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SUMMARY

Taguchi! has provided 18 orthogonal arrays which have been widely touted as useful frameworks for
planning experiments. Thirteen of these are ‘saturated designs’, that is, they are appropriate for
investigating (N — 1) factors in N runs, thus using the full capacity of the design. Here, the other
five ‘non-saturated’ designs are discussed. By creating additional, orthogonal columns which provide
estimates of interaction effects, we can essentially wring out some additional information over and
above that suggested by Taguchi, without additional cost. In particular, if only the linear effect is of
interest for any specific factor, one can accommodate more factors than the number suggested by

Taguchi. An example is given for illustration.
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INTRODUCTION

The scientific approach to quality improvement is
becoming more widespread in industrial practice.
The application of statistical methods, in particular
the design of experiments, has had considerable
impact. The ideas of a very successful leading quality
consultant in Japan, Dr. Genichi Taguchi, have been
adopted by many American companies in both
manufacturing and scientific contexts. The exper-
imental designs employed by Taguchi,! known as
orthogonal arrays, are essentially fractional fac-
torials. These fractional factorial designs have been
used for many years, certainly since Yates? wrote
about them in 1935. About 20 years later, large
compilations of two-level, three-level and mixed-
level (two- and three-level) designs were made avail-
able by the U.S. National Bureau of Standards.’~>

In applying Taguchi’s (or any other) designs, cer-
tain basic questions need to be addressed:

1. What response (output) variable(s) y should
be recorded?

2. Which input factors, x; might affect y, and how
might they interact?

3. Over what region in the input space should
experiments be performed?

4. How many levels are needed for each factor?

These questions have long been treated as ‘given
by professional knowledge’, but typically need very
careful consideration. Once this is done, the choice
of the proper design and the column assignments is
fairly routine.

Taguchi® has offered 18 useful designs which can
be classified into three groups based upon their
practical characteristics; namely, two-level, p-level
(p = 3), and mixed-level designs. The two-level
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designs in group I, including L,(2%), Lg(27),
L15(2'), L16(2%%), L3(23") and L.(2%%), are essen-
tially Plackett and Burman® type designs. Note that
Plackett and Burman® also provided L,o(2!%),
L24(223), Lo,g(2%7) ..., etc., namely orthogonal
arrays of L,(2%1), for t = 25 (excepting t = 23).
Designs in group II, including Lo(3%), L.c(4°),
L,5(5%), L,7(3'3), Ley(4%') and Lg(3%°), are the so-
called orthogonal arrays of strength two.”: 8 Designs
in groups I and II are saturated in the sense that
each degree of freedom is used to estimate one main
effect, and all degrees of freedom are used. Designs
in group III, including L,s(2' X 37), Li,(21 x 49),
L3s(2° X 3'%), L3(2!' x 3'%), Lso(2! X 5') and
Ls4(2! X 32%), can be constructed by the methods
of references 9 and 10. Among these six orthogonal
arrays in group III, note that only the L;5(21! x 312)
array is saturated; the other five arrays are not.
The unused or unaccommodated columns in
orthogonal arrays do not typically estimate ‘error’,
but interactions (or linear combinations of
interactions). If separate estimation of the standard
deviation is possible, as is true for most of Taguchi’s
experiments in which replicates are usually made,
estimates from unaccommodated columns provide
excellent additional information. Treating these esti-
mates as error causes a too-large estimated variance,
which provides reduced capability for detecting sig-
nificant factors. The unaccommodated columns have
no impact at the experimentation stage, of course.

Example

Suppose four two-level factors (A, B, C, D) are
under study. Estimates of the two-factor interactions
A X B and A X C are also required. An Lg array
is thus employed. Through the aid of an interaction
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Table I. Simulated data using the Lg array

Run 1 2 3 4 5 6 7 Observations
A B AB C AC e D Yi
1 -1 -1 -1 -1 -1 -1 -1 3309 31-45
2 -1 -1 -1 1 1 1 1 2113 19-26
3 -1 1 1 -1 -1 1 1 13-59 13-55
4 -1 1 1 1 1 -1 -1 18-68 24-69
5 1 -1 1 -1 1 -1 1 1295 16-39
6 1 -1 1 1 -1 1 -1 561 3.74
7 1 1 -1 -1 1 1 -1 343 2:42
8 1 1 -1 1 -1 -1 1 14-40 15-20

table (see, for example, Reference 1, p. 1129), col-
umns 1, 2, 4 and 7 are assigned to factors A, B, C
and D, respectively. Two replicates are made for
each experiment. The results are given in Table I.
In this case, column 3 is for the A X B interaction
and column 5 is for A X C. Note that column 6 is
unused, and thus the symbol ¢ is attached to it.

Table II shows the estimated effects for A, B, C,
D, A X Band A X (C effects, as well as the analysis
of variance (ANOVA) table. Factor A appears to
be the only significant effect. The overall R? is 62-9
per cent and the mean square error (MSE) is 52-43
for the estimated error variance of o?.

However, if we take the unaccommodated column
e into account, the estimated effect for e is 5:25 and
corresponding sum of squares is 442-23. Because of
the property of orthogonal columns, the sum of
squares and the estimated effects remain the same
for all other factors. Accordingly, the sum of squares
for error becomes 29-63 (so that the mean square
error then is 3-70, a much smaller estimated value
for 6%). The R? increases to 97-7 per cent (compared
to R? = 69-9 per cent originally). Besides the main
effect A, the effects B, A X B and e are now ident-
ified as significant effects. What does the column e
stand for? From the interaction table, we see that
column 6 is for the A X D (= B x C) interaction.
Although this interaction was not of interest
initially, we see that use of the e column as ‘error’

leads to faulty conclusions. If the estimated effect
of any unaccommodated column is indeed non-sig-
nificant, then it can be treated as ‘error’. Otherwise,
one should identify which interaction effect(s) it
estimates.

For Group I and II arrays, the confounding pat-
terns are well-understood (for example, References
11 and 12).

THE SUPPLEMENTARY ORTHOGONAL
COLUMNS FOR UNSATURATED CASES

Among the 18 arrays suggested by Taguchi, five
arrays are not saturated. Table III shows that there
are 2, 3, 6, 4 and 2 unused degrees of freedom in
Lig, L'35, L'36, L'so and Ls,4 respectively.

The corresponding supplementary orthogonal col-
umns are given in Tables IV, V, VI, and VII for
Lg, L'3s, Lso and Ls, respectively. These columns
are apparently new. For the case L,,, see Reference
9. We can use these columns to (a) locate interaction
effects, and/or (b) accommodate new factors.

(a) Using the supplementary orthogonal columns
as interaction columns

The supplementary orthogonal columns represent
certain types of interaction. Specifically, the two
supplementary orthogonal columns @ and b rep-
resent the interaction between factors 1 and 2 (1 X 2
interaction) in both the L,g4 and Ls, arrays. Factor
1 is two-level and factor 2 is three-level; thus the
1 X 2 interaction carries two degrees of freedom,
represented by the two columns in Table IV. For
the L';¢ array, the supplementary columns a and b
represent the 1 X 4 interaction; ¢ and d represent
the 2 X 4 interaction; and e and f represent the
3 X 4 interactions (each with two degrees of
freedom). In fact, these interactions are also con-
founded with other two-factor interactions not
listed.

Table II. The ANOVA table for the data in Table I

Parameters Estimated Degree of Sum of Mean F ratio*  F ratiot
effects freedom squares squares

A 6-332 1 641-52 641-52 12-24 173-38

B 2-355 1 88-70 88-70 1-69 23-97

AB 1-949 1 60-76 60-76 1-16 16-42

C 0-261 1 1-09 1-09 0-02 0-29

AC 0-731 1 8-55 8-55 0-16 231

D -0-210 1 0-71 0-71 0-01 0-19

Error 9 471-86 52-43

e 5-250 1 442-23 442.23 119-52

Pure error 8 29-63 3-70

Total 15 1273-18

*using s* = 52-34 tusing s> = 3-70
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Table III. Unsaturated orthogonal arrays

Design No. of No. of Max no. of columns at these Unused degrees of
TOWS factors levels freedom
2 3 4 5
Lig(2! x 37) 18 8 1 7 — — 2
L'3(2! x 4%) 2 10 1 — 9 — 3
L'34(2% x 31) 36 16 3 13 — — 6
Lso(2! x 5) 50 12 1 — — 1 4
Lsq(2' x 3%) 54 26 1 25 — — 2

Table IV. The supplementary orthog-
onal columns for L

Run a b
1 0 -2/3
2 0 -2/3
3 0 -2/3
4 1 1/3
5 1 1/3
6 1 1/3
7 -1 1/3
8 -1 1/3
9 -1 1/3

10 0 2/3

11 0 2/3

12 0 2/3

13 -1 -1/3
14 -1 -1/3
15 -1 -1/3
16 1 -1/3
17 1 -1/3

18 1 —1/3

(b) Using the supplementary orthogonal columns
to accommodate new factors

If the assumption of ‘no interactions’ is made, the
extra columns can be used to accommodate new
factors. In Table 1V, for example, for any quantitat-
ive three-level factor, if only the linear effect is
expected to be non-zero, then column a can be used
to accommodate a new factor. Thus, the original
Lig(2' x 37) can be extended to Lg(2' x 37 x 31),
when the quadratic effect of the added column is
negligible (it is partially confounded with the column
2 of the original Lg array). Note that only a linear
effect in under consideration for the new factor,
namely, the difference between level 1 and level 2
is the same as that between level 2 and level 3.

Similarly, we can accommodate three, two, and
one more factors in the original L’'s5, L5y and Ls,
arrays, respectively (e.g. columns a, b, ¢ in Table
V; columns a, ¢ in Table VI; and column a in Table
VII). These factors must be quantitative factors, and
only their linear effects are of interest. It was argued
by Taguchi (Reference 1, chapter 12) that the linear
effect usually dominates the factor effect (from

Table V. The supplementary orthogonal columns for L's¢

Run a b c d e f
1 1 1 1 1/3 0 1/3
2 1 1 1 1/3 0 1/3
3 1 1 1 1/3 0 1/3
4 1 -1 -1 1/3 0 -1/3
5 1 -1 -1 1/3 0 -1/3
6 1 -1 -1 1/3 0 -1/3
7 -1 1 -1 -1/3 -1/3 0
8 -1 1 -1 -1/3 -1/3 0
9 -1 1 -1 -1/3 -1/3 0

10 -1 -1 1 -1/3 1/3 0

11 -1 -1 1 -1/3 1/3 0

12 -1 -1 1 -1/3 1/3 0

13 0 0 0 -2/3 0 -2/3

14 0 0 0 -2/3 0 -2/3

15 0 0 0 =273 0 -2/3

16 0 0 0 -2/3 0 2/3

17 0 0 0 -2/3 0 2/3

18 0 0 0 -2/3 0 2/3

19 0 0 0 2/3 2/3 0

20 0 0 0 2/3 2/3 0

21 0 0 0 2/3 2/3 0

22 0 0 0 2/3 -2/3 0

23 0 0 0 2/3 -2/3 0

24 0 0 0 2/3 -2/3 0

25 -1 -1 -1 1/3 0 1/3

26 -1 -1 -1 1/3 0 1/3

27 -1 -1 -1 1/3 0 1/3

28 -1 1 1 1/3 0 -1/3

29 -1 1 1 1/3 0 -1/3

30 -1 1 1 1/3 0 -1/3

31 1 -1 1 -1/3 -1/3 0

32 1 -1 1 —-1/3 -1/3 0

33 1 -1 1 -1/3 -1/3 0

34 1 1 -1 -1/3 1/3 0

35 1 1 -1 -1/3 1/3 0

36 1 1 -1 -1/3 1/3 0

quadratic effect, cubic effect,. . .etc). The so-called
‘main effect principle’ is based upon the empirical
observation that linear main effects are more
important than higher order effects. Other columns
in Tables IV-VII remain to be interaction columns;
their non-equal occurrence property prohibits the
use of assigning new factors. (If the equal occur-
rence property is not a concern, then all columns
in Tables IV-VII can be used to accommodate new
factors.)
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Table VI. The supplementary orthogonal
columns for Lsg

Run a b c d
1 0 2 1] -6
2 0 2 0 -6
3 0 2 0 -6
4 0 2 0 -6
5 0 2 0 -6
6 2 -2 1 -1
7 2 -2 1 -1
8 2 -2 1 -1
9 2 -2 1 -1
10 2 -2 1 -1
11 1 1 -2 4

12 1 1 -2 4

13 1 1 -2 4
14 1 1 -2 4
15 1 1 -2 4
16 -1 1 2 4
17 -1 1 2 4
18 -1 1 2 4
19 -1 1 2 4

20 -1 1 2 4

21 -2 -2 -1 -1

22 -2 -2 -1 -1

23 -2 -2 -1 -1

24 -2 -2 -1 -1

25 -2 -2 -1 -1

26 0 -2 0 6

27 0 -2 0 6

28 0 -2 0 6

29 0 -2 0 6

30 0 -2 0 6

31 -2 2 -1 1

32 -2 2 -1 1

33 -2 2 -1 1

34 -2 2 -1 1

35 -2 2 -1 1

36 -1 -1 2 —4

37 -1 -1 2 -4

38 -1 -1 2 -4

39 -1 -1 2 —4

40 -1 -1 2 —4

41 1 -1 -2 —4

42 1 -1 -2 —4

43 1 -1 -2 -4

44 1 -1 -2 —4

45 1 -1 -2 —4

46 2 2 1 1

47 2 2 1 1

48 2 2 1 1

49 2 2 1 1

50 2 2 1 1

Note

The ideas are also applicable to other designs that
are orthogonal arrays, not only the Taguchi designs
mentioned above.
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