-1
design. Thus the four variables of interest may sensibly allocated to columns 1,
2,3, and 5. Other choices shown in Table 4 have projections whose points are

more irregularly deployed in the four-dimensional projected space.
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3. Because all the possible projections are known from Tables 2-4, the
experimenter can decide upon additional follow-up runs to achieve whatever
pattern appears desirable. Completion, in the projected spaces of k=2-5 factors,
of full and 27 fractional factors when N =12 has been discussed by Lin and
Draper (1992). Similar extensions can be made using the results in Tables 3

and 4.

Note that, even when all columns of the design are not used initially, the
unused columns can provide estimates of errors. The same is true of the
columns that do not belong in the chosen projected space. Projections of the
Plackett and Burman designs are useful in other (non-screening) connections

also:

4. They can be used as the ‘‘cube’ portions of small composite designs (see,
Draper, 1985; Box and Draper, 1987; and Draper and Lin, 1990). The
pairwise orthogonality of the columns of the X martrix, where the model
y = XP + € is to be fitted to the response vector y, is an important feature
of these designs in the first order case. When axial points are added to the
Plackett and Burman points to form a second-order composite design, pair-
wise orthogonality of any main effect column with any two-factor interac-
tion column in the new X is preserved. The pure quadratic columns of X
are, of course, not orthogonal to one another, nor to 1, the column of 1’s,
arising from the intercept in the model, and the two-factor interactions are
not mutually orthogonal, though they are orthogonal to the pure quadratic

columns.
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5. A different connection is found in the area of mixture experiments. If
there are ¢ mixture ingredients, (g—1) columns of a Plackett and Burman
design can be used to allocate two levels of each of (g—1) ingredients.
The g-th ingredient is then assigned levels to make the ingredients sum to
unity, or some other required value. (A variation of this method is needed
when there are additional constraints on the ingredients.) See, for exam-
ple, Snee and Marquardt (1974, 1976) and Piepel (1990). An indirect

application of our results to Piepel (1990) is discussed in next section.

5. AN INDIRECT APPLICATION TQ MIXTURES DESIGNS

We see from Table 2 that only one essentially different choice of four
columns from the 12-run Plackett and Burman design is possible. Because the
full design is unique in the same manner, it follows that only one essentially
different choice of seven columns is possible. Piepel (1990) chooses five 12
run designs, P, , P, , ..., Ps, say. By rearranging column order and chang-
ing signs, we can establish that Piepel’s five choices are initially equivalent to
one another as follows (apart from a rearrangement of run order):

P, : Plackett and Burman columns (1,2,3,4,5,6,7).

P, : The changes (-8,-1,10,-5,-6,11,-3) make the design equivalent to P;.
P; : The columns (5,6,7,8,9,10,11) form a cyclic permutation of P;.

P, : The changes (-10,-11,-6,2,-1,-3,9) make the design equivalent to P;.

P; : The reordering (7,4,10,2,3,8,9) makes the design equivalent to P;.
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In Piepel’s specific application to mixtures, PP, ...,P5 provide
different mixture designs, however, because of (i) the allocation of the high and
low levels to the + and -- signs, and (ii) the ‘‘choice of levels back-correction”
needed when the initial allocation of the last mixture level (or the last two, or
last three; see Piepel, 1990, Table 3) causes the mixture total not to add to
unity at first. Nevertheless, it is clear that any variance criteria used to assess
the various Piepel first order mixtures designs cannot vary much, because the
initial design before mixture level allocation are all essentially the same. This
is evident in the calculations presented in Piepel (1990, Table 4), and a similar

flatness can be observed in Piepel (1990, Tables 6,7).

6. REMARKS

1. Another possibility for characterizing projected designs is by a criterion
of design optimality, such as D-optimality. The d-value is defined as
d = XXV /N, where p is the number of parameters in B, so that X is Nxp.
Note that, because of the complete orthogonality of Plackett and Burman
designs, the first order matrix X'X ,where X = ( 1 s Xy Xy, Xy ), S
diagonal with all diagonal elements equal to N for a general N-run case, and
therefore has the determinant |X'X|=N®+*D  This implies that, for first-
order fitting, the d-value will not be affected by the specific choice of k

columns. The experimenter can thus choose a design using Tables 2-4, know-

ing that all are D-optimal and so equally good from that point of view.
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2. If we add a column of +1’s to a Plackett and Burman design, we
obtain a square N by N matrix (H, say) with orthogonal columns such that
HH = NI Such a matrix is, of course, a Hadamard matrix. For a lucid dis-
cussion, see Hedayat and Wallis (1978). Hadamard matrices of order higher
than 12 are not unique. Hadémard matrices not equivalent to the Plackett and
Burman designs will produce some patterns different from those in this paper.
This can be seen by performing computations on the five non-equivalent
Hadamard matrices of order 16, and three (namely two in addition to the design
discussed already) of order 20, given in Hall (1961, 1965). For related details
of the 16-run case, see Lin and Draper (1991) and Sun and Wu (1993). A
complete search for N=20 shows that no projections other than those in Table
3 arise when k=2, 3, and 4. For N=20 and k=5, all the projections of Table 3
occur for all designs and there is, in addition, a new projection of the type

T
ol [11lo
that does not arise from the Plackett and Burman design. For N=24, the

number of non-equivalent Hadamard matrices is not known.

3. Hadamard matrices can be characterized using y(a), the quadratic
character modulo N-1. The orthogonality of Plackett and Burman designs as

main effects designs is related to the fact that for any i/,j=1, ... ,N—1

N-1
¥ oxe+) xx+j) = -1,

x=1
(usually stated in terms of the Legendre symbol, see, e.g., Hedayat and Wallis,

1978). This sum is directly related to the (i,j)th element of the X'X matrix for
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the main effects model. To investigate questions relating to second-order

designs, one could look at similar sums

N-1 N-1
I+ xG+j) x(x+) and Y xx+) x(x+j) x(x+) xx+m),

x=1 x=1
which are related to the elements of X, X; and X;X,, respectively, for
ijim=1,...,N-1, where X; and X, are the portion of the X matrix

corresponding to main effects and two-factor interactions, respectively.

4. Vijayan (1976) has shown that any square N by N Hadamard matrix
with N—d columns can be extended to the full matrix essentially uniquely only
for d<3. When only d zero-sum orthogonal columns are given, knowledge of

the patterns given here will guide one to an identification of the full design.

5. Srivastava and Anderson (1970) also select columns from some Plack-
ett and Burman designs. Their work and orientation are different however, in
several ways. They make their selections from balanced incomplete block
designs, some of which are equivalent to Plackett and Burman designs. They

also use foldover, and do not study all the possibilities that could arise.
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