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SUMMARY

Estimating component and system reliabilities frequently requires using data from the system level.
Because of cost and time constraints, however, the exact cause of system failure may be
unknown. Instead, it may only be ascertained that the cause of system failure is due to a
component in a subset of components. This paper develops methods for analysing such masked
data from a Bayesian perspective. This work was motivated by a data set on a system unit of
a particular type of IBM PS/2 computer. This data set is discussed and our methods are applied
to it.
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1. Imntroduction

Failure data from systems are often analysed as a means of estimating the reliability
of the systems’ components. Such component estimates are useful since they reflect
the reliability of components in actual degradation that occurs within the system
manufacturing, assembly or transportation process. Once obtained, these com-
ponent reliability estimates can then be used to predict the reliability of new systems
better. When a complex system fails, however, one or more modules each containing
components are usually replaced to bring the system back to an operating state. The
analysis of life data on complex systems constructed from many components is thus
often complicated because the exact cause of failure is not precisely known. Rather
the failure cause may only be isolated down to some subset of components. Such
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data are said to be masked since the cause of failure is masked from view. Masked
data are becoming more widespread owing to the modular nature of today’s complex
systems.

For example, the data in Table 1 result from a test of the system unit (no monitor
or keyboard) of a particular type of IBM PS/2 computer, where the times to failure
have been suitably transformed. The system is viewed as being made up of three
components in a series, i.e.

(a) the planar (motherboard),
(b) the direct access storage device (disc drives) and
(c) the power supply.

682 systems were tested. Among them, eight failed and 674 were right censored at
various times. The cause of failure is indicated below, specifying the set of com-
ponents known to have caused system failure. For example {1} indicates that
component 1 is known to have caused failure, whereas {1, 3} indicates that the cause
of failure has been isolated to components 1 and 3.

Depending on the exact cause of failure, the technicians are sometimes unable
to determine the exact cause. Using only basic diagnostic equipment they can some-
times find the true cause, whereas at other times they can only narrow the cause
down to one of several possibilities. For example, when the cause of failure is listed
as {1, 3}, this indicates that it was only possible to isolate the cause down to either
the planar board (component 1) or the power supply (component 3). The engineer
is forced to work with the masked data to estimate the reliability of the various
components within the system. With the estimates in hand, an evaluation can still
be made of the areas within the system where improvement efforts are likely to yield
the best results. Additional engineering examples are given in Usher and Hodgson
(1988) and Miyakawa (1984).

Previous work on the analysis of masked data has focused on point estimation;
for example, see Guess ef al. (1991), Usher and Guess (1989) and Usher and
Hodgson (1988), and references therein. In this paper, we discuss a Bayesian analy-

TABLE 1
IBM PS/2 computer failure datat
Time to failure Cause of failure
(h)
1 {1}
1 {1}
1 {1, 3}
1 {1,2,3}
16 {3}
17 {2,3}
21 {2}
222 {2}

1348 unfailed systems were removed at 67 h; 246
unfailed systems were removed at 200 h; 26 unfailed
systems were removed at 800 h; 54 unfailed systems
were removed at 4000 h.
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sis, obtaining the relevant posterior distributions on which we base our inferences.
Section 2 briefly discusses the general Bayesian approach under the assumption of
exponentially distributed lifetimes. The analysis of the data described above is dis-
cussed in Section 3. For a J = 2 components system, closed form expressions for
the Bayesian approach can be explicitly derived and are given in Section 4. Some
concluding remarks are presented in Section 5.

2. General Bayesian Approach

The field of reliability is well suited to the use of Bayesian methods. As com-
ponents for a system are developed, knowledge about performance is gained. A
practitioner would probably like to model that previous experience and to incor-
porate it into the analysis. We shall illustrate the general Bayesian approach assum-
ing exponentially distributed component lifetimes. The method can be extended to
other distributions, although the computations may be somewhat complicated.

Let T; be the random life for the ith system where i =1,.. .,n in a sample
of n systems each consisting of J components in a series. Let T;s be the random
life of the jth component in the ith system where j =1,...,J. Note that T; =
min(Ty, . . ., Ty) for i = 1,. . .,n. We assume that the T; are independent. The
dependence among the lifetimes of the components could be modelled by using a
dependent multivariate distribution and a competing risk model. (See, for example,
Barlow and Proschan (1981) and Basu and Klein (1982).) For each fixed j, the
Ty . . ., T,; would represent a sample of size n from component j’s life distribu-
tion F;. We require the very mild condition that F; has a density f; indexed by a
parameter vector 6. For each j, a different number of parameters in 6; is allowed
if needed. Let F;(f) = 1 — F;(¢) be the reliability of component j at time z. Let X;
be the index of the component causing the failure of system i. Since the life distribu-
tion is continuous, the cause of failure K; is unique. Note that K; is a random
variable and that K; may or may not be observed. Before the sample is taken,
there is the minimum random subset M; of components known to contain the true
cause of failure of system i.

After the sample data have been obtained, we have M; = S; C {1, 2, .. ., J}and
T;=t where i=1,...,n. As t;is the realized sample value of T;, so S; is the
realized sample set of M;. The observed data here are the points (¢, S)),. . .,
(t,, S,). The full likelihood for these data is given by

n J
Ly= ]I [ 2 {fj(t,-) I F)PWM;=S|T; =1, K, =j)” : 1)
i=1Ljes; s=1,5#j

The term f;(t;) IL;_;5.;F(t;) arises from system i failing at time ¢, caused by j
(component j), and P(M; = S;|T; = t;, K; = j) denotes the conditional probability
that the obsérved minimum random subset is S;, given that system i failed at time
t; and the true cause was component j. The product in equation (1) is then taken
over each of the observations to yield the full likelihood Lg.

For industrial problems, the masking typically occurs because of constraints of
time and the expense of failure analysis. Schedules often dictate that complete
failure analysis (to determine the true cause of failure) be curtailed. In such settings
it is reasonable to assume, for fixed j’e S;, that
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PWM;=S;|T,=t, K;=j')=PWM,; = S;|T; = t;, K, =j) for all jeS;. (2)

Assumption (2) states that the masking probabilities are independent of the causes
J €S, or in other words that the probability that a particular subset of components
is masked is the same regardless of which of the components in the subset is actually
the cause of failure. Furthermore, if P(M; = S;| T; = ¢;,, K; = j) does not depend on
the life distribution parameters, the reduced likelihood is

n J
Ly =]] [2 {f}(ti) 11 Fs(ti)” . 3)
i=1ljes s=1,5%j
Maximizing Ly with respect to the life parameters is now equivalent to maximizing
L. This is similar to the usual derivation of a time-censored (and not masked) data
partial likelihood. The dependence case where assumption (2) is violated is currently
under study and will be addressed in a separate paper. See Guttman et al. (1994).
In many situations, such as the IBM PS/2 example, the system life data are right
censored. The reduced likelihood (3) can be generalized (Guess et al., 1991) to

J af g 1-a;
Ly = H[{ij(t,-) 11 E(t,-)} {H Fs(t,-)} ] )

i=1 L jes; s=1,5%j
where
1 if system / is uncensored,
o; = . .
0 if system i is censored.

Assuming that each component life has an exponential density with failure rate
A J=1,...,J, we find, since F;(f) = exp(— A;?), that

Ly = f_[ >, {/\jexp(—)\jt,-) 11 eXp(—/\sti)} =exp(-TO)I] 2 A )

i=1 jes$; s=1,s#j i=1 je$;

where T = X7 t; and 6 = L/_,A,. If we use the usual invariant improper prior,
w(Ap, ..., Ay) o 1/I1_, A, for example, the posterior of Ay, ..., A,is then p(A,, .. .,
As|data) oc Lg/IIJ_, A, from which Bayesian inferences follow. The above prior is
appropriate when there is only vague prior information available on the A;. It
provides a useful comparison point with frequency-based inference and a base-line
for examining the influence of informative priors. This prior is used throughout
this paper. We note, however, that strong prior information could frequently be
effectively modelled by gamma priors. In this case the formulae derived below
would require some simple modification.

For any specific system G, the failure time of component j, as mentioned above,
is Tg,. The reliability of system G at time ¢ is

J
P(T>21)=PTg >t forallj=1,...J)= exp(—z A,.t)
j=1

= exp(—6t) = R(5; ?). ©6)

Consequently, inference on 6, or equivalently, for fixed ¢, R(5; ¢), is of interest. In
addition, we frequently want to carry out inference on the individual component
reliabilities. The reliability of component j at time ¢ is R; = R;(A;, #) = F;(#) =
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exp(—A;?). Posterior distributions for the component reliabilities can be obtained
by transformation of variables. For right-censored exponentially distributed system
life data, we obtain from equation (4) that

n aj

LR=exp(—n)H(2 A,.) . )
i=1 \jesS;

We now return to the data described in Section 1.

3. Analysis of IBM PS/2 Data
For the data in Table 1 described in Section 1, it follows from equation (7) that
Lg = exp{—T(A + A, + M) IAMANA + A)° (A1 + M) (A, + M)A + Ap + M)

Using the usual non-informative prior, p(A;, A;, A3) & 1/A; A, A, gives the posterior
of (Ay, Az, A3) as

P(Ap, Ay, Az |data) = Kexp{— (A + Ay + A)THH(A, Az, A;) ®
where
H(Ay, Ay, A3) = A A + A) (A + A)(A + A + A3)

and K~! = 70/T? by integrating out equation (8) term by term. Note that the total
time on test 7 = L% #; = 309596. The marginal posterior for each A; can be
obtained via term-by-term integration of equation (8):

p(A|data) = T2 exp( MTAGBMT? +16M0, T + 20); )

p()|data) = TZ 75 SXP(= 2 T)WBMT? +16),T + 20); ©)

Pp(A;|data) = T exp( MTAT? +8M3T2 + 240, T + 24). }

These marginal posteriors are plotted in Fig. 1. Note that A; and A, are identically
distributed. Moreover,

E(A,|data) = E(A,|data) = %—, = 9.5978 x 10~¢,
var (A | data) = var()A,|data) = 13324 = 3.6656 x 1011,
E()\;|data) = 2 _ 6.6446 x 10~
3 35T

3636

var(); | data) = 3572 = = 3.0967 x 10~11,

The corresponding standard errors are large, compared with the estimates. We may
use the marginals in equations (9) to find posterior probability limits for the A;s
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Fig. 1. Marginal posterior for each A: ———, Ay, Ag; **°°* » A3

numerically in the usual way. However, we note that there is an interesting connec-
tion of the densities in equations (9) with x2-distributions, so that existing routines
for the cumulative density functions (CDFs) of x2-distributions may be utilized.
To sketch this connection, we first note that, in general, if A has the distribution

Tm+l
SfA|m;T) = Tm+D

when m >0, A > 0 and zero otherwise, then it is easy to show that W = 2TA ~
X3m+1)- Hence, from equations (9), we have

2 oz man+ 2| ronlas Tyan + Al ma
70

A" exp(—TA),

P(Alga)_

=%P( X2 < 2Ta)+ P(x6 2Ta) + P(x4 2Ta),

9 16 l
P()\zsa) =35 P(x§ < 2Ta) + P(X6 2Ta) + P(X4 2Ta),

P(A;3 < a) = P(Xg 2Ta) + v P(Xs 2Ta) + P(x4 2Ta) + 12 P(x% < 2Ta)

and it is easy to see that iteration with respect to a using readily avallable standard
x? CDF routines will produce percentage points of the CDFs for the A;s, so that
Bayesian probability intervals may be constructed. This procedure was used to find
95% intervals, which are
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(0.8673 15.0901

) = (1.4007 x 1076, 2.4371 x 10~%),

2T ’ 2T "
0.1459 '12.8629) _ (5 3559 x 107, 2.0774 x 10-9) o0
ot ) =& » &

for A; (and A;) and A; respectively. An examination of the posterior means of the
A;s, the probability intervals and the graphs of the marginal posterlors in Fig. 1
indicates that the failure rate for the power supply (component 3) is smaller than
the failure rates for the other two components.

For inference on a system’s lifetime, paralleling the work in Section 2, we have
that R = exp(—67) = R(3; #), with § = A; + A, + A;, and R is a decreasing function
of §, so that inference on R follows from inference on 6. Now, to obtain the
posterior for 8, we use the transformation of variables

6=A1+A2+A3, 7=A1+A3, T=A2+A3
in equation (8), and by integrating out vy and 7 find
p(5|data) = ” 2, v, 7| data)dydr = %8) 57 exp(— T9), a1
which, interestingly, is to say that, conditional on the data,
2T6 = 2T(A1 + Az + A:;) ~ X%6’
Hence, a 1 — o two-sided probability interval for § is

[ay, @] = [X%G,l—a/Z/ZTQ X%s,a/z/ZT],
so that a 1 — « two-sided probability interval for R is

[exp(—a,?), exp(—a,?)].
One-sided intervals for R are similarly constructed. We provide a graph of lower
1 — « probability bounds, say Ry, for R for various « and ¢, in Fig. 2, for use in
a probability interval for R of the form [R,, 1].
From equation (11), for fixed ¢ (¢ > 0), letting R = exp(—4t), we have, for
O0<R<1,

7
p(Rldata,t)—PT(:){( logR)} (tR)"'R”"* = 5'8 (;kt’—fR—yRT/f-l. (12)

Using equation (12), we find that
E(R|data,t) = (1 + ¢t/T)"8. (13)

We graph equation (13) in the same figure as the lower bounds for R (Fig. 2). As
expected, this figure well illustrates the fall-off of the system reliability as a function
of ¢. For this particular example, high or moderate system reliability (e.g. R > 0.8)
can be obtained for a system lifetime, which is less than about 2500, with a
high posterior confidence. Posterior 95% probability intervals for the component
reliabilities at any given time can be obtained by applying equations (10) to
R;=exp(—- A0, j=1,2,3.
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Fig. 2. Survival functions for various significance levels

4. J =2 Components System

The special case of a J = 2 components system where closed form expressions
for Bayesian analysis can be explicitly derived is now presented. For larger systems
(J > 2), writing down the posteriors in general becomes difficult as a consequence
of the large number of potential S;, However, any particular data set can be
handled as was illustrated in Section 3. Consider a two-component system, J =2
with n systems put on test. Let n; and n, be the numbers of system failures for
which the cause of failure is known to be components 1 and 2 respectively, while
n;, denotes the number of failed systems where the cause is not directly known.
Then,

P\, M| data) = Kexp{— T(A + A)JAT AT (A + M)

=Kexp{—T(A\, + \)} { 2 (’72) Mu+j—lAgz+nu—j—1] (14)

j=0
where we: have obtained

n2
K'=T"3; {(”le) L(ny +j)I(ny + ny, —j)}
j=0
by integration, n* = n, + n, + n;,. Such a posterior is plotted in Fig. 3, for T =
209.8, n, = 14, n, = 12 and n;, = 4 as an example. The scales for A; and A, range
from O to 0.15 in Fig. 3.
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Fig. 3. Posterior for the J = 2 components system: (ny, ny, ny3, T) = (14, 12, 4, 209.8); x-y-range
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Consequently, the marginal distributions of A, and A, may be obtained by
integration in equation (14) to be

I'(n, + ny, — j)

12
-~ Tre+nz—j ’

p(M|data) =K D, (’lle) Anti-lexp(= A\ T)

Jji=0

n (15)
p()\|data) = K Z

12
Jj=0

(nju) A==l exp(— A, T)i;'gf_ﬁ’

A plot of these marginal posteriors is given in Fig. 4 for the situation used in
Fig. 3. It is clear from Fig. 4 that A, tends to be larger than A,. Marginal
posteriors for the component reliabilities R; = exp(— A7), j = 1,2, can be readily
derived from equations (15). We may further deduce that

<G (mz) D@y +j + DTy + ny, = j)
E(\|data) =K Y, (™ ,
hldae) = K 53 (,) hre
o L(n, + H)T(ny + ny —j+ 1) (16)
E(),|data) =KZ;)("{2) 1TJ T2n‘+1 2 =J .
j=

These expectations may, of course, be used as point estimators for the respective
As (i=1,2).

The maximum likelihood estimates (MLEs) are (see, for example, Usher and
Hodgson (1988))

Ao Tm gty
! T ny + n, (17)

n,ng +n, + ni

A, =
T n+n,
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Fig. 4. Marginal distributions for A; (: yand Ay (.- ): (ny, ny, nyp, T) = (14, 12, 4, 209.8)

It is interesting that the MLEs are identical with the Bayes estimates given in
equations (16). (See the detailed derivation in Reiser ef al. (1993).) We have not been
able to prove this equivalence for J > 2. In other words, if not much prior informa-
tion is available, the Bayes estimates based on improper non-informative priors are
as good as the MLEs. In addition, we may utilize equations (14) and/or (15) to
provide Bayesian probability regions or intervals for (A;, A;). This can require
substantial computation as was illustrated in Section 3 for the PS/2 data.

We turn now to inference on the system reliability R, which in this case is, from
equation (6),

R(, t) = exp(—6?) (18)
where 6 = A; + A,. We proceed by first determining the posterior of 8, using the
transformation

d=A + Ay v=A
iI-IIl equation (14). Note that 0 < y < §, and the absolute value of the Jacobian is 1.
ence,

hy

(3, v|data) = K exp(~8T) { > ( j) ®- 7)"'”“7"’*"""“}
ji=0

and the posterior of & is now

n 8
p(ﬁldata) = Kexp(—6T) Z {(’312) So(a _ ,y)n1+j—l,ynz+mz—.i—ld,y} .

j=0
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Consequently, it is easy to see that (see Reiser et al. (1993) for details)
p(6|data) = K*exp(—6T)6™ 1, (19)

where, normalizing directly, K* = T"7/T(n*). It follows that the posterior of &,
given the data, is such that

278 ~ x%nc.
Thus, it follows that
E(6|data) = n*/T,

which may be obtained directly from equation (19), and a two-sided 1 — « posterior
probability interval for & is given by

1 1
[ﬁ x%n‘;a/29 ﬁ X%n'; 1 —a/Z] . (20)

Using expressions (18) and (20), it is easy to see that a 1 — « posterior probability
interval for R, the system reliability at time ¢, is

xp| — == 1 exp( — =2
€Xp 2T X2n%;a72] 5 €XP 2T X2n%;1-ar2] | -
This analysis also holds for censored data. If there is no censoring, n* = n, + n, +

n;, = n, whereas for censoring n* < n, since for o; = 0 neither the cause nor the
time of failure is observed.

5. Conclusions

We have presented a Bayesian approach for estimating the reliability of com-
ponents through the analysis of masked system life data. Under the assumptions
of independent masking and exponentially distributed component life, we have
shown that masked system life data can be effectively used in the estimation process.
Such an analysis is often needed in industrial settings because of the prevalence of
masked data. Although our analysis used non-informative priors, it is readily seen
that the use of an informative gamma prior for the various A;s would not lead to
much further complication. The case of dependence masking (i.e. when assumption
(2) does not hold) that does lead to further complication is the subject of another
paper. See Guttman et al. (1994).
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